
A Scalable Algorithm for

Minimal Unsatisfiable Core Extraction⋆

Nachum Dershowitz1, Ziyad Hanna2, and Alexander Nadel1,2

1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
{nachumd, ale1}@post.tau.ac.il

2 Design Technology Solutions Group, Intel Corporation, Haifa, Israel
{ziyad.hanna, alexander.nadel}@intel.com

Abstract. We propose a new algorithm for minimal unsatisfiable core
extraction, based on a deeper exploration of resolution-refutation proper-
ties. We provide experimental results on formal verification benchmarks
confirming that our algorithm finds smaller cores than suboptimal al-
gorithms; and that it runs faster than those algorithms that guarantee
minimality of the core. (A more complete version of this paper may be
found at arXiv.org/pdf/cs.LO/0605085.)

1 Introduction

Many real-world problems, arising in formal verification of hardware and soft-
ware, planning and other areas, can be formulated as constraint satisfaction
problems, which can be translated into Boolean formulas in conjunctive normal
form (CNF). When a formula is unsatisfiable, it is often required to find an unsat-
isfiable core—that is, a small unsatisfiable subset of the formula’s clauses. Exam-
ple applications include functional verification of hardware, field-programmable
gate-array (FPGA) routing, and abstraction refinement. An unsatisfiable core is
a minimal unsatisfiable core (MUC), if it becomes satisfiable whenever any one
of its clauses is removed.

In this paper, we propose an algorithm that is able to find a minimal un-
satisfiable core for large “real-world” formulas. Benchmark families, arising in
formal verification of hardware (such as [8]), are of particular interest to us.

The folk algorithm for MUC extraction, which we dub Näıve, works as fol-
lows: For every clause C in an unsatisfiable formula F , Näıve checks if it belongs
to the minimal core by invoking a propositional satisfiability (SAT) solver on F ,
but without clause C. Clause C does not belong to a minimal core if and only
if the solver finds that F \ {C} is unsatisfiable, in which case C is removed from
F . In the end, F contains a minimal unsatisfiable core.

There are four more practical approaches for unsatisfiable core extraction
in the current literature: adaptive core search [2], AMUSE [7], MUP [5] and a

⋆ We thank Jinbo Huang and Zaher Andraus for their help in providing MUP and
AMUSE, respectively. The work of Alexander Nadel was carried out in partial ful-
fillment of the requirements for a Ph.D. This research was supported in part by the
Israel Science Foundation (grant no. 250/05).



resolution-based approach [9, 4]. MUP is the only one guaranteeing minimality of
the core, whereas the only algorithm that scales well for large formal verification
benchmarks is the resolution-based approach. We refer to the latter method as
the EC (Empty-clause Cone) algorithm.

EC exploits the ability of modern SAT solvers to produce a resolution refuta-
tion, given an unsatisfiable formula. Most state-of-the-art SAT solvers, beginning
with GRASP [6], implement a DPLL backtrack search enhanced by a failure-
driven assertion loop. These solvers explore the variable-assignment tree and
create new conflict clauses at the leaves of the tree, using resolution on the
initial clauses and previously created conflict clauses. This process stops when
either a satisfying assignment for the given formula is found or when the empty
clause (�)—signifying unsatisfiability—is derived. In the latter case, SAT solvers
are able to produce a resolution refutation in the form of a directed acyclic graph
(dag) Π(V, E), whose vertices V are associated with clauses, and whose edges
describe resolution relations between clauses. The vertices V = V i ∪ V c are
composed of a subset V i of the initial clauses and a subset V c of the conflict
clauses, including the empty clause �. The empty clause is the sink of the refuta-
tion graph, and the sources are V i. Here, we understand a refutation to contain
those clauses connected to �. The sources of the refutation comprise the un-
satisfiable core returned by EC. Invoking EC until a fixed point is reached [9],
allows one to reduce the unsatisfiable core even more. We refer to this algorithm
as EC-fp. However, the resulting cores are still not guaranteed to be minimal
and can be further reduced.

The basic flow of the algorithm for minimal unsatisfiable core extraction
proposed in this paper is composed of the following steps:

1. Produce a resolution refutation Π of a given formula using a SAT solver.
2. For every initial clause C in Π , check whether it belongs to a MUC in the

following manner:
(a) Remove C from Π , along with all conflict clauses for which C was re-

quired to derive them. Pass all the remaining clauses (including conflict
clauses) to a SAT solver.

(b) If they are satisfiable, then C belongs to a MUC, so continue with another
initial clause.

(c) If the clauses are unsatisfiable, then C does not belong to a MUC, so
replace Π by a new valid resolution refutation not containing C.

3. Terminate when all the initial clauses remaining in Π comprise a MUC.

Our basic Complete Resolution Refutation (CRR) algorithm is described
in Sect. 2, and a pruning technique, enhancing CRR and called Resolution
Refutation-based Pruning (RRP), is described in Sect. 3. Experimental results
are presented and analyzed in Sect. 4. This is followed up by a brief conclusion.

2 The Complete Resolution Refutation (CRR) Algorithm

One says that a vertex D is reachable from vertex C in graph Π if there is a path
(of 0 or more edges) from C to D. The sets of all vertices that are reachable and

2



unreachable from C in Π are denoted Re(Π, C) and UnRe(Π, C), respectively.
The relative hardness of a resolution refutation is the ratio between the total
number of clauses and the number of initial clauses.

Our goal is to find a minimal unsatisfiable core of a given unsatisfiable formula
F . The proposed CRR method is displayed as Algorithm 1.

Algorithm 1 (CRR). Returns a MUC, given an unsatisfiable formula F .

1: Build a refutation Π(V i ∪ V c, E) using a SAT solver
2: while unmarked clauses exist in V i

do

3: C ← PickUnmarkedClause(V i)
4: Invoke a SAT solver on G = UnRe(Π,C)
5: if UnRe(Π,C) is satisfiable then

6: Mark C as a MUC member
7: else

8: Let Π ′(V i

G ∪ V c

G, EG) be the refutation built by the solver
9: V i ← V i ∩ V i

G; V c ← (V i

G ∪ V c

G) \ V i; E ← EG

10: return V i

First, CRR builds a resolution refutation Π(V i ∪ V c, E). CRR checks, for
every unmarked clause C left in V i, whether C belongs to a minimal core. Ini-
tially, all clauses are unmarked. At each stage of the algorithm, CRR maintains
a valid refutation of F .

By construction of Π , the UnRe(Π, C) clauses were derived independently
of C. To check whether C belongs to a minimal core, we provide the SAT solver
with UnRe(Π, C), including the conflict clauses. We are trying to complete the
resolution refutation without using C as one of the sources. Observe that � is
always reachable from C; thus � is never passed as an input to the SAT solver.
We let the SAT solver try to derive �, using UnRe(Π, C) as the input formula,
or else prove that UnRe(Π, C) is satisfiable.

In the latter case, we conclude that C must belong to a minimal core, since
we found a model for an unsatisfiable subset of initial clauses minus C. Hence,
if the SAT solver returns satisfiable, the algorithm marks C (line 6) and moves
to the next initial clause. Otherwise, the SAT solver returns a valid resolution
refutation Π ′(V i

G ∪V c
G, EG), where G = UnRe(Π, C). We cannot use Π ′ as is, as

the refutation for the subsequent iterations, since the sources of the refutation
may only be initial clauses of F . The necessary adjustments to the refutation
are shown on line 9.

3 Resolution-Refutation-Based Pruning

In this section, we propose an enhancement of Algorithm CRR by developing
resolution refutation-based pruning techniques for when the SAT solver is in-
voked on UnRe(Π, C) to check whether it is possible to complete a refutation
without C. We refer to the suggested technique as Resolution Refutation-based

3



Pruning (RRP). (We presume that the reader is familiar with the functionality
of a modern SAT solver.)

An assignment σ falsifies a clause C if every literal of C is false under σ; it
falsifies a set of clauses P if every clause C ∈ P is falsified by σ. We claim that a
model for UnRe(Π, C) can only be found under a partial assignment that falsifies
every clause in some path from C to the empty clause in Re(Π, C). The reason
is that otherwise there would exist a satisfiable vertex cut U in Π , contradicting
the fact that the empty clause is derivable from U . (We omit a formal proof due
to space limitations.)

Denote a subtree connecting C and � by Π↾C . The RRP technique is inte-
grated within the decision engine of the SAT solver. The solver receives Π↾C ,
together with the input formula UnRe(Π, C). The decision engine of the SAT
solver explores Π↾C in a depth-first manner, picking unassigned variables in the
currently explored path as decision variables and assigning them false. As usual,
Boolean Constraint Propagation (BCP) follows each assignment. Backtracking
in Π↾C is tightly coupled with backtracking in the assignment space. Both hap-
pen when a satisfied clause in Π ↾C is found or when a new conflict clause is
discovered during BCP. After a particular path in Π ↾C has been falsified, a
general-purpose decision heuristic is used until the SAT solver either finds a sat-
isfying assignment or proves that no such assignment can be found under the
currently explored path. This process continues until either a model is found or
the decision engine has completed exploring Π ↾C . In the latter case, one can
be sure that no model for UnRe(Π, C) exists. However, the SAT solver should
continue its work to produce a refutation. (Refer to the full version of this paper
for details.)

4 Experimental Results

We have implemented CRR and RRP in the framework of the VE solver. VE,
a simplified version of the industrial solver Eureka, is similar to Chaff [3].
We used benchmarks from four well-known unsatisfiable families, taken from
bounded model checking (barrel, longmult) [1] and microprocessor verification
(fvp-unsat.2.0, pipe unsat 1.0) [8]. The instances we used appear in the first
column of Table 1. The experiments on Families barrel and fvp-unsat.2.0 were
carried out on a machine with 4Gb of memory and two Intel Xeon CPU 3.06
processors. A machine with the same amount of memory and two Intel Xeon
CPU 3.20 processors was used for the other experiments.

Table 1 summarizes the results of a comparison of the performance of two
algorithms for suboptimal unsatisfiable core extraction and five algorithms for
minimal unsatisfiable core extraction in terms of execution time and core sizes.

First, we compare algorithms for minimal unsatisfiable core extraction,
namely, Näıve, MUP, plain CRR, and CRR enhanced by RRP. In preliminary
experiments, we found that invoking suboptimal algorithms for trimming down
the sizes of the formulas prior to MUC algorithm invocation is always useful.
We used Näıve, combined with EC-fp and AMUSE, and MUP, combined with

4



Table 1. Comparing algorithms for unsatisfiable core extraction. Columns Instance,
Var and Cls contain instance name, number of variables, and clauses, respectively. The
next seven columns contain execution times (in seconds) and core sizes (in number of
clauses) for each algorithm. The cut-off time was 24 hours (86,400 sec.). Column Rel.

Hard. contains the relative hardness of the final resolution refutation, produced by
CRR+RRP. Bold times are the best among algorithms guaranteeing minimality.

Subopt. CRR Näıve MUP Rel.

Instance Var Cls EC EC-fp RRP plain EC-fp AMUSE EC-fp Hard.

4pipe 4237 9 171 3527 4933 24111 time-out time-out 1.4

80213 23305 17724 17184 17180 17182

4pipe 1 ooo 4647 10 332 4414 10944 25074 time-out mem-out 1.7

74554 24703 14932 12553 12515 12374

4pipe 2 ooo 4941 13 347 5190 12284 49609 time-out mem-out 1.7

82207 25741 17976 14259 14192 14017

4pipe 3 ooo 5233 14 336 6159 15867 41199 time-out mem-out 1.6

89473 30375 20034 16494 16432 16419

4pipe 4 ooo 5525 16 341 6369 16317 47394 time-out mem-out 1.6

96480 31321 21263 17712 17468 17830

3pipe k 2391 2 20 411 493 2147 12544 mem-out 1.5

27405 10037 6953 6788 6786 6784 6790

4pipe k 5095 8 121 3112 3651 15112 time-out time-out 1.5

79489 24501 17149 17052 17078 17077

5pipe k 9330 16 169 13836 17910 83402 time-out mem-out 1.4

189109 47066 36571 36270 36296 36370

barrel5 1407 2 19 93 86 406 326 mem-out 1.8

5383 3389 3014 2653 2653 2653 2653

barrel6 2306 35 322 351 423 4099 4173 mem-out 1.8

8931 6151 5033 4437 4437 4437 4437

barrel7 3523 124 1154 970 1155 6213 24875 mem-out 1.9

13765 9252 7135 6879 6877 6877 6877

barrel8 5106 384 9660 2509 2859 time-out time-out mem-out 1.8

20083 14416 11249 10076 10075

longmult4 1966 0 0 8 7 109 152 13 2.6

6069 1247 1246 972 972 972 976 972

longmult5 2397 0 1 74 31 196 463 35 3.6

7431 1847 1713 1518 1518 1518 1528 1518

longmult6 2848 2 13 288 311 749 2911 5084 5.6

8853 2639 2579 2187 2187 2187 2191 2187

longmult7 3319 17 91 6217 3076 6154 32791 68016 14.2

10335 3723 3429 2979 2979 2979 2993 2979

EC-fp. CRR performs best when combined with EC, rather than EC-fp. The
sizes of the cores do not vary much between MUC algorithms, so we concentrate
on a performance comparison. One can see that the combination of EC-fp and
Näıve outperforms the combination of AMUSE and Näıve, as well as MUP. Plain
CRR outperforms Näıve on every benchmark, whereas CRR+RRP outperforms
Näıve on 15 out of 16 benchmarks (the exception being the hardest instance of
longmult). This demonstrates that our algorithms are justified practically. Usu-
ally, the speed-up of these algorithms over Näıve varies between 4 and 10x, but it
can be as large as 34x (for the hardest instance of barrel family) and as small as
2x (for the hardest instance of longmult). RRP improves performance on most
instances. The most significant speed-up of RRP is about 2.5x, achieved on hard
instances of Family fvp-unsat.2.0. The only family for which RRP is usually un-
helpful is longmult, a family that is hard for CRR, and even harder for RRP due
to the hardness of the resolution proofs of its instances.

5



Comparing CRR+RRP on one side and EC and EC-fp on the other, we find
that CRR+RRP always produce smaller cores than both EC and EC-fp. The
average gain on all instances of cores produced by CRR+RRP over cores pro-
duced by EC and EC-fp is 53% and 11%, respectively. The biggest average gain
of CRR+RRP over EC-fp is achieved on Families fvp-unsat.2.0 and longmult

(18% and 17%, respectively). Unsurprisingly, both EC and EC-fp are usually
much faster than CRR+RRP. However, on the three hardest instances of the
barrel family, CRR+RRP outperforms EC-fp in terms of execution time.

5 Conclusions

We have proposed an algorithm for minimal unsatisfiable core extraction. It
builds a resolution refutation using a SAT solver and finds a first approxima-
tion of a minimal unsatisfiable core. Then it checks, for every remaining initial
clause, if it belongs to a minimal unsatisfiable core. The algorithm reuses conflict
clauses and resolution relations throughout its execution. We have demonstrated
that the proposed algorithm is faster than currently existing ones for minimal
unsatisfiable cores extraction by a factor of 6 or more on large problems with
non-overly hard resolution proofs, and that it finds smaller unsatisfiable cores
than suboptimal algorithms.

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. Fifth Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), pages 193–207, 1999.

2. R. Bruni. Approximating minimal unsatisfiable subformulae by means of adaptive
core search. Discrete Applied Mathematics, 130(2):85–100, 2003.

3. Z. Fu, Y. Mahajan, and S. Malik. ZChaff2004: An efficient SAT solver. In Proc.
Seventh Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’04),
pages 360–375, 2004.

4. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF for-
mulas. In Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE’03), pages 10886–10891, 2003.

5. J. Huang. MUP: A minimal unsatisfiability prover. In Proc. Tenth Asia and South
Pacific Design Automation Conference (ASP-DAC’05), pages 432–437, 2005.

6. J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

7. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. In Proc. 41st Design Automation
Conference (DAC’04), pages 518–523, 2004.

8. M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures
in the formal verification of superscalar and VLIW microprocessors. In Proc. 38th
Design Automation Conference (DAC’01), pages 226–231, 2001.

9. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In Prelim. Proc. Sixth Intl. Conf. on Theory and Applications of
Satisfiability Testing (SAT’03), 2003.

6


