Generating Diverse Solutions in SAT

Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
alexander.nadel@intel.com

Abstract. This paper considers the DIVERSEKSET problem in SAT, that
is, the problem of efficiently generating a number of diverse solutions
(satisfying assignments) given a propositional formula. We provide an
extensive analysis of existing algorithms for this problem in a newly
developed framework and propose new algorithms. While existing algo-
rithms adapt modern SAT solvers to solve DIVERSEKSET by changing
their polarity selection heuristic, our new algorithms adapt the variable
ordering strategy as well. Our experimental results demonstrate that the
proposed algorithms improve the diversification quality of the solutions
on large industrial instances of DIVERSEKSET arising in SAT-based semi-
formal verification of hardware.

1 Introduction

SAT solving is a core reasoning engine in a variety of applications [1]. The basic
functionality of a SAT solver consists of solving the following decision prob-
lem: given a propositional formula in Conjunctive Normal Form (CNF), decide
whether it has a satisfying assignment (also called a model or solution). However,
major industrial applications require additional abilities from the solver. This
paper considers the DIVERSEKSET problem in SAT: given a satisfiable propo-
sitional formula in CNF, return a user-given number of solutions that are as
diverse as possible.

In [2] we proposed a number of algorithms for solving DIVERSEKSET in SAT
in the context of the SAT-based semiformal hardware verification flow, where
the DIVERSEKSET solver is the core reasoning engine. The flow has practical
importance, since it is able to find bugs in complex industrial designs that are
missed by both Bounded Model Checking (BMC) and simulation [2]. The main
idea of [2] is that, given a complex property that cannot be verified by BMC,
since BMC cannot reach a sufficient bound, one can advance towards the prop-
erty along multiple paths via user-given waypoints. The paths must be as diverse
as possible in order not to miss bugs. A DIVERSEKSET solver is used to extract
such paths. Diversification quality is defined in [2] as the normalized sum of
the Hamming distances between each pair of solutions. The DIVERSEKSET algo-
rithms proposed in [2] adapt a modern conflict-driven clause-learning (CDCL)
SAT solver, invoking it only once to generate all the models. The algorithms
are polarity-based in the sense that diversification is achieved solely by changing
the polarity selection heuristic, where the polarity is the value assigned to each

new decision variable. We proposed randomized and guided polarity-based ap-
proaches. Randomized approaches select the polarity randomly on all or some
of the occasions, while guided approaches select the polarity so as to explicitly
guide the solver away from previous solutions.

The first contribution of this paper is the development of a convenient frame-
work for analyzing DIVERSEKSET algorithms and the analysis of existing algo-
rithms using this framework. (The analysis in [2] is very brief, since [2] is mostly
dedicated to a particular application of DIVERSEKSET.) In particular, our frame-
work allows one to measure diversification quality online (i.e. while the solver is
running, as opposed to offline, after the solver has finished) and to estimate the
contribution of each variable to diversification quality.

We analyze the empirical behavior of DIVERSEKSET algorithms on 66 CNF
instances generated by Intel’s semiformal verification flow for generating 2 to
100 models. This is in contrast to [2], which reports about experiments with 10
models only, since this number was used by the semiformal application. Our ex-
perimental setup provides us the valuable ability to analyze the behavior of the
algorithms as a function of the number of models. Our analysis can also be em-
pirically helpful for semiformal verification, since the number of required models
is expected to grow as more computational resources become available. In order
to improve readability, we present and discuss relevant experiments immediately
after describing a certain family of algorithms instead of concentrating all the
experimental results in one section. The instances we used have 213,047 variables
and 738,862 clauses on average, while the largest instance has 910,868 variables
and 3,251,382 clauses. All the instances are available from the author. All the
algorithms were implemented in Intel’s CDCL SAT solver Eureka and run on
Intel® Xeon® machines with 4Ghz CPU frequency and 32Gb of memory.

The second contribution of this paper is the introduction and analysis of new
algorithms for DIVERSEKSET. Our new algorithms are wvariable-based; that is,
they change the variable ordering in addition to the polarity selection heuristic.
We propose guided and randomized variable-based methods, which can be local
or global with respect to the default decision heuristic. Our algorithms improve
diversification quality. We observe a trade-off between diversification quality and
run-time. Moderate improvement of diversification quality can be achieved with
negligible run-time cost, while more significant improvement in quality requires
additional run-time. We show how one can control the trade-off between quality
and run-time.

The rest of the paper is organized as follows. Section 2 reviews some related
work and provides the necessary background. Definitions are provided in Sec-
tion 3. Existing algorithms are analyzed in Section 4. Section 5 is dedicated to
the new variable-based algorithms. The conclusion and directions for future work
appear in Section 6.

2 Related Work and Background

As far as we know, the only work that considers the DIVERSEKSET problem in
SAT is our previous work [2]. However, the problem of finding a user-given num-
ber of diverse solutions has been studied in the Constraint Satisfaction Prob-
lem (CSP) domain (e.g., [3,4]). A guided value-based method for solving DI-
VERSEKSET for CSP is proposed in [3]. A randomized value-based method is
also known in the CSP community [4] (we did not find a paper introducing it).
A number of efficient value-based methods are proposed in [4] in the context of
automatic generation of architectural tests.

A number of works (e.g., [5-7]) are dedicated to the related problem of gener-
ating a (nearly) uniformly distributed sampling of the solution space in various
domains, including SAT [7]. We denote by kSAMPLING the problem of generating
k out of N solutions, where each solution should be selected with the probabil-
ity as close as possible to 1/N. It is important to realize the difference between
DIVERSEKSET and kSAMPLING (explained in the context of CSP in [4]). Con-
sider the problem of finding two diverse/uniformly distributed solutions given
a tautological formula. Consider an algorithm which returns the following two
models: (1) All the variables are assigned 1; (2) All the variables are assigned 0.
This algorithm returns the optimal solution for DIVERSELSET for a tautological
formula. However, it is unsatisfactory for the sake of kSAMPLING, since the solu-
tions are predefined. Still, since a set of solutions for kSAMPLING can be used as
an approximation for a set of solutions for DIVERSEKSET, one can evaluate the
performance of existing algorithms for kSAMPLING on DIVERSEKSET instances.

The DIVERSEKSET algorithms presented in this paper are built on top of
a modern CDCL SAT solver. Modern SAT solvers are extremely efficient on
huge industrial instances. Among the key features that enable the solvers to
be so efficient, despite the apparent difficulty of solving huge instances of NP-
complete problems, are dynamic behavior and search locality, that is, the ability
to maintain the set of assigned variables and recorded clauses relevant to the
currently explored space. This effect is achieved through various techniques,
such as 1UIP conflict clause learning [8], non-chronological backtracking [9],
rapid restarts [10], variable decision heuristics (also known as variable ordering
heuristics) and polarity selection heuristics.

The variable decision heuristics of a modern SAT solver are dynamic [8]. Their
goal is to improve the locality of the search by picking variables that participated
in recent conflict analysis. One can distinguish between variable-based decision
heuristics and clause-based decision heuristics (mixed variable- and clause-based
heuristics are also in use). Variable-based heuristics are based on VSIDS [8].
VSIDS maintains a score for each literal. The score is increased for a variable
that participates in conflict analysis. Once in a while the scores are decreased.
Consider now the clause-based heuristic CBH [11]. CBH maintains a clause list
containing both the initial and the conflict clauses. Whenever a new conflict
clause is derived, CBH moves the clauses that participated in conflict analysis,
along with the new conflict clause, to the top of the list. The next decision
variable is picked from the topmost non-satisfied clause using the variable with

the greatest VSIDS score. CBH tends to pick interrelated variables, a fact which
makes the search more local.

Most modern SAT solvers (including Eureka, which we use for our exper-
iments) employ the phase-saving heuristic [12-14] as their polarity selection
heuristic. The phase-saving heuristic for variable v always chooses the last value
v was assigned. This strategy tries to refocus the search on subspaces that the
solver has knowledge about.

3 Definitions

We start with defining some auxiliary notions. Given two boolean values oy
and o9, a pair {01, 02} is different if 01 # 0. Assume we are given a proposi-
tional formula in CNF F with ¢ variables V and r satisfying assignments M =
{p1,...,pr} (also known as models or solutions) for F. We define p* € {0,1},
where u € V and 1 < m < r, to be a value assigned to the variable u in fi,,.

The Hamming distance between two models p; and p; is defined to be the
number of different pairs amongst { e M;L} for uw € V. Diversification quality is
defined in [2] as the sum of the Hamming distances between each pair of models,
normalized to the range [0...1] by dividing by q(;)

We use the same measure for diversification quality but calculate it differ-
ently, keeping in mind two goals. First, we want to be able to estimate the
contribution of each variable to quality. Second, we want to be able to measure
quality online as well as offline. An offline version of our definitions is presented
next. Afterwards we show how to generalize our definitions so that they can be
used online as well.

Let the variable (diversification) quality S¥ , given a variable v and m mod-
els, be the number of different pairs amongst the pairs of values assigned to u
(namely, {/ﬁ, u;-*}, where 1 <4, <r and i < j). Note that the variable quality
Sy1 for m > 1 models is the variable quality for m models plus the number
of different pairs amongst {u“m+1,u§‘} for 1 <7 < m. Let p» and n?, be the
number of times u was assigned 1 and 0, respectively, in m models. We have the
following recursive definition for variable quality for m > 1:

w0 QY — S,lfl+n1,;%fufn+1:1;
U700 =S gl if g = 0.

We provide an alternative definition for variable quality, which is sometimes
more useful. It is not hard to see that p’, x n¥ is exactly the number of different
pairs amongst { e, /ﬂ;} Hence, we have:

u U u
S, =D, X Ny,

Now we can define the (diversification) quality @, for 1 < m < r models as
the sum of all the variable qualities, normalized to the range [0...1]:

ZueV S;Ln

Om == (g

‘We provide another useful notion of a potential of a variable. Given a variable
w € V and m > 1 models, II}}, = p; —n} is the potential of u. The potential of
a variable is the difference between the number of 1’s and 0’s assigned to u in
all the models. The absolute potential of u is the absolute value of the potential
|17} |. We will see later that the potential and the quality of a variable are closely

connected. Fig. 1 provides a simple example of applying our definitions.

M1 2 (3
v 00 0
u 1 10

Fig. 1: An example of applying our definitions, given two variables and three models.
We have: p3 = 0; n3 = 3; p§ = 2; n§ = 1. The variable qualities are: S5 = p3 X n3 = 0;
S3 = py x ng = 2. The quality is: Q3 = (0 + 2)/(3 x 2) = 1/3. The potentials are:
1y =1; 113 = -3.

Now we show how to modify our definitions so as to allow using them both
online and offline. The algorithms presented in this paper invoke a CDCL SAT
solver once to generate all the models and restart the search immediately after a
new model is discovered. We call the algorithms/solvers which follow the above-
mentioned scheme compact. Suppose that a compact DIVERSEKSET solver has
found m > 0 models and is searching for a new model. Such a solver maintains
the current partial assignment. We modify the notions of p¥ /n¥ | the variable
quality S}, and the variable potential IT} simply by considering the current
partial assignment as another model when counting the number of 1’s and 0’s as-
signed to a variable (the modification is required for assigned variables only). To
generalize the notion of overall quality, one needs to make an adjustment, since
the number of satisfying assignments is now different for assigned and unassigned
variables. Let ¢; be the number of unassigned variables and g2 be the number of
assigned variables. Then we have: @, = (3o S%)/((M)ar + ("5 1) g2). Note
that the online versions of our definitions are a strict generalization of our notions
(namely, those of p% n% ., S*. II*, and @,,) in the sense that they converge
with the offline versions after the solver has completed its run. When mention-
ing these notions in the paper, we are referring to their online version when a
D1vERSEKSET solver invocation is analyzed online and either to their online or
offline version if the solver has finished.

4 Analizing existing algorithms

First, we refer to two non-compact algorithms, DPLL-BASED SAMPLING (men-
tioned in [6] without a reference) and XOR-SAMPLE [7], that were designed for
the kSAMPLING problem, but which can also be applied to DIVERSEKSET. Both
DPLL-BASED SAMPLING and XOR-SAMPLE invoke a SAT solver once to generate
each model. Diversification is achieved by randomizing the first value assigned
to each variable for DPLL-BASED SAMPLING and by adding random XOR con-
straints for XOR-SAMPLE. DPLL-BASED SAMPLING and XOR-SAMPLE are shown
in [2,15] to be inferior to compact DIVERSEKSET algorithms in terms of both

quality and run-time. In addition, [15] analyzes a compact DIVERSEKSET al-
gorithm AlISAT-Sampling [2], which yields a low quality but is very fast. The
present work concentrates on compact algorithms that yield a relatively high
quality.

PRAND [2] (Rand-k-SAT in [2]) is a compact randomized polarity-based al-
gorithm. It operates by overriding the traditional polarity selection heuristic to
select the polarity randomly on all occasions. PRAND can be thought of as a
generalization of DPLL-BASED SAMPLING.

PGUIDE [2] (Guide-k-SAT in [2]) is a compact guided polarity-based algo-
rithm. It is designed to greedily improve quality. PGUIDE does not change the
default behavior of the SAT solver before the first model is encountered. Assume
PGUIDE is about to decide on the polarity of a newly assigned variable v when
m > 0 models have already been found. If IT* > 0, w is assigned 0; if [T < 0, u
is assigned 1; if I = 0, u is assigned a random value. Prop. 1 shows that this
simple algorithm improves quality whenever the variable decision heuristic picks
an unassigned variable with a non-zero potential. Note that this useful property
does not hold for PRAND, hence PGUIDE is expected to result in better quality.

Proposition 1. Assume that a compact DIVERSEKSET solver employing PGUIDE
is running and that it has encountered m > 0 models. Let u be an unassigned
variable picked by the variable decision heuristic. Let QL. and QY. be the quali-
ties if the current partial assignment is extended by assigning a value 1 and 0,
respectively, to w. Then, if ITY > 0 then Q% > QL ; if [T < 0 then QL > QY ;
if ITY =0 then QL, = QY.

Proof. Assume II} > 0. The recursive definition of variable quality implies
that assigning « the value 1 or 0 will change its variable quality by n®, or p¥,
respectively. The assumption II > 0 implies that p}» > n? . Hence, the change
in the variable quality of u will be greater if u is assigned 0 than if it is assigned
1. Note that the change in the overall quality is proportional to the change in
the variable quality of u, since the variable quality of u is the only addendum
that changes in the dividend of the definition of quality, while the change in the
divisor is independent of the value assigned to u. Hence we have Q% > QL . The
proof for the other two cases is similar. O

PGUIDE is designed to correct the potential of one variable at a time, where
by correcting the potential we mean bringing the absolute potential closer to
0. This operation improves the quality of one specific variable. Such a strategy
yields the optimal overall quality given a tautological formula. However, it does
not take into account dependencies between variables, which appear in real-world
well-structured formulas.

PBCPGUIDE [2] (BCP-aware Guide-k-SAT in [2]) is a refinement of PGUIDE
which takes into consideration dependencies between variables by taking into
account the impact of Boolean Constraint Propagation (BCP) on quality. It
performs BCP for both polarities of a new decision variable u alternatively and
measures the new quality for each polarity. It then continues with the polarity
that yielded the better quality. PBCPGUIDE’s flow is detailed in [2]. Note that

unlike PGUIDE, PBCPGUIDE is designed to take into account dependencies be-
tween variables. Applying PBCPGUIDE might have a significant negative impact
on performance, since it has to perform BCP two or three times per decision.
To be able to control the trade-off between quality and run-time, one can limit
PBCPGUIDE usage as follows. PBCPGUIDE will be used until a user-given num-
ber of conflicts T is encountered by the solver. Afterwards, the algorithm will
switch to plain PGUIDE until the next model is encountered. Then PBCPGUIDE
is reinvoked until T conflicts are encountered again.

Mean time in seconds
240

Mean quality
. 0.3 T

T T
PGUIDE *
PRAND —
PBCPGUIDE-100

T T
PGUIDE *

PRAND -
PBCPGUIDE-100 o

220 0.28 |-

o 4

200 —

180 =

160

140

120 | g

0.18 I I I I I I I I I
100 0 10 20 30 40 50 60 70 80 90

Models

100 L& I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

Models

100

Fig. 2: Comparing polarity-based algorithms.

Compare the empirical behavior of PGUIDE and PRAND in Fig. 2 and Table 1.
Both the mean run-time and the mean quality of PGUIDE is consistently better
than that of PRAND for any number of models. The difference in quality is
especially significant for the first models, but it goes down quickly as the number
of models increases and seems to approach an asymptote.

Compare the behavior of PBCPGUIDE to that of PGUIDE in Table 1. Four ver-
sions of PBCPGUIDE with different threshold values T' € {10,100, 1000, 10000}
(called PBCPGUIDE_T for each T) were tested. Predictably, PBCPGUIDE has a
positive impact on quality, but deteriorates performance, where the effect is more
significant for larger threshold values. Interestingly, while PBCPGUIDE_1000 and
PBCPGUIDE_10000 yield almost the same quality, the run-time of PBCPGUIDE_10000
is significantly inferior. Hence it is not worth using a threshold greater than 1000.
The balance between quality and run-time achieved by PBCPGUIDE_100 is at-
tractive. For example, for generating 100 models, PBCPCGUIDE_100 yields a better
quality than PGUIDE by 9.1% and is slower by only 47.2%. Compare the behavior
of PBCPGUIDE_100 as a function of the number of models with that of PGUIDE in
Fig. 2. The run-time function of PBCPGUIDE_100 goes up much more quickly than
that of PGUIDE; however, the gap for 100 models is still reasonable. The quality
function of PBCPGUIDE_100 is always higher than that of PGUIDE. Interestingly,
the gap increases with the number of models. Moreover, while PGUIDE’s quality
function is monotonically decreasing, PBCPGUIDE_100’s quality function’s tail is
increasing. This is related to the fact that, unlike PGUIDE, PBCPGUIDE takes into
account dependencies between variables. Further explanation regarding the be-

havior of the quality functions of PGUIDE and PBCPGUIDE_100 and the difference
between them is provided in [15].

Table 1: Mean quality and mean run-time for DIVERSEKSET algorithms, given 100,
50, and 10 models on 66 benchmarks from the semiformal verification of hardware. All
the numbers except the last row are relative to the behavior of PGUIDE. For example,
PBCPGUIDE_100 yields better quality than PGUIDE by 9.1%, but is slower by 47.2%
for generating 100 models. The algorithms are sorted by the quality obtained when
generating 100 models. The absolute mean quality and mean run-time in seconds of
PGUIDE are provided in the last row.

100 50 10

Algorithm Quality | Time||Quality | Time||Quality | Time
PBCPGUIDE_100-VRANDGLOB_30 1.123| 4.649 1.119| 4.536 1.087| 4.435
PBCPGUIDE_100-VRANDGLOB_20 1.121] 3.829 1.114| 3.653 1.081| 3.469
PBCPGUIDE_100-VRANDGLOB_10 1.117| 2.925 1.109(2.694 1.074| 2.474
PBCPGUIDE_10000 1.111| 7.628 1.111} 6.731 1.1] 4.559
PBCPGUIDE-1000 1.11| 3.465 1.11] 2.677 1.082| 1.505
PBCPGUIDE_100-VGUIDEGLOB_-200 1.107| 1.707 1.09| 1.509 1.063| 1.259
PBCPGUIDE_100-VGUIDEGLOB_100 1.107| 1.665 1.09| 1.472 1.058(1.224
PBCPGUIDE_100-VRANDGLOB_2 1.106| 2.007 1.093| 1.766 1.05| 1.52
PBCPGUIDE_100-VGUIDEGLOB_10 1.105| 1.656 1.087| 1.44 1.055(1.171
PBCPGUIDE_100-VRANDLOC 1.102| 1.742 1.083| 1.537 1.036| 1.348
PGUIDE-VRANDGLOB_30 1.099| 4.058 1.095| 4.181 1.062| 4.243
PBCPGUIDE_100-VGUIDELOC 1.097| 1.537 1.078| 1.317 1.047] 1.121
PGUIDE-VRANDGLOB_20 1.091| 3.331 1.086(3.407 1.055(3.422
PBCPGUIDE-100 1.091]| 1.472 1.068| 1.239 1.036| 1.033
PBCPGUIDE-100-VRANDLOC-NAIVE 1.085| 1.733 1.07| 1.53 1.041| 1.375
PGUIDE-VRANDGLOB_10 1.077 2.4 1.072| 2.426 1.041| 2.42
PBCPGUIDE_100-VGUIDELOC-NAIVE 1.076| 1.632 1.06| 1.367 1.045(1.118
PGUIDE-VGUIDEGLOB_200 1.054| 1.288 1.057| 1.282 1.04| 1.203
PGUIDE-VGUIDEGLOB-100 1.053| 1.262 1.051| 1.253 1.033| 1.199
PBCPGUIDE-10 1.042| 1.071 1.039| 1.03 1.03| 1.016
PGUIDE-VRANDGLOB_2 1.042| 1.484 1.042| 1.483 1.021| 1.485
PGUIDE-VGUIDEGLOB_10 1.041| 1.202 1.039(1.202 1.031 1.132
PGUIDE-VRANDLOC 1.036| 1.263 1.033| 1.274 1.01| 1.296
PGUIDE-VGUIDELOC 1.014| 1.004 1.016| 1.008 1.021| 1.013
PGUIDE 1 1 1 1 1 1
PRAND 0.9839| 1.413 0.9731| 1.439 0.9123| 1.519
The absolute numbers for PGUIDE 0.1954 159 0.1968 143 0.2086 122

5 Variable-based Methods

This section introduces a number of variable-based compact algorithms for Di-
VERSEKSET. We show how diversification quality can be improved by changing
the variable ordering. We propose local and global variable-based methods. Local
methods select the next decision variable from a subset of variables considered
as relevant by the variable decision heuristic, while global methods consider a
wider set of variables. Local variable-based methods are expected to result in a
moderate quality improvement, but be run-time-efficient. Global variable-based
methods are expected to be more costly in terms of performance, but yield better
diversification quality. We propose both guided and randomized variable-based
algorithms. Guided variable-based methods select variables with the largest ab-
solute potential. Randomized variable-based methods add a certain degree of
randomness to the variable ordering. We take PGUIDE and PBCPGUIDE_100 as
the baseline algorithms in the sense that we integrate our variable-based methods
into a solver that already uses PGUIDE or PBCPGUIDE_100.

Section 5.1 proposes local variable-based algorithms intended to be integrated
with PGUIDE. Section 5.2 shows how to modify these algorithms of Section 5.1
in order to combine them with PBCPGUIDE_100. Section 5.3 presents the global
variable-based algorithms. Our algorithms are integrated within the CBH deci-
sion heuristic.

5.1 Local variable-based methods for PGUIDE

VGUIDELOC is a guided local variable-based algorithm. VGUIDELOC changes the
variable decision heuristic after m > 0 models have already been found as follows.
It picks an unassigned variable with the maximal absolute potential from the
topmost non-satisfied clause in the clause list. If more than one variable have the
same absolute potential, a variable with the greatest VSIDS score is picked as in
the original CBH. VGUIDELOC is designed to increase PGUIDE’s positive impact
on quality, since, according to Prop. 2, picking a variable with a larger abso-
lute potential improves quality by a larger margin. PGUIDE-VGUIDELOC (that
is, the combination of PGUIDE and VGUIDELOC) is not expected to significantly
deteriorate the performance of the solver, since this strategy makes only mini-
mal changes to the default CBH heuristic. Prop. 3 yields that VGUIDELOC picks
variables with the worst variable quality in the clause and corrects its potential.
However, since PGUIDE is unaware of dependencies between variables, PGUIDE-
VGUIDELOC might deteriorate the quality of other variables assigned by BCP.
This fact might hurt the ability of PGUIDE-VQUIDELOC to improve overall qual-
ity.

VRANDLOC is a randomized local variable-based algorithm. VRANDLOC picks
a random variable from the topmost non-satisfied clause. PGUIDE-VRANDLOC
(that is, the combination of PGUIDE and VRANDLOC) is fairer than both plain
PGUIDE and PGUIDE-VGUIDELOC with respect to variable ordering, since PGUIDE-
VRANDLOC may choose variables that would rarely or never be chosen by the
other two methods due to their low VSIDS score or low absolute potential.
Randomized variable-based method will work better than the guided method
when there are many hidden dependencies between variables. PGUIDE-VRANDLOC
is expected to have a negative impact on the performance of the solver, since
it violates the locality principle, yet this impact should not be too significant,
because the variables are still picked from the same clause.

Below, after proving a useful lemma, we provide two propositions that are
essential for understanding the ideas behind VGUIDELOC.

Lemma 1. Assume that a compact DIVERSEKSET solver employing PGUIDE is
running and that it has encountered m > 0 models. Let v and u be two unassigned
variables, such that |IT%| > |IIY|. Then max(pk,, nt,) > maz(py,, nk,).

Proof. The definition of the potential implies that for every variable ¢ it holds
that |IT,| = maz(pt,, nt)) — min(pt,,nt,). Since pt, +nt, = m, we have |II! | =
maz(pt,,nt,) — (m—maz(pt,,nt,)) = 2 x maz(p,,,nt,) —m. The latter equation

implies that if [IT%| > |IIY,| then maz(pl,, nk) > maz(py,,no,). O

Proposition 2. Assume that a compact DIVERSEKSET solver employing PGUIDE
is running and that it has encountered m > 0 models. Let v and u be two unas-
signed variables, such that |II'| > |IIY,|. Assume that the solver is about to
assign either u or v. Let the quality after u or v is assigned be Qy, or Qv,,
respectively. Then, Qw, > Qv .

Proof. Recall from the proof of Prop.l that the change in overall quality is
proportional to the change in the quality of the variable picked by the variable
decision heuristic. PGUIDE’s flow implies that if it holds that p%, > nf or nf >
pt, for an unassigned variable ¢ picked by the decision heuristic, then PGUIDE
will pick the value 0 or 1, respectively, for t. This latter fact and the recursive
definition of variable quality imply that the change in variable quality following
an assignment of ¢ by PGUIDE is maz(pl,,nl,). By Lemma 1, maz(p¥,,n%) >
maz(pl,,nl,). O

Proposition 3. Assume that a compact DIVERSEKSET solver employing PGUIDE
is running and that it has encountered m > 0 models. Let u and v be two unas-
signed variables. If |IT%| > |IT?Y,|, then S¥ < SP..

Proof. Assume to the contrary that Sy > S¥. We denote maz(pl,,n¥) and
maz(p?,,n,) by = and y, respectively. The definition S!, = pf, x n! and our
assumption imply that z(m —z) > y(m —y). By Lemma 1, if |IT%| > |II},| then
x >y, hence one can express x as x = y+ 0, where § > 0. Substituting the latter
equality into z(m—2x) > y(m—y) gives us: x(m—z) > (x—9J)(m—2x+4). Opening
parenthesis and simplifying gives us the following inequality: §(2z — m — §) <
0. Since § > 0, we have 2z — m — 6 < 0. Substituting § = = — y into the
latter inequality gives us the following one: m > x + y. Definitions imply that
maz(ph,,nt,) > m/2 for any unassigned ¢, hence x,y > m/2. Since z > vy, it
must hold that © > m/2. Since y > m/2 and = > m/2, it cannot hold that
m > x + y. Contradiction. O

Compare the empirical behavior of PGUIDE-VGUIDELOC and PGUIDE-VRANDLOC
to that of plain PGUIDE in Table 1 and Fig. 3. Both PGUIDE-VGUIDELOC and
PGUIDE-VRANDLOC yield a consistent improvement in quality over PGUIDE. PGUIDE-
VGUIDELOC’s run-time penalty over PGUIDE is negligible, while PGUIDE-VRANDLOC
is 26% slower than PGUIDE for 100 models. PGUIDE-VRANDLOC yields better
quality than PGUIDE-VGUIDELOC when the number of models exceeds 14. As the
number of models increases, PGUIDE-VRANDLOC’s advantage in quality becomes
more significant. Hence, in the long run, being fairer with respect to variable
ordering contributes to PGUIDE’s impact on quality more than correcting the
potential of one variable at a time, even though the selected variable has the
largest absolute potential in the topmost clause. The guided variable-based ap-
proach is more efficient in terms of run-time than the randomized approach, since
the guided method is closer to the efficient default variable decision heuristic:
while the randomized method chooses variables, independently of their VSIDS
score, the guided method prefers variables with the highest VSIDS score out of
all the variables with the same potential. Interestingly, both PGUIDE-VGUIDELOC

and PGUIDE-VRANDLOC are inferior to PBCPGUIDE_10 in terms of quality. In the
next section we show how one can combine the variable-based algorithms with
PBCPGUIDE.

5.2 Local variable-based methods for PBCPGUIDE

We considered a number of ways of combining local variable-based methods with
PBCPGUIDE. First, one could integrate VGUIDELOC and VRANDLOC as is into
PBCPGUIDE. However, it is unclear whether the resulting algorithms (named
PBCPGUIDE_100-VGUIDELOC-NAIVE and PBCPGUIDE_100-VRANDLOC-NAIVE, re-
spectively) would yield better quality than plain PBCPGUIDE, since, unlike PGUIDE,
PBCPGUIDE tries to improve quality by taking into account dependencies between
variables per se. It might turn out that additional variable-based considerations
are not required. Second, one could apply VGUIDELOC and VRANDLOC only af-
ter the threshold on the number of conflicts for PBCPGUIDE is reached. We
dub the resulting strategies PBCPGUIDE_100-VGUIDELOC and PBCPGUIDE_100-
VRANDLOC, respectively. They utilize the power of both PBCPGUIDE and the
combination of VGUIDELOC and VRANDLOC with PGUIDE to improve quality by
taking into account dependencies between variables, yet they should not be as
costly as applying PBCPGUIDE with a larger threshold.

Consider the behavior of PBCPGUIDE_100-VGUIDELOC and PBCPGUIDE_100-
VRANDLOC in Table 1 and Fig. 3. These methods improve the quality of plain
PBCPGUIDE_100 at the expense of run-time. Note that while the guided method
is faster than the randomized method, the randomized method is preferable
to the guided method in terms of quality. Recall that we observed (and ex-
plained) a similar behavior when we combined the variable-based methods with
PGUIDE. Compare the empirical behavior of PBCPGUIDE_100-VGUIDELOC-NAIVE
and PBCPGUIDE_100-VRANDLOC-NAIVE with plain PBCPGUIDE_100 in Table 1.
Not only do these strategies not improve the quality of PBCPGUIDE_100, but
they deteriorate both the quality and the run-time for 100 models as well. Hence
the variable-based methods that try to take into account dependencies between
variables interfere with PBCPGUIDE.

It would be interesting to try a BCP-aware guided variable-based method,
which would apply BCP for both polarities for more than one variable and pick
the variable and polarity that yield the best quality. We did not implement such
an algorithm, since a straightforward implementation would be extremely costly
in terms of run-time. Applying BCP in parallel and borrowing techniques from
look-ahead SAT solvers [16], designed to consider a wider set of variables at each
decision point, are appealing directions for future work to improve quality. The
present work proposes another way to improve quality: global variable-based
methods which apply the same principles as the local methods but consider a
wider set of variables at each decision point. These global variable-based methods
are discussed in the next section.

Mean time in seconds Mean quality
280 0.29

‘ ‘ l"GUIDE ‘* ‘ ‘WM M ‘ ‘ ‘ Pu‘mm-;
260 - PGUIDE-VGUIDELOC + M e 0.28 1+ PGUIDE-VGUIDELOC
PGUIDE-VRANDLOC o M * PGUIDE-VRANDLOC
240 - PBCPGUIDE-100 © S| 027 o PBCPGUIDE-100
PBCPGUIDE-100-VGUIDELOC « v 0.26 - PBCPGUIDE-100-VGUIDELOC
220 [~ PBCPGUIDE_100-VRANDLOC * : PBCPGUIDE_100-VRANDLOC

200 - 00000000

o0 + %
I

* .

180
160 - 2

140 15

120

100 L4 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Models Models

Fig.3: Combining local variable-based algorithms with PGUIDE and
PBCPGUIDE_100.

5.3 Global variable-based methods

VGUIDEGLOB is a global guided variable-based algorithm. It picks a variable v
with the largest absolute potential out of a wider selection of clauses than its
local counterpart. VGUIDEGLOB picks a variable with the greatest potential from
the N topmost clauses, including satisfied clauses, unless the N topmost clauses
are satisfied, in which case the algorithm considers all the clauses in the list
up to and including the topmost non-satisfied clause. The primary criteria for
breaking ties is to prefer a variable from a clause that is as close as possible in
the list to the topmost non-satisfied clause. The secondary criteria for break-
ing ties is to prefer variables with better VSIDS scores. The idea behind the
tie-breaking strategies is to make the heuristic as efficient as possible by mak-
ing it as close as possible to the original CBH. For our experiments, we used
N € {10,100,200}. We refer to the combination of PGUIDE and PBCPGUIDE_100
with VGUIDEGLOB with a parameter value N as PGUIDE-VGUIDEGLOB_N and
PBCPGUIDE_100-VGUIDEGLOB_N, respectively.

VRANDGLOB is a global randomized variable-based algorithm. It picks an
unassigned variable at random in T% of the cases out of all the decisions,
where T is a parameter. The default decision heuristic is used in the rest of
the cases. Note that this strategy is independent of the decision heuristic. We
tried T € {2,10,20,30} for our experiments. We refer to the combination of
PGUIDE and PBCPGUIDE_100 with VRANDGLOB with a parameter value T as
PGUIDE-VRANDGLOB_T and PBCPGUIDE_100-VRANDGLOB_T', respectively.

We combined global variable-based methods with PBCPGUIDE by applying
them only after the threshold on the number of conflicts for PBCPGUIDE was
reached, since this was found in Section 5.2 to be the optimal strategy for inte-
grating local variable-based methods with PBCPGUIDE.

Consider the empirical behavior of the combination of the global variable-
based methods with PGUIDE and PBCPGUIDE_100 in Table 1. The following con-
clusions equally hold for combining global variable-based methods with either
PGUIDE or PBCPGUIDE_100. As expected, the global methods yield better quality
than the local methods (combined with the respective polarity-based algorithm),
but do so at the expense of run-time. This observation holds for both randomized
and guided methods. The parameter N or T for randomized or guided methods,

respectively, can be used to control the trade-off between quality and run-time.
The larger the corresponding parameter, the better the quality and the worse
the run-time. However, increasing the parameter too much does not yield added
benefit, since the improvement in quality becomes marginal, while the run-time
continues to increase. Compare now the global guided methods vs. the global
randomized methods. The randomized methods are costly in terms of run-time,
but yield better quality (when the threshold N is higher than 2). Recall that we
observed the same behavior while analyzing local methods.

Interestingly, PBCPGUIDE_100-VRANDGLOB_T', when T is sufficiently large,
outperforms plain PBCPGUIDE with threshold 10000 in terms of both quality
and run-time for 100 and 50 models. This result shows that, in the long run,
it pays first to use PBCPGUIDE_100 and then to switch to PGUIDE-VRANDGLOB,
rather than to use plain PBCPGUIDE with a larger threshold. Understanding the
reasons for this phenomenon is left for future research.

6 Conclusions and Future Work

This work is the first full-blown paper dedicated to the DIVERSEKSET problem in
SAT, that is, the problem of efficiently generating a number of diverse solutions
(satisfying assignments) given a propositional formula. We proposed a framework
for analyzing DIVERSEKSET algorithms in SAT and carried out an extensive
empirical evaluation of existing and new algorithms on large industrial instances
of DIVERSEKSET arising in SAT-based semiformal verification of hardware [2].

Our analysis showed that adapting the SAT solver’s polarity selection heuris-
tic in a guided way, that is, explicitly avoiding previous solutions, is preferable
to randomizing the polarity. Considering the dependencies between variables
by taking into account the effect of BCP improves diversification quality, but
deteriorates run-time.

We introduced a number of variable-based algorithms that improve diver-
sification quality by adapting the variable decision heuristic in addition to the
polarity selection heuristic. We distinguished between randomized and guided al-
gorithms as well as between local and global algorithms. Randomized and global
algorithms are more costly in terms of run-time but yield better quality than
guided and local algorithms. Overall, while a moderate improvement in quality
over purely polarity-based methods can be achieved at a negligible run-time cost,
obtaining a more significant improvement in quality requires additional run-time.
We showed how one can control the trade-off between quality and run-time to
achieve an attractive balance. The eventual choice of algorithms should depend
on the needs of each specific application.

The following directions for future research seem attractive. Parallelizing
D1vERSEEKSET algorithms should be helpful in improving both quality and run-
time. It would be interesting to investigate ways to adapt various components
of the SAT solver (such as conflict analysis schemes or restart strategies) to DI-
VERSEKSET. Borrowing techniques from look-ahead SAT solvers and developing
D1vERSEKSET algorithms on top of such solvers is another interesting direction.

Acknowledgments

The author would like to thank Amit Palti for supporting this work, Paul Inbar
for editing the paper, and Jim Grundy, Vadim Ryvchin, and Yevgeny Schreiber
for providing useful suggestions that helped to improve this work.

References

10.

11.

12.

13.

14.

15.

16.

Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications. I0S Press
(2009)

Agbaria, S., Carmi, D., Cohen, O., Korchemny, D., Lifshits, M., Nadel, A.: SAT-
based semiformal verification of hardware. In Bloem, R., Sharygina, N., eds.:
Proceedings of the 10th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2010). (October 2010) 25-32

Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar
solutions in constraint programming. In Veloso, M.M., Kambhampati, S., eds.:
AAAT, AAAI Press / The MIT Press (2005) 372-377

Schreiber, Y.: Value-ordering heuristics: Search performance vs. solution diver-
sity. In Cohen, D., ed.: CP. Volume 6308 of Lecture Notes in Computer Science.,
Springer (2010) 429444

Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-
straint satisfaction problems. In: AAAI/TAAL (2002) 15-21

Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: ICCAD. (2007) 258-265

Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In Scholkopf, B., Platt, J.C., Hoffman, T., eds.:
NIPS. (2006) 481-488

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: DAC, ACM (2001) 530-535

Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers 48 (1999) 506-521

Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence. (2007) 2318
2323

Dershowitz, N., Hanna, Z., Nadel, A.: A clause-based heuristic for SAT solvers.
In Bacchus, F., Walsh, T., eds.: SAT. Volume 3569 of Lecture Notes in Computer
Science., Springer (2005) 46-60

Frost, D., Dechter, R.: In search of the best constraint satisfaction search. In:
AAAL (1994) 301-306

Strichman, O.: Tuning SAT checkers for bounded model checking. In Emerson,
E.A., Sistla, A.P., eds.: CAV. Volume 1855 of Lecture Notes in Computer Science.,
Springer (2000) 480-494

Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: SAT. (2007) 294-299

Nadel, A.: Generating diverse solutions in SAT: Paper addendum. http://www.
cs.tau.ac.il/research/alexander.nadel/multiple_cex_addendum.pdf (2011)

Heule, M., van Maaren, H.: Look-ahead based SAT solvers. [1] 155-184

