
Generating Diverse Solutions in SAT: Paper
Addendum

Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
alexander.nadel@intel.com

Abstract. This document is an addendum to [1]. We complement Sec-
tion 4 of [1] in two ways. First, a detailed analysis of the randomized
algorithms is provided. Second, an explanation of the behavior of the
quality functions of pguide and pbcpguide 100 is proposed. The reader
should be familiar with the content of [1] up to and including Section 4.

1 Analyzing Randomized Algorithms

This section complements the analysis presented in Section 4 of [1] by analyzing
the behavior of three randomized algorithms and comparing them to prand.

dpll-based sampling invokes the SAT solver k times to generate k models
for the same input formula. The first assignment to a variable is random for each
invocation of the SAT solver. dpll-based sampling was mentioned in [2], but
we did not find any reference to work introducing it.

xor-sample [3] invokes the SAT solver at least k times to generate k mod-
els. For each invocation, the initial formula is augmented with random XOR
constraints, where an XOR constraint includes variables and, optionally, the
constant 1. Adding an XOR constraint means enforcing that an odd number of
elements in the constraint are satisfied. In the original definition, a variable is
added to the XOR constraint with probability q and 1 is added with probability
1/2. One can also use XOR sampling, where the length and number of XOR
constraints are predefined.

prandweak [4] (AllSAT-Sampling in [4]) is a compact DiversekSet algo-
rithm. It randomizes the polarity of a new decision variable only when a variable
is selected for the first time or for the first time after a model.

Let us analyze the behavior of the randomized algorithms for DiversekSet,
including prand, on our instances. Table 1 summarizes their behavior for a
selected number of models and Fig. 1 presents their behavior as a function of
the number of models.

In our experiments, we used 4 versions of xor-sample, each one gener-
ating either 100 or 10 XOR constraints of length of 100 or 10. We generated
the XOR constraints and translated them to clauses using the utilities of [3].
Note that additional variables must be introduced to translate XOR constraints
to clauses. Compare the summary of the behavior of xor-sample with that



Table 1: Mean quality and mean run-time for randomized DiversekSet algo-
rithms, given 100, 50 and 10 models on 66 benchmarks from semiformal veri-
fication of hardware. The algorithms are sorted by the quality obtained when
generating 100 models.

100 50 10
Algorithm Quality Time Quality Time Quality Time

prand 0.1923 225 0.1915 206 0.1903 186
dpll-based sampling 0.1608 3988 0.1609 1992 0.1617 402
xor-sample-100-100 0.1487 5067 0.1485 2559 0.1482 520
xor-sample-100-10 0.1376 6855 0.1373 3430 0.1371 651
xor-sample-10-100 0.1056 4117 0.1052 2059 0.1062 424
prandweak 0.09991 76 0.09405 55 0.08332 39
xor-sample-10-10 0.08896 4126 0.08894 2076 0.08976 424

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Mean time in seconds

Models

prandweak

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗
dpll-based sampling

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−

−
prand

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
xor-sample 100 100

×××××
××××

××××
×××××

×××××
×××××

×××××
×××××

×××××
×××××

×××××
×××××

×××××
×××××

×××××
×××××

×××××
××××

×××××
×××××

××
×

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50 60 70 80 90 100

Mean quality

Models

prandweak

∗∗∗
∗∗
∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ dpll-based sampling

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−
prand

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
xor-sample 100 100

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

×

Fig. 1: Comparing randomized algorithms for DiversekSet.

of dpll-based sampling in Table 1. The parameter values that follow xor-
sample in the first column of the table indicate the number of generated con-
straints and their length, respectively. The run-time of every configuration of
xor-sample is greater than that of dpll-based sampling and the quality
is lower than that of dpll-based sampling. Compare the behaviour of xor-
sample 100 100 (the optimal configuration of xor-sample in terms of quality)
with that of dpll-based sampling on Figure 1. One can see that while the gap
in the quality remains steady, the performance gap between the two algorithms
grows. Our results reflect the following drawbacks of xor-sample when applied
to large instances of the DiversekSet problem. First, adding clauses and vari-
ables to the instance makes the problem harder for the solver. Second, adding
XOR constraints might disorient the SAT solver’s heuristics in the sense that
the solver would not be local with respect to the original structure of the input
formula. Third, after XOR constraints are added the formulas might become
unsatisfiable (in our experiments, we reinvoked the solver with a different set of
XOR constraints on such occasions). In addition, it is unclear how to generalize
xor-sample to a compact algorithm. This is in contrast to dpll-based sam-
pling that can easily be generalized. Indeed, prand and prandweak can be
thought of as the result of such generalization.



Compare now the performance of dpll-based sampling and prand in
Figure 1. The quality of prand is always better than that of dpll-based sam-
pling. This behavior is expected, since prand’s randomization strategy is much
more aggressive; it randomizes the polarity of every selected variable, while dpll-
based sampling randomizes only the first polarity for each variable. Now com-
pare the run-time of both algorithms. Two factors are expected to impact the
run-time. On the one hand, prand should be faster than dpll-based sampling
since it invokes the SAT solver only once and hence keeps reusing all the learned
clauses and heuristical information. On the other hand, dpll-based sampling
could be faster than prand since prand’s aggressive polarity randomization
strategy effectively cancels the phase-saving polarity heuristic. In practice, the
first factor clearly dominates. Indeed, dpll-based sampling runs faster only
when the number of models is smaller than 4. The performance gap between
prand and dpll-based sampling quickly increases; Table 1 shows that for
100 models prand is 18 times faster.

Consider the performance of prandweak. prandweak is undoubtedly the
fastest algorithm. However, the quality of prandweak is worse than the quality
of every other algorithm with the exception of one configuration of xor-sample.
These results are not surprising. prandweak is so fast because it makes only
minimal changes to the run-time-efficient default strategies of the SAT solver.
The quality of prandweak is low because its weak randomization strategy
is insufficient for guiding the solver to different subspaces. As reported in [4],
prandweak can be used for solving extremely difficult test-cases.

2 Explaining the Behavior of Polarity-based Guided
Algorithms

This section complements the analysis presented in Section 4 of [1] by proposing
an explanation of the behavior of the quality of pguide and pbcpguide 100 as
a function of the number of models in Fig. 2 of [1]. First, we analyze the behavior
of pguide given a tautological formula. Second, we show how our analysis can
be used for explaining the empirical behavior of pguide on real world formulas.
We then explain the difference between the empirical behaviors of pguide and
pbcpguide 100. The following proposition determines the quality function of
pguide.

Proposition 1. Suppose that pguide is invoked on a tautological formula. Then
it holds that:

1. Q2 = 1.
2. For an odd m > 2: Qm = m+1

2m .
3. For an even m > 2: Qm = m

2(m−1) .

Proof. Given a tautological formula, pguide will assign each variable a value,
independently of the other variables since there is no BCP or conflict analysis.
Each variable assignment is guaranteed to be the eventual assignment of the



variable in a model. Consider the values given by pguide to a variable v . For
m = 2, the variable quality is clearly Q2 = 1, since the second value assigned to
v must be the negation of its value in the first model according to the definition
of pguide. One can see every odd value µu

i for i > 2 will be assigned randomly
with probability 1/2, while every even value µu

i for i > 1 has to be the negation
of the previous value µu

i−1. Hence the number of assigned 1’s and 0’s for any
variable, given an even number of models is always equal.

For an even m > 2 we have: Su
m = pum × num = (m/2) × (m/2) = m2/4,

independently of u. Hence, for an even m > 2 it holds that Qm =
n×Su

m

(m
2 )×n

=
m

2(m−1) .

Consider an odd m > 2. It holds that num−1 = pum−1, since m− 1 is even. By
definition, we also have that num−1 = pum−1 = (m−1)/2. The recursive definition

of variable quality yields that Su
m = Su

m−1+ m−1
2 = (m−1)2

4 + m−1
2 = (m−1)(m+1)

4 .

Hence, Qm =
n×Su

m

(m
2 )×n

= 2(m−1)(m+1)
4m(m−1) = m+1

2m . ut

Prop. 1 implies that the image of the function Qm for m > 1 of pguide, given
a tautological formula, looks as follows: {1, 2/3, 2/3, 3/5, 3/5, 4/7, 4/7, 5/9, 5/9, 6/11, 6/11, . . .}.
It is instructive that the behavior of the quality function of pguide, given a
tautological formula, seems to be similar to the empirical behavior of pguide
on our large well-structured real-world formulas. Indeed, the image is large for
m = 2; it goes down quickly and approaches an asymptote in both cases (or
at least seems to approach an asymptote in our experiments). We applied gnu-
plot’s implementation of the nonlinear least-squares Marquardt-Levenberg al-
gorithm to fit the quality function of pguide into a curve over a space of pa-
rameters of the function a + bx+1

2x . The latter function was chosen, since it is
similar up to parameters a and b to the quality function of pguide, given a
tautological formula. If our data fits into the curve well, it would be strong
evidence that the behavior of the quality function of pguide on tautological for-
mulas is similar to its behavior on our real-wold formulas. The resulting function
fitpguide(x) = 0.049 + 0.29(x + 1)/(2x) is shown in Fig. 2. One can see that
the empirical data fits into the curve very well.

Apparently, Prop. 1 should be applicable to pbcpguide, since BCP has no
impact on a tautological formula. We tried to fit the quality of pbcpguide 100
into the curve a + bx+1

2x . The resulting function fitpbcpguide(x) = 0.083 +
0.25(x + 1)/(2x) is displayed in Fig. 2. One can clearly see that the data of
pbcpguide 100 does not fit into the curve. In particular, fitpbcpguide goes
down asymptotically, while the real quality function goes up. This result is ex-
plained by the fact that unlike pguide, pbcpguide takes into consideration
dependencies between variables.

Additional analysis to check whether or not the curves that characterize the
behavior of pguide/pbcpguide 100 on tautological formulas fit the empirical
data is beyond the scope of the present work. Our results indicate this to be a
very interesting direction for future research.



0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 10 20 30 40 50 60 70 80 90 100

Quality

Models

∗

∗
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

pguide ∗
pbcpguide 100

◦

◦
◦
◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
fitpbcpguide(x) = 0.083 + 0.25(x + 1)/(2x)

fitpguide(x) = 0.049 + 0.29(x + 1)/(2x)

Fig. 2: Fitting polarity-based guided algorithms into curves.

References

1. Nadel, A.: Generating diverse solutions in SAT. In Sakallah, K.A., Simon, L., eds.:
Theory and Applications of Satisfiability Testing - SAT 2011, 14th International
Conference, Ann Arbor, USA, June 19-22, 2011, to Appear in Proceedings. (2011)

2. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: ICCAD. (2007) 258–265

3. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In Schölkopf, B., Platt, J.C., Hoffman, T., eds.:
NIPS. (2006) 481–488

4. Agbaria, S., Carmi, D., Cohen, O., Korchemny, D., Lifshits, M., Nadel, A.: SAT-
based semiformal verification of hardware. In Bloem, R., Sharygina, N., eds.: Pro-
ceedings of the 10th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2010). (October 2010) 25–32


