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Abstract. We suggest a novel attentional mechanism for detection of
smooth convex and concave objects based on direct processing of in-
tensity values. The operator detects the regions of the eyes and hair in
a facial image, and thus allows us to infer the face location and scale.
Our operator is robust to variations in illumination, scale, and face ori-
entation. Invariance to a large family of functions, serving for lighting
improvement in images, is proved. An extensive comparison with edge-
based methods is delineated.

1 Introduction

Edge detection was, so far, the core of most state of the art techniques for at-
tentional mechanisms as well as face detection (see [4], [6]). This excludes some
recent works which utilize neural networks ([9],[7]), color histograms ([2],[8]), or
shape statistics ([1],[5]) for face detection. Though one cannot disregard their
advantages, edge maps sustain severe flaws such as: sensitivity to changes in illu-
mination, strong effect of surrounding objects, and inability to delineate objects
in a cluttered scene. We overcome these problems of edge-based approaches by
a novel attentional operator which detects smooth three dimensional convex or
concave objects in the image. The operator is robust to face orientation, scale,
and illumination, and is capable of detecting the subject in a strongly textured
background. It is employed for face detection, namely to detect the eyes and
hair, from which the scale of the face can be inferred. The operator answers the
above problems as a whole, demands a relatively short running time, and its
robustness leads to reliable results.

2 Y-Phase: Attentional Operator for Detection of Convex

Regions

We next define our attentional mechanism. We refer to faces as three dimensional
objects with convex and concave regions, and take advantage of this structure.



2.1 Defining the Argument of Gradient

Let us estimate the gradient map of image I(x, y) by: ∇I(x, y) ≈ ([Dσ(x) Gσ(y)]∗
I(x, y), [Gσ(x) Dσ(y)] ∗ I(x, y)), where Gσ(t) is the one dimensional Gaussian
with zero mean and standard deviation σ, and Dσ(t) is the derivative of that
Gaussian. We turn the Cartesian representation of the intensity gradient into a
polar representation. The argument (also denoted “phase”, and usually marked
by θ(x, y)), is defined by:

θ(x, y) = arg(∇I(x, y)) = arctan
(
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where the two dimensional arc tangent is defined by:

arctan(y, x) =
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and the one dimensional arctan(t) denotes the inverse function of tan(t) so
that: arctan(t) : [−∞,∞] 7→
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]

. The attentional mechanism is simply

the derivative of the argument map with respect to the y-direction: ∂
∂y

θ(x, y) ≈

[Gσ(x) Dσ(y)] ∗ θ(x, y). We denote ∂
∂y

θ(x, y) as Y-Phase.

2.2 Mathematical Formulation of Y-Phase Reaction to Paraboloids

The projection of concave and convex objects can be estimated by paraboloids,
since paraboloids are arbitrarily curved surfaces (see [10]). Our mathematical
formulation refers to a general paraboloid of the form: f(x, y) = a(x−ε)2+b(y−
η)2, where a > 0 , b > 0 are constants, and (ε, η) is the center of the paraboloid.
The first order derivatives of the paraboloid are: ∂

∂x
f(x, y) = 2a(x − ε) and

∂
∂y

f(x, y) = 2b(y−η). The gradient argument is therefore: θ(x, y) = arctan(b(y−

η), a(x − ε)). Deriving it with respect to y yields: ∂
∂y

θ(x, y) = ab(x−ε)
a2(x−ε)2+b2(y−η)2 .

However, this derivative exists in the whole plane except for the ray: {(x, y) | y =
η and x ≤ ε}. At this ray, θ(x, y) has a first order discontinuity (in the y-
direction), so its derivative there tends to infinity. The fact that for a paraboloid,
∂
∂y

θ(x, y) → ∞ at the negative ray of the x-axis, while continuous at the rest of

the plane can be clearly seen in Fig. 1(c) (we define our coordinate system at
the horizontal and vertical axes of the sphere).

2.3 D-Phase: The Isotropic Variant

We also define an isotropic variant of Y-Phase, whose reaction is to all axes of
the paraboloid, rather than merely the negative part of the x-axis. We do so by
rotating the gradient argument by:

θα(x, y) =

{

θ(x, y) + (π − α), if θ(x, y) + (π − α) ≤ π

θ(x, y) + (π − α) − 2π, if θ(x, y) + (π − α) > π
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Fig. 1. (a) The spheric gray-levels: I(x, y) = 10x2+10y2. (b) The argument of gradient
of (a). The discontinuity ray is at 180◦ from the positive x-axis. (c) derivation of (b)
in 90◦. (d) Rotation of (b), so that the discontinuity ray is at 45◦ from the positive
x-axis. (e) Derivation of (d) in 315◦. (f) Response of D-Phase, the isotropic operator.

so the ray of discontinuity of Y-Phase is transformed to a ray from the origin
forming an angle of α radians with the positive part of the x-axis. We then derive
the rotated argument of gradient in the direction: α − π

2 (or: α + π
2 ), to get the

response to the ray of discontinuity (see Fig. 1(d),(e)). Repeating this rotation
with angles: α = 0◦, 90◦, 180◦, 270◦ and summing their responses result in an
isotropic operator called: D-Phase (see Fig. 1(f)). It is evident that D-Phase is
more general than Y-Phase, but as we shall show, Y-Phase is effective and robust
for face detection.

3 Features of Y-Phase

Two dimensional objects of constant albedo form a linear gray-level function,
and are usually of no interest (for example, walls). It can be easily shown, that
the Y-Phase attentional mechanism has zero response to planar objects. In addi-
tion, it can be shown that the response of Y-Phase to edges of planar objects is
finite, and is therefore smaller than its response to paraboloids. Another provable
characteristic of Y-Phase is its linear dependence on scale. We now present sev-
eral invariants of Y-Phase, followed by a practical discussion and demonstration
from real-life scenes.

Theorem 1. Let f(x, y) [the original gray-level function] be a derivable func-
tion at each pixel (x0, y0) with respect to x and y.
Let T (z) [the transform] be a function derivable at point z0 = f(x0, y0), whose
derivative there is positive in the strong sense. Denote the composite function:
g(x, y) = T (f(x, y)) [the transformed gray-level function].
The y-derivatives of the gradient arguments of f(x, y) and g(x, y) at point (x0, y0)
are identical:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

Proof. By the chain rule, the composite function: g(x, y) = T (f(x, y)) is deriv-
able with respect to both x and y at point (x0, y0), and its derivatives are:

gx(x0, y0) = T ′(f(x0, y0))fx(x0, y0)

gy(x0, y0) = T ′(f(x0, y0))fy(x0, y0)



We denote f0 = f(x0, y0), f0
x = fx(x0, y0), f0

y = fy(x0, y0). The argument of
gradient at point (x0, y0) can be written as:

θg(x0, y0) = arctan
(

T ′(f0)f0
y , T ′(f0)f0

x

)

Since we have required that T ′(f0) > 0, the point
(

T ′(f0)f0
x , T ′(f0)f0

y

)

lies

in the same quarter of the plane as point (f 0
x , f0

y ). It follows that:

θg(x0, y0) = arctan
(

T ′(f0)f0
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x

)

= arctan
(

f0
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)

= θf (x0, y0)

The last equation states that the phase of the gradient is invariant under the
transformation T . Deriving the gradient argument with respect to y preserves
this invariance:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

ut

Let us rephrase theorem 1 in the following manner:

Y-Phase is invariant under any derivable monotonically increasing (in
the strong sense) transformation of the gray-level function.

The practical meaning of the theorem is that Y-Phase is invariant, for exam-
ple, under linear transformations, positive powers (where f(x, y) > 0), logarithm,
and exponent. Y-Phase is also invariant under linear combinations (with positive
coefficients) and compositions of these functions, since such combinations are also
derivable and strongly monotonically increasing. The functions mentioned above
and their combinations are common in image processing for lighting improve-
ment. This implies that Y-Phase is invariant under a large variety of lighting
conditions. Figure 2 demonstrates Y-Phase invariance to log(log(log(z))) and
exp(exp(exp(z))) in a real-life scene.

In view of Y-Phase invariants, the suggested model is not only a paraboloidal
gray-levels detector, but also a detector of any derivable (strongly) monotoni-
cally increasing transformation of paraboloids. This makes Y-Phase particularly
attractive for usage in various scenes in which the environment is unknown before
hand.

4 Face Detection Using Y-Phase

4.1 Approximation by Paraboloids

One of the underlying ideas of the theoretical model is the estimation of the
gray-levels describing convex and concave objects, in our case—the eyes and hair,
using paraboloids or a derivable monotonically increasing transformation (in the
strong sense) of paraboloids. Figure 3 shows such a synthetic paraboloid along
with a magnified eye. The eye gray-levels are similar to those of a paraboloid.



Original
image I

log(log(log(I))) ee
e

I

Fig. 2. Top row: The original image I(x, y) is compared to log(log(log(I(x, y)))) and
exp(exp(exp(I(x,y)))). Y-Phase is invariant under log and exp. Bottom row: Y-Phase.
Similarity among Y-Phase of original image and Y-Phases of transformed images is
obvious.

synthetic original right eye gradient Y-Phase.
paraboloid. image. (zoom). argument.

Fig. 3. The eye exhibits strong similarity to the artificial paraboloidal gray-levels:
I(x, y) = 10x2 + 30y2. The gradient argument of the eye is similar to that in Fig. 1. A
clear response of Y-Phase at the negative part of the x-axis is observed.

The Y-Phase of the eye strongly reacts to the x-axis; this behavior resembles
that of Y-Phase of paraboloids.

Figure 4 demonstrates the robustness to three factors: illumination direction,
scale, and orientation of the head. Mirrored auto-correlation serves to detect the
face, i.e., choose the window with the best cross correlation between left and right
halves (mirroring one of them) among all possible window positions; the window
is of the same height as the image. Y-Phase robustness to illumination, scale,
and orientation is mainly due to the fact that ∂

∂y
θ(x, y) → ∞ for paraboloids,

which is a very stable feature. The areas of strong Y-Phase response enable the
heuristic detection of the face scale.

4.2 Superiority of Y-Phase on Edge Detection

In this section, we briefly delineate the results of an extensive comparison be-
tween Y-Phase and the edge map (taken as gradient modulus). Following the
operation of each method, mirrored auto-correlation attempts to detect the face.

1. Reaction to 3D Objects : Y-Phase detects 3D objects, so the Y-Phase of a
smiley (2D object) is relatively low, as opposed to edge methods (Fig. 5(a)).



2. Insensitivity to Strong Edges : Sharp color changes are likely to appear due
to different object colors (or albedo) (Fig. 5(b)). These variations lead to
strong edges, which distract edge-based methods from the subject. Y-Phase
does not react strongly to sharp changes, but rather, to gradual changes of
intensity of the kind exhibited by the eyes and hair. (see also [3]).

3. Robustness to Lighting : In Fig. 5(c), the background is better lit than the
subject. Y-Phase detects the subject, while edge methods, the background.
The improvement of the image by the logarithm (Fig. 5(d)) makes edge-
based methods too detect the subject. Note, that the decision to apply this
specific (log) function was made by a human. Y-Phase robustness to illumi-
nation releases the automatic face detector from the need to decide which
illumination it is facing.

4. Stability in Textured Background : The existence of texture in an image makes
the task of discriminating the subject from the background very hard. The
difficulties emanate from the large amount of edges covering a substantial
image area, and the periodicity of the (usually symmetric) pattern composing
the texture. As Fig. 5(e) shows, Y-Phase is much more robust than edge
based methods, and is capable of separating the face from dominant textures.

5 Conclusions

We introduce a novel attentional operator (Y-Phase) for detection of regions
emanating from smooth convex or concave three dimensional objects. We use
it to detect the eyes and hair, and thus, the face. Y-Phase is proved invariant
under any derivable (strongly) monotonically increasing transformation of the
image gray-levels, which practically means robustness to illumination changes.
Robustness to orientation and scale is also described. The operator is not based
on edge maps, and thus free of their flaws (e.g., Y-Phase is robust in dominant
textures). An extensive comparison with edge-based methods is depicted.
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Lighting: Scale: Orientation:

Fig. 4. Robustness to lighting, scale, and orientation. Each column contains the original
image (left) and its Y-Phase (right); detection by mirrored auto-correlation marked on
all images. Lighting: Illumination comes from a single point light source. Each row
relates to the corresponding azimuth: 90◦, 60◦, 30◦, 0◦, −30◦, −60◦, −90◦. Scale:
Several scales of the face. The Y-Phase image strongly reacts to the eyes and hair
regions, regardless of the scale. Largest face is about 6 times larger than smallest face.
Orientation: Capability to detect oblique faces. Y-Phase strongly reacts to the eyes
and hair, even though the face is slanted.



(a) A face vs. smiley. Edge-based methods
locate the larger object, which is the flat
smiley. Y-Phase detects the three dimen-
sional face, although it is smaller.

(b) Small objects with strong edges di-
vert edge-based methods from the real sub-
ject. Y-Phase reacts to gradual variations
rather than to sharp color changes.

(c) The background is better lit than the
face. Y-Phase is capable of detecting the
face despite the poor illumination.

(d) Illumination improved by applying
logarithm. Edge methods as well as Y-
Phase now detect the subject.

(e) A texture of asterisks. Facial edges
look negligible near texture edges. In the
Y-Phase map, facial regions attain higher
values than textural areas.

Fig. 5. Comparison between Y-Phase and edge-based methods. Y-Phase is more ro-
bust, and performs better than edge-based methods.


