
Efficient Generation of Small Interpolants in CNF

Yakir Vizel1, Vadim Ryvchin2,3, and Alexander Nadel3

1 Computer Science Department, The Technion, Haifa, Israel
2 Information Systems Engineering Department, The Technion, Haifa, Israel

3 Design Technology Solutions Group, Intel Corporation, Haifa, Israel

Abstract. Interpolation-based model checking (ITP) [14] is an efficient and com-
plete model checking procedure. However, for large problems, interpolants gen-
erated by ITP might become extremely large, rendering the procedureslow or
even intractable.
In this work we present a novel technique for interpolant generation in the context
of model checking. The main novelty of our work is that we generatesmall inter-
polants inConjunctive Normal Form (CNF)using a twofold procedure: First we
propose an algorithm that exploits resolution refutation properties to compute an
interpolant approximation. Then we introduce an algorithm that takes advantage
of inductive reasoning to turn the interpolant approximation into an interpolant.
Unlike ITP, our approach maintains only the relevant subset of the resolution
refutation. In addition, the second part of the procedure exploits the properties of
the model checking problem at hand, in contrast to the general-purpose algorithm
used in ITP.
We developed a new interpolation-based model checking algorithm, calledCNF-
ITP. Our algorithm takes advantage of the smaller interpolants and exploits the
fact that the interpolants are given in CNF. We integrated our method into a
SAT-based model checker and experimented with a representative subset of the
HWMCC’12 benchmark set. Our experiments show that, overall, the interpolants
generated by our method are 42 times smaller than those generated by ITP. Our
CNF-ITP algorithm outperforms ITP, and at times solves problems that ITP can-
not solve. We also compared CNF-ITP to the successful IC3 [3] algorithm. We
found that CNF-ITP outperforms IC3 [3] in a large number of cases.

1 Introduction

Model checkingis a method for formally verifying that a system satisfies a predefined
set of properties. A SAT-solver is a powerful decision procedure used in model check-
ing. While in the early days SAT-based model checking was onlyused for bug-hunting,
nowadays it is a complete procedure and can either prove or refute properties. One such
complete SAT-based algorithm usesInterpolation[14].

We present a novel approach for interpolant computation in the context of SAT-
based model checking. The main contribution of this work is the ability to produce
small interpolants inConjunctive Normal Form(CNF) efficiently. In order to compute
an interpolant, our work takes advantage both of the properties of the resolution refu-
tation, generated by the SAT solver, and of the structure of the model checking prob-
lem at hand. In addition, we presentCNF-ITP, an enhanced version of the original

interpolation-based model checking algorithm [14] (ITP).CNF-ITP makes use of the
fact that interpolants are given in CNF.

Given a pair of inconsistent propositional formulasA(X,Y) andB(Y,Z), where
X,Y andZ are sets of Boolean variables, an interpolantI(Y) is a formula that fulfills
the following properties:A(X,Y) ⇒ I(Y); I(Y)∧B(Y,Z) is unsatisfiable; andI(Y)
is a formula over the common variables ofA(X,Y) andB(Y,Z) [6]. Modern SAT-
solvers are capable of generating an unsatisfiability proofof an unsatisfiable formula.
The proof is in the form of a resolution refutation [22,10,16]. It is possible to compute
an interpolantfrom a resolution refutation ofA(X,Y) ∧B(Y,Z) [17,14].

Interpolants are used in various domains. The work in [14] was the first to incor-
porate interpolants into model checking, creating a complete SAT-based algorithm re-
ferred to as ITP. ITP uses interpolants to over-approximateimage computations. Since [14],
interpolants have been applied in several model checking algorithms [11,12,15,20,21].

[14] presents a recursive procedure for interpolant generation from a proof. The
procedure initially assigns a propositional formula to each one of the leaves in the res-
olution refutation (hypothesis clauses). It then recursively assigns a propositional for-
mula to every node in the refutation by either conjoining or disjoining the propositional
formulas of its predecessors. Choosing between conjunction or disjunction depends on
whether the pivot variable is local toA(X,Y) or not. The formula that is assigned for
the empty clause represents the interpolant.

While this algorithm is linear in the size of the proof, the resulting interpolant is a
non-CNF propositional formula that mirrors the structure of the resolution refutation.
Thus, when the resolution refutation is large, so is the interpolant. Moreover, the result-
ing formula is often highly redundant, meaning that the interpolant can be simplified
and be represented by a smaller formula.

ITP requires the interpolants to be fed back into the SAT solver for computing the
next interpolant. Therefore, in those cases where the size of interpolants is large, the
resulting SAT problem may be intractable.

We strive to solve this problem by natively generating smallinterpolants in CNF.
One way to compute an interpolant is byexistential quantification. Considering the
unsatisfiable formulaA(X,Y) ∧ B(Y,Z), I(Y) = ∃X(A(X,Y)) is an interpolant.
For a CNF formulaA(X,Y), ∃X(A(X,Y)) can be created by iteratively applying
variable elimination4 on X variables inA(X,Y). The problem with this approach is
that variable elimination is exponential, and, therefore impractical, given a large set of
variables.

In this work, we provide a novel resolution-refutation-guided method for variable
elimination to derive an interpolant in CNF. This procedure, while creating less clauses
than näıve variable elimination procedures, might still result inan exponential blow-up.

Our solution is first to build anapproximatedinterpolantIw(Y) for whichIw(Y)∧
B(Y,Z) may be satisfiable. We refer to such an interpolant as aBweak-interpolant.
Computing theBweak-interpolant is based on the method of resolution-refutation-guided
variable elimination but is far more efficient. The second stage of our method aims

4 Variable elimination[7] is an operation that replaces all occurrences of a variablev from a
CNF formula by replacing clauses containingv with the result of pairwise resolutions between
clauses containing the literalv and those containing the literal¬v

2

at strengtheningIw(Y) and transforming it into an interpolantI(Y) whereI(Y) ∧
B(Y,Z) is unsatisfiable. We refer to this process asB-Strengthing.

In order to transform aBweak-interpolant into an interpolant we need to make sure
thatA(X,Y) ⇒ Iw(Y) and thatIw(Y)∧B(Y,Z) is unsatisfiable. This can be done by
finding all satisfying assignmentss(Y) to Iw(Y)∧B(Y,Z) and conjoining¬s(Y) with
Iw(Y). Note that an assignments is a conjunction of literals, and therefore its negation
is a clause. By this we keepIw(Y) in CNF. The number of such assignments may be
vast, and therefore this is an inefficient method.

To overcome this, instead of adding a clause toIw(Y) we generalizeit to a sub-
clause so as to block a larger set of assignments. In order to perform an efficient gen-
eralization we use the structure ofA. In the context of model checking,A(V, V ′) =
Q(V) ∧ TR(V, V ′) whereV is the set of variables in the checked system andTR is the
transition relation. Using this fact allows us to performinductive generalization[3].

We implemented CNF-ITP, a model checking algorithm which isa variant of ITP [14],
but which uses the above method to compute the interpolants.Our goal was to measure
the impact of our interpolant computation method on the underlying model checking
algorithm. However, CNF-ITP also exploits the fact that interpolants are given in CNF
in order to improve the traditional ITP. Our improvements toITP were inspired by [3].

For the experiments we used the HWMCC’12 benchmark set. The interpolants com-
puted by our method, compared to those computed by the original ITP algorithm of [14],
were much smaller in size overall in the vast majority of cases. Sometimes, the size was
up to two orders of magnitude smaller. Our procedure significantly outperformed ITP
and solved some test cases that ITP could not solve. To complete our experiments, we
also compared CNF-ITP to the successful IC3 [3] algorithm. We found that CNF-ITP
outperformed IC3 [3] in a large number of cases.

1.1 Related Work

A well-known problem of interpolants is their size. Severalworks try to deal with this
problem. The work in [4] suggests dealing with the increasing size of interpolants by
using circuit compaction. While this process can be efficientin some cases, it may con-
sume considerable resources for very large interpolants. Moreover, compacting an in-
terpolant does not result in a CNF formula, whereas our approach results in interpolants
in CNF.

As we have already noted, an interpolant computed from a resolution refutation mir-
rors its structure. Several works [1,18] deal with reductions to the resolution refutation.
Since our method uses resolution refutation it too can benefit from such an approach.

During interpolant computation, our approach only uses therelevant parts of the
resolution refutation. The idea of holding and maintainingonly the relevant parts of the
resolution derivation was proposed and proved useful in [19] in the context of group-
oriented minimal unsatisfiable core extraction.

Deriving interpolants in CNF was suggested in [12]. The authors suggest applying a
set of reordering rules for resolution refutations so that the resulting interpolant will be
in CNF. As the authors state in the paper, the described procedure does not always return
an interpolant in CNF. Also, the reordering of a resolution refutation may result in an
exponential blow up of the proof and, as stated in [8], reordering is not always possible.

3

In contrast to [12], our method does not rewrite the resolution refutation generated by
the SAT solver.

The work in [5] suggests an interpolant computation method that does not use the
generated resolution refutation. In addition, an interpolant that results from the use of
that method is in a Disjunctive Normal Form (DNF). Our work, on the other hand, uses
the resolution refutation and generates interpolants in CNF efficiently.

2 Preliminaries

Throughout the paper we denote the valuefalseas⊥ and the valuetrueas⊤.
Let V be a set of Boolean variables. Forv ∈ V , v′ is used to denote the value ofv

after one time unit. The set of these variables is denoted byV ′. In the general caseV i is
used to denote the variables inV afteri time units (thus,V 0 = V). For a propositional
formulaF over V we writeF ′ to denote the same formula when substituting every
occurrence ofv ∈ V in F with v′ ∈ V ′. In the general case, we writeF (V i) to denote
the substitution of every occurrence ofvj ∈ V j in F with vi ∈ V i for some non-
negativei, j. From now on, all formulas we refer to arepropositional formulas, unless
stated otherwise.

Definition 1. A finite transition systemis a tripleM = (V, INIT ,TR) whereV is a set
of boolean variables,INIT(V) is a formula overV , describing the initial states, and
TR(V, V ′) is a formula overV and the next-state variablesV ′, describing the transition
relation.

In order to describe a path in a transition systemM by means of propositional
formulae we define:pathi,j = TR(V i, V i+1) ∧ . . . ∧ TR(V j−1, V j) where0 ≤ i < j.
Abusing notation somewhat, we sometimes refer to a propositional formula overV as
a set of states inM .

Definition 2 (Conjunctive Normal Form (CNF)). Given a setU of Boolean vari-
ables, a literall is a variableu ∈ U or its negation and aclauseis a set of literals. A
formulaF in CNF is a conjunction of clauses.

A SAT solver is a complete decision procedure that, given a set of clauses, deter-
mines whether the clause set issatisfiableor unsatisfiable. A clause set is said to be
satisfiable if there exists asatisfying assignmentsuch that every clause in the set is
evaluated to⊤. If the clause set is satisfiable then the SAT solver returns asatisfying
assignment for it. Otherwise the solver produces aresolution refutationcomprising the
proof of unsatisfiability [22,10,16].

For a formulaX, V(X) is the set of variables appearing inX.

Definition 3 (Local and Global Variable). Let (A,B) be a pair of formulas in CNF.
A variablev is A-local (B-local) iff v ∈ V(A)\V(B) (v ∈ V(B)\V(A)); v is (A,B)-
global or, simply, global, iffv ∈ V(A) ∩ V(B).

Definition 4 (Interpolant). Let(A,B) be a pair of formulas in CNF such thatA∧B ≡
⊥. The interpolantfor (A,B) is a formulaI such that: (i)A ⇒ I. (ii) I ∧ B ≡ ⊥.
(iii) V(I) ⊆ V(A) ∩ V(B) (all the variables in the interpolant are global).

4

We will use the notions of weaker versions of interpolants that fulfill two out of
three interpolant properties.

Definition 5 (Bweak-Interpolant). Let (A,B) be a pair of formulas in CNF such that
A ∧ B ≡ ⊥. TheBweak-interpolantfor (A,B) is a formulaI such that: (i)A ⇒ I.
(ii) V(I) ⊆ V(A) ∩ V(B).

Definition 6 (Non-Global-Interpolant). Let(A,B) be a pair of formulas in CNF such
that A ∧ B ≡ ⊥. The non-global-interpolantfor (A,B) is a formulaI such that:
(i) A ⇒ I. (ii) I ∧B ≡ ⊥.

Next we provide some resolution-related definitions. Theresolution rulestates that
given clausesα1 = β1 ∨ v andα2 = β2 ∨ ¬v, whereβ1 andβ2 are also clauses, one
can derive the clauseα3 = β1 ∨ β2. Application of the resolution rule is denoted by
α3 = α1 ⊗

v α2.

Definition 7 (Resolution Derivation).A resolution derivationof a target clauseα from
a CNF formulaG = {α1, α2, . . . , αq} is a sequence
π = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ α), where each clauseαi for i ≤ q is
initial andαi for i > q is derivedby applying the resolution rule toαj andαk, where
j, k < i.

A resolution derivationπ can naturally be conceived of as a directed acyclic graph
(DAG) whose vertices correspond to all the clauses ofπ and in which there is an edge
from a clauseαj to a clauseαi iff αi = αj⊗αk. A clauseβ ∈ π is aparentof α ∈ π iff
there is an edge fromβ toα. A clauseβ ∈ π is backward reachablefrom γ ∈ π if there
is a path (of 0 or more edges) fromβ to γ. The set of all vertices backward reachable
from β ∈ π is denotedΓ (π, β).

Definition 8 (Resolution Refutation).A resolution derivationπ of the empty clause
� from a CNF formulaG is called the resolution refutation ofG.

An interpolant can be produced out of a resolution refutation [14].
For this work, we will need a definition of anA-resolution refutation, that is, a

projection of a given resolution refutationπ to the clause setA:

Definition 9 (A-Resolution Refutation). Let π = (α1, α2, . . . ,�) be a resolution
refutation of the CNF formulaG = A ∧ B. TheA-resolution refutationπA ∈ π is
constructed by applying the following operation for every clauseαi ∈ π in the order of
appearence inπ:αi is appended toπA iff eitherαi ∈ A or αi = αj⊗

vαk andαj ∈ πA

or αk ∈ πA.

In DAG terminologyπA is a sub-graph ofπ that contains only those vertices whose
clauses belong toA, and the edges between such clauses. Note that a clauseα ∈ π may
have 0 or 2 parents, while a clauseα ∈ πA may also have 1 parent (if the second parent
is implied only by the clauses ofB).

We denote clauses containing the literalv/¬v in a given clause set byv+/v−, re-
spectively. Given a CNF formulaF and a variablev ∈ V(F), variable elimination[7]

5

α10 = �

α7 = g2 α8 = g4 α9 = ¬g2

α5 = g1 ∨ g2 α6 = g3 ∨ g4 β1 = ¬g1 β2 = ¬g3 β3 = ¬g2 ∨ ¬g4

α1 = a1 ∨ g1 α2 = ¬a1 ∨ g2 α3 = a1 ∨ g3 α4 = ¬a1 ∨ g4

Fig. 1: An example of a resolution refutation. AssumeA = {α1, . . . , α4} andB =
{β1, . . . , β3}.

is an operation that removesv from F by replacing clauses containing the variable
v with the result of a pairwise resolution betweenv+ andv−. The resulting formula
VE(F, v) is equisatisfiable withF [7]. The groundbreaking DP algorithm for deciding
propositional satisfiability [7] uses variable elimination until either the empty clause�
is derived, in which case the formula is unsatisfiable, or allthe variables appear in one
polarity only, in which case the formula is satisfiable. It iswell known that the original
DP algorithm suffers from exponential blow-up.

A bounded version of variable elimination has been an essential contributor to the
efficiency of modern SAT preprocessing algorithms (that is,algorithms that truncate the
size of the CNF formula before embarking on the search) sincethe introduction of the
SatELite preprocesor [9]. Inbounded variable elimination, used in SatELite, a variable
v is eliminated iff the operation does not increase the numberof clauses.

3 Generating Interpolant Approximation in CNF

In this section we propose a method for generating aBweak-interpolant (recall Def. 5)
in CNF. First, we briefly describe two algorithms for generating interpolants in CNF. In
practice, both algorithms are not applicable to all cases, because of exponential blow-up.
Thereafter we introduce an efficient algorithm which is guaranteed to return aBweak-
interpolant in CNF, and which may for some cases return an interpolant in CNF.

Our first algorithm for generating an interpolant in CNF is based on näıve vari-
able elimination. First it generates a resolution refutation of the given formula us-
ing a SAT solver. Then it initializes the interpolant by those clauses ofA that are
backward reachable from� (the empty clause). Note that at this stageI is a non-
global-interpolant (recall Def. 6). Finally, the algorithm gradually turns the non-global-
interpolant into an interpolant by applying variable elimination over allA-local vari-
ables. Consider the example in Fig. 1. Our algorithm would generate the following in-
terpolant:I = {g1 ∨ g2, g1 ∨ g4, g3 ∨ g2, g3 ∨ g4}. Unfortunately, the algorithm suffers
from the same drawback as the DP algorithm [7]: exponential blow-up when variables
keep being eliminated.

Our next algorithm is based on the observation that to eliminate a variablev it is not
necessary to apply resolution over all the pairs inv+ andv−, but rather only over those
subsets that contribute to deriving a common ancestor in theresolution derivation. We
need to introduce the notion of clause-interpolant.

6

Definition 10 (Clause-Interpolant). Let (A,B) be an unsatisfiable pair of CNF for-
mulas. Letα be a clause. Then,I(α) is aClause-Interpolantof α iff:

(i) A ⇒ I(α) (ii) I(α)∧B ⇒ α (iii) V(I(α)) ⊆ (V(A)∩V(B))∪ (V(A)∩V(α))

A clause-interpolant is a generalization of an interpolantthat allows one to associate
an interpolant with every clauseα in A-resolution refutation (recall Def. 9). As in the
case of the standard interpolant, the clause-interpolant is implied byA. The conjunction
of the clause-interpolant withB implies the clauseα (instead of� for the standard
interpolant). Finally, the clause-interpolant is allowedto contain global variables and
A-local variables that appear inα. Note that a clause-interpolant of� is an interpolant.

Our second proposed algorithm for deriving an interpolant in CNF works as fol-
lows: it traverses theA-resolution refutation from the input clauses towards�. It con-
structs a clause-interpolant for each traversed clause as follows. The clause-interpolant
of each initial clauseα is set to{α}. For creating the clause-interpolant of a derived
clauseα, the algorithm first conjoins the clause-interpolants ofα’s parents. Then, ifα
was created by resolution over a local variablev, v is eliminated from the result. The
clause-interpolant of� is returned as the interpolant. Consider again the example in
Fig. 1. We haveI(α5) = α1 ⊗a1 α2 = g1 ∨ g2; I(α6) = α3 ⊗a1 α2 = g3 ∨ g4;
I(α7) = I(α5); I(α9) = I(α8) = I(α6). Finally, the interpolant isI(�) = I(α7) ∪
I(α9) = {g1 ∨ g2, g3 ∨ g4}. Note that for our example, the interpolant generated by the
current algorithm is smaller than the one generated by our previous algorithm, which
applies exhaustive variable elimination. In practice, however, the current algorithm is
not always scalable either, due to the same problem – exponential blow-up caused by
variable elimination. Also note that for our simple examplethe intepolant comprises a
cut{α5, α6} in theA-resolution refutation, where all the clauses are implied by A only.
One can show that whenever such a cut exists it comprises an interpolant. Unfortunately,
in the general case such cuts do not usually exist.

Now we are ready to present a scalable algorithm for approximating an interpolant
by generating aBweak-interpolant. The first stage of our algorithm traverses thereso-
lution refutation to generate a non-global-interpolant. The second stage uses bounded
variable elimination and then incomplete variable elimination (defined below), if re-
quired, to convert the non-global-interpolant to aBweak-interpolant.

Definition 11 (Incomplete Variable Elimination). Given a CNF formulaF and a
variable v ∈ V(F), incomplete variable eliminationis an operation that removesv
from F by replacing clauses containing the variablev with the set IVE(F, v) which
containssomeof the results of a pairwise resolution betweenv+ and v−, where two
requirements are met:

1. |IVE(F, v)| ≤ |v+|+ |v−|
2. Letα ∈ v+/v− be a clause, such that there exists a clauseβ ∈ v−/v+, such

thatα ⊗v β is not a tautology. Then,α ⊗v γ ∈ IVE(F, v) for at least oneclause
γ ∈ v−/v+, such thatα⊗v γ is not a tautology.

The idea behind incomplete variable elimination is to omit some of the resolvents
when eliminating the variablev in order not to increase the number of clauses, yet to
guarantee that each clause containingv has some contribution to the generated set of

7

clauses. Note that while incomplete variable elimination is not sufficient to maintain
unsatisfiability for all cases, it may be sufficient for some cases. Incomplete variable
elimination is non-deterministic.

Before presenting our eventual algorithm, we need to introduce the notion of a non-
global-clause-interpolant:

Definition 12 (Non-Global-Clause-Interpolant).Let (A,B) be an unsatisfiable pair
of CNF formulas. Letα be a clause. Then,I(α) is a Non-Global-Clause-Interpolantof
α iff: (i) A ⇒ I(α) (ii) I(α) ∧B ⇒ α

Note that a non-global-clause-interpolant of� is a non-global-interpolant.
Consider now the algorithm described in Fig. 2. Its first part(lines 2-21) traverses

the resolution refutation and asssociates a non-global-clause-interpolant with each clause.
Consider a visited clauseαi = αj ⊗

v αk whenv is local. First, the algorithm setsI(αi)
to be the union ofI(αj) andI(αk). It eliminates the variablev if the following two con-
ditions hold: First, that eliminatingv does not increase the clause size ofI(αi) (as in
the bounded variable elimination of SatELite [9]), and second, that variable elimination
has been performed for all clauses backward reachable fromαi. (The second condition
is ensured by using an auxiliary setSkippedfor marking clauses for which variable
elimination was skipped). The second stage of the algorithm(starting from line 22)
uses bounded variable elimination and then incomplete variable elimination to convert
the non-global-interpolant to the eventually returnedBweak-interpolant by eliminating
A-local variables. Note that the bounded variable elimination stage is non-redundant
even though bounded variable elimination was performed locally for resolution refuta-
tion clauses, since sometimes bounded variable elimination is possible given a large set
of clauses while it is impossible given a subset of that set. Note also that the algorithm
returns an interpolant rather than merely aBweak-interpolant if all theA-local variables
are succesfully removed before incomplete variable elimination is applied.

4 UsingBweak-Interpolants In Model Checking

In this section we describe a model checking algorithm that usesBweak-interpolants. Our
algorithm is composed of two main stages. Recall that by Def.5, aBweak-interpolant
fulfills two out of the three conditions of an interpolant. Therefore, the first stage at-
tempts to transform theBweak-interpolant into an interpolant.

The second stage uses interpolants computed by the first stage. In essence, the sec-
ond stage is a modification of the original ITP and is called CNF-ITP. Besides the fact
that CNF-ITP uses interpolants in CNF, it further takes advantage of this fact by apply-
ing optimizations which are possible only as a result of using interpolants in CNF.

Before going into the details of CNF-ITP, we describe ITP.

4.1 Interpolation-Based Model Checking Revisited

ITP [14] is a complete SAT-based model checking algorithm. It uses interpolation to
over-approximate the reachable states in a transition systemM with respect to a prop-
ertyp. ITP uses nested loops where the outer loop increases the depth of unrolling and
the inner loop computes the reachable states. ITP is described in Fig. 3

8

1: function SIG(πA = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ �))
2: Skipped:= {}
3: for all i ∈ {1, 2, . . . , q} do
4: I(αi) := {αi}
5: end for
6: for all i ∈ {q + 1, q + 2, . . . , p ≡ �} do
7: if αi has exactly one parentβ then
8: I(αi) := I(β)
9: else
10: if αi = αj ⊗v αk , wherev is globalthen
11: I(αi) := I(αj) ∪ I(αk)

12: else // αi = αj ⊗v αk , wherev is A-local
13: I(αi) := I(αj) ∪ I(αk)

14: if |VE(I(αj) ∪ I(αk), v)| ≤ |I(αj) ∪ I(αk)| and{αj , αk} ∩ Skipped= ∅ then
15: I(αi) := VE(I(αi), v)
16: else
17: Skipped:= Skipped∪ {αi}
18: end if
19: end if
20: end if
21: end for
22: Apply bounded variable elimination forA-local variables overI(�)
23: if I(�) then do not containA-local variables
24: return I(�) // In this caseI(�) is an interpolant
25: else
26: Apply incomplete variable elimination forA-local variables overI(�)
27: return I(�) // In this caseI(�) is aBweak-interpolant
28: end if
29: end function

Fig. 2:Bweak-Interpolant Generation

Definition 13. Let k and n be the depth of unrolling used in the outer loop and the
iteration of the inner loop of ITP respectively. We defineRk

n = INIT ∨Ik1 ∨Ik2 ∨ . . .∨Ikn
to be the set of reachable states computed by the inner loop ofITP aftern iterations
and with respect to unrolling depthk. For a given1 ≤ j ≤ n, Ikj is the interpolant
computed in thej-th iteration of the inner loop.

From this point and on,k andn refer to the depth of unrolling used in the outer loop
and the iteration of the inner loop of ITP respectively.

In general, the inner loop checks a fixed-bound BMC [2] formula where at each
iteration only the initial states are replaced with an interpolant computed at a previous
iteration (line: 30). This is done until the BMC formula becomes SAT (line: 30) or
until a fixpoint is reached (lines: 25-27). In the former case, the outer loop increases
the unrolling depth by 15 (line: 13) in order to either increase the precision of the over-
approximations or to find a counterexample.

Lemma 1. Rk
n(V

0) ∧ path0,k−1 ∧ (
∨k−1

j=0 ¬p(V
j)) is unsatisfiable.

The above lemma is derived directly from the interpolant definition and from the
wayRk

n is computed in ITP.Rk
n is also referred to as(k − 1)-adequate.

5 Some works choose different ways of increasingk. For example,k can be increased by the
number of iterations executed in the inner loop:k = k + n. In our experimentsk = k + 1

yielded better results.

9

1: function ITP(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: k = 1
6: while true do
7: result = COMPUTEREACHABLE(M, p, k)
8: if result == fixpoint then
9: return V alid
10: else ifresult == cexthen
11: return cex
12: end if
13: k = k + 1
14: end while
15: end function

Fig. 3: Interpolation-Based Model Checking (ITP)

16: function COMPUTEREACHABLE(M ,p, k)
17: Rk

0 = INIT, Ik
0 = INIT, n = 1

18: if Ik
0 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT then

19: return cex
20: end if
21: repeat
22: A = Ik

n−1(V
0) ∧ TR(V 0, V 1)

23: B = path1,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k))

24: Ik
n = GETINTERPOLANT(A,B)

25: if Ik
n ⇒ Rk

n−1 then
26: return fixpoint
27: end if
28: Rk

n = Rk
n−1 ∨ Ik

n

29: n = n + 1
30: until Ik

n−1 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT

31: end function

Fig. 4: Inner loop of ITP

4.2 Transforming a Bweak-Interpolant Into an Interpolant Using Inductive
Reasoning

As we have shown in Sec. 3, given a pair of formulas(A,B) such thatA ∧ B is un-
satisfiable, aBweak-interpolantIw can be computed. By Def. 5,A ⇒ Iw andV(Iw) ⊆
V(A) ∩ V(B), but it is not guaranteed thatIw ∧ B is unsatisfiable. Intuitively, we can
think of Iw as being too over-approximated and therefore needing strengthening with
respect toB.

Definition 14 (B-adequate).Let (A,B) be a pair of formulas s.t.A ∧ B ≡ ⊥ and let
Iw be aBweak-interpolant for(A,B). We say thatIw is B-adequateiff Iw ∧B ≡ ⊥.

Following the above definition, our purpose is to make aBweak-interpolantIw B-
adequate. We refer to this procedure asB-Strengthening.

The purpose of this section is to demonstrate the use ofBweak-interpolants for model
checking, in particular in the context of ITP.

Definition 15 (k-n-pair). Given the formulasA = Ikn−1(V
0) ∧ TR(V 0, V 1) andB =

path1,k ∧ (
∨k

i=1 ¬p(V
i)). The pair(A,B) is called ak-n-pair. WhenA ∧ B ≡ ⊥ we

call (A,B) an inconsistentk-n-pair.

10

Consider a run of ITP for a givenk andn. We aim at computingIkn. Let(A,B) be an
inconsistentk-n-pair and letIw be theBweak-interpolant for(A,B). If Iw is B-adequate
then it is an interpolant and thereforeIkn can be defined to beIw. If Iw is not B-adequate
we are required to apply B-Strengthening and transformIw into an interpolant.

Let us assume thatIw is not B-adequate and thatIw(V 1) ∧ B is satisfiable. There
exists a states ∈ Iw such thats(V 1) ∧B is satisfiable. Intuitively, in order to makeIw
B-adequate, and by that an interpolant, we would like to removes from it.

Clearly,A ∧ s(V 1) is unsatisfiable; otherwiseA ∧ B would have been satisfiable.
Thus, B-Strengthening can be done by iterating all assignments forIw(V 1)∧B, extract-
ing a states ∈ Iw from an assignment and blocking it inIw. This is an inefficient way
to perform B-Strengthening since the number of such assignments may be too large.

To overcome this, we use knowledge about the problem at hand.Namely, we con-
sider the fact thatA is of the following form:A = Ikn−1(V) ∧ TR(V, V ′).

Definition 16 (Relatively Inductive). LetR andQ be propositional formulas andM
a transition system. We say thatQ is relatively inductivewith respect toR andM if
(R(V) ∧Q(V)) ∧ TR(V, V ′) ⇒ Q(V ′). WhenM is clear from the context we omit it.

Recall that by Def. 13Rk
n represents an over-approximation of all reachable states

after up ton transitions and it is(k − 1)-adequate (Lemma 1).

Lemma 2. Let (A,B) be an inconsistentk-n-pair. LetIw be theBweak-interpolant for
(A,B) . If s is an assignment toV s.t.s(V 1) ∧ B is satisfiable, thenRk

n−1 ⇒ ¬s and
Rk

n−1 ∧ TR ⇒ ¬s′ hold.

The above lemma states that if a states can reach a bad state in up tok−1 transitions,
it cannot be a state in the setRk

n−1. If we consider aBweak-interpolant derived from the
pair (A,B), assuming thats ∈ Iw (derived from the satisfying assignment toIw(V 1)∧
B), thens follows the condition in Lemma 2. Therefore,Rk

n−1 ⇒ ¬s andRk
n−1∧TR⇒

¬s′ hold and by that(Rk
n−1∧¬s)∧TR⇒ ¬s holds. By Def. 16¬s is relatively inductive

with respect toRk
n−1. Therefore,¬s can be inductively generalized [3].

Inductive generalization results in a sub-clausec of ¬s such that(Rk
n−1∧c)∧TR⇒

c′ andINIT ⇒ c. c can then be used to strengthenIw andRk
n−1. Adding the clausec to

Iw removess from Iw. This process is then iterated untilIw becomes B-adequate and
hence an interpolant. The algorithm for finding the clauses that makeIw B-adequate is
described in Fig. 5.

Theorem 1. Let (A,B) be an inconsistentk-n-pair. LetIw be aBweak-interpolant and
let c1, . . . , cm be clauses s.t.INIT ⇒ ci and ci is relatively inductive w.r.t.Rk

n−1 for
1 ≤ i ≤ m. If (Iw ∧

∧m

j=1 cj) ∧ B ≡ ⊥ thenIw ∧
∧m

j=1 cj is an interpolant w.r.t

A = (Ikn−1(V
0) ∧

∧m

j=1 cj(V
0)) ∧ TR(V 0, V 1) andB = path1,k ∧ (

∨k

i=1 ¬p(V
i)).

4.3 CNF-ITP: UsingBweak-Interpolants in ITP

Above we described how aBweak-interpolant is transformed into an interpolant effi-
ciently for model checking. In this section we present CNF-ITP, a model checking al-
gorithm that is based on ITP. CNF-ITP uses the method described above to compute

11

32: function FINDM ISSINGCLAUSES(R,Iw , B, n)
33: C = ∅
34: while (Iw ∧ C)(V 1) ∧ B == SAT do // WhenC = ∅ it is evaluated as⊤
35: Gets ∈ Iw from the SAT assignment
36: c = INDUCTIVEGENERALIZATION(R, s, C)
37: C = C ∪ c
38: end while
39: STORECLAUSES(n)
40: return C
41: end function

Fig. 5: Find the clauses needed for theBweak-interpolantIw to be B-adequate

interpolants. In addition, it uses optimizations that are possible as a result of using in-
terpolants in CNF.

Like the original ITP, our version consists of two nested loops. Since the compu-
tation of interpolants is performed in the inner loop, this is where we have made most
of our modifications and optimizations. Recall that in the inner loop a BMC formula of
a fixed-bound is checked iteratively, where at each iteration only the initial states are
replaced by the interpolants computed in a previous iteration. Our modified version of
the inner loop appears in Fig. 6

In what follows we considerk to be the unrolling depth used in the inner loop and
n to be the iteration during the execution of the inner loop.

The beginning of the loop is similar to the original inner loop of ITP. First, a coun-
terexample of lengthk is checked (lines: 44-46). If no counterexample exists the pair
(A,B) is defined and aBweak-interpolantIw is computed (line: 50). Then, two op-
timizations are applied. First, clauses are pushed forward(line: 51). Second, previ-
ously computed interpolant is conjoined to the currently computedBweak-interpolant
(line: 52). SinceIw may not be B-adequate, the B-Strengthening process may needto
add clauses to it (to strengthen it). Adding clauses toIw before B-Strengthening re-
sults in a more efficient B-Strengthening. Moreover, after pushing clauses forward and
adding clauses from the previously computed interpolant,Iw may become B-adequate,
thereby rendering B-Strengthening redundant.

After applying the two optimizations, B-Strengthening is invoked (line 53). Then
the clauses learned during this process are conjoined withRk

n−1 andIkn−1 (line 56),
andIw (line 57). After conjoining the clauses,Ikn is an interpolant. The rest of the loop
is identical to the original inner loop of ITP.

We now describe the optimizations in more detail.

Pushing Clauses ForwardLet us consider the interpolantIkn computed during then-th
iteration of the inner loop. SinceIkn is given in CNF, assume thatIkn−1 = {c1, . . . , cm}
whereci is a clause for every1 ≤ i ≤ m.

Definition 17. LetM be a transition system and letF = {c1, . . . , cm} be a formula in
CNF whereci is a clause overV for every1 ≤ i ≤ m. A clauseci for some1 ≤ i ≤ n
is said to bepushableif F (V) ∧ TR(V, V ′) ⇒ ci(V

′) holds.

After the computation of aBweak-interpolant, we try to find pushable clauses. Those
clauses can be made part of the new interpolant. Adding the pushable clauses to the
Bweak-interpolant strengthens it.

12

42: function COMPUTEREACHABLECNF(M ,p, k)
43: Rk

0 = INIT, Ik
0 = INIT, n = 1

44: if Ik
0 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT then

45: return cex
46: end if
47: repeat
48: A = Ik

n−1(V
0) ∧ TR(V 0, V 1)

49: B = path1,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k))
50: Iw = GETBWEAK INTERPOLANT(A,B)
51: PUSHINDUCTIVECLAUSES(Iw, n − 1)

52: Iw = Iw ∧ Ik−1
n // Fork = 1, I0

n = ⊤

53: C = FINDM ISSINGCLAUSES(Rk
n−1, Iw, B)

54: Ik
n = Iw

55: for all c ∈ C do
56: Rk

n−1 = Rk
n−1 ∧ c // Implicitly conjoiningc with Ik

n−1

57: Ik
n = Ik

n ∧ c

58: end for
59: if Ik

n ⇒ Rk
n−1 then

60: return fixpoint
61: end if
62: Rk

n = Rk
n−1 ∨ Ik

n

63: n = n + 1
64: until Ik

n−1 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT

65: end function

Fig. 6: Inner loop of CNF-ITP

Incremental Interpolants The outer loop of CNF-ITP (and ITP) increases the un-
rolling depth when a more precise over-approximation is needed. LetI11 be the inter-
polant computed in the first iteration of the inner loop fork = 1 and letI21 be the
interpolant computed in the first iteration of the inner loopfor k = 2. Clearly, since
bothI11 andI21 over-approximate the states reachable in one transition from the initial
states,I11 ∧ I21 is also an over-approximation of the same set of states. Usually, the size
of the interpolants is an issue. Therefore, whenever the inner loop terminates and the
bound is increased, all computed interpolants are discarded and are not re-used [13].
Since our method produces interpolants in CNF that are usually small, this conjunction
does not create huge CNF formula. This re-use of previously computed interpolants
increases the efficiency of CNF-ITP as compared to ITP.

4.4 CNF-ITP: The Best of ITP and IC3

CNF-ITP uses key elements of ITP and IC3. On the one hand, likeITP, CNF-ITP uses
the resolution refutation to get information about the reachable states. This informa-
tion is only partial, and therefore CNF-ITP also usesinductive generalization, a key
element of IC3, to complete the computation of reachable states. Since the reachable
states are computed by means of over-approximations, thereare cases in which the pre-
cision of these approximations must be increased. To do so, CNF-ITP uses unrolling,
like in ITP. In addition, it uses the fact that interpolants are given in CNF and tries to
reuse clauses that have already been learnt (both by pushingthe clauses forward and
by using previously computed interpolants). CNF-ITP can beviewed as a hybridization
of the monolithic approach (ITP) and the incremental approach (IC3). We believe that
there are well-founded grounds for comparing the three algorithms, and that further de-

13

velopment can bring about an even tighter integration of ITPand IC3. This discussion,
however, is outside the scope of this paper.

5 Experimental Results

Our approach includes two major parts. The first part computes aBweak-interpolant
from a resolution refutation, and the second part applies B-Strengthening and a model
checking algorithm CNF-ITP. The computation ofBweak-interpolants was implemented
on top ofMiniSAT 2.2. CNF-ITP and ITP were implemented in a closed-source model
checker. For IC3 we used the publicly available ABC framework6. In the results we also
include the runtime for ABC’s ITP implementation in order toshow the efficiency of
our implementation.

To evaluate our method we used a representative subset of theHWMCC’12 bench-
mark set. We chose all valid benchmarks that either ITP or CNF-ITP could prove in the
given time frame (56 cases). Table 1 presents 30 out of 56 these cases. All experiments
were conducted on a system with an Intel E5-2687W running at 3.1GHz with 32GB of
memory. Timeout was set to 900 seconds. As mentioned, we sought to test two aspects:
the size of the resulting interpolants and the impact on model checking.

Consider Table 1. Our method generates significantly smaller interpolants7 in al-
most every case. Summarizing the average size of all computed interpolants shows that
CNF-ITP generates interpolants that are42 times smallerthan those generated by ITP.
Note that average interpolant computation time is nearly the same for both methods.

Another interesting aspect of the comparison between CNF-ITP and ITP is the con-
vergence bound. We can see that in many cases the bound is different. This indicates
that the strength of the interpolants computed by the two methods is different and affects
the results of the model checking algorithm.

Comparing the run-time of the model checking algorithms shows that our CNF-ITP
algorithm outperforms ITP and IC3 in terms of the overall run-time. CNF-ITP outper-
forms ITP in 21 instances, where in 4 of these instances ITP times out. ITP outperforms
CNF-ITP only in 7 cases only. CNF-ITP outperforms IC3 in 11 cases, but IC3 is prefer-
able in 16 cases. CNF-ITP is the absolutely best algorithm in8 cases.

Analysis of the results in the table shows that whenever the number of clauses in the
interpolants computed by CNF-ITP is significantly smaller than the number of clauses
in the interpolants computed by ITP, the former performs better.

In the cases where the size of interpolants is fairly the same, ITP performs better.
This can be explained by the fact that ITP computes small interpolants when the reso-
lution refutation is small. Therefore, computing the interpolants in ITP is more efficient
in these cases since it only requires linear traversal over the resolution refutation. In
contrast, our method requires B-Strengthening, a process that is in some cases expen-
sive. We conclude that when the resulting interpolants in ITP are large, CNF-ITP has a
significant advantage in the vast majority of cases.

6 https://bitbucket.org/alanmi/abc
7 For ITP, the number of clauses is after translation of the interpolants to CNF.

14

Table 1:Experiment parameters on part of the benchmarks.Name: property name;♯Vars: number
of state variables in the cone of influence;k is the bound of the outer loop at which fixpoint
was found; totaln is the total number of iterations executed by the inner loop; clausesAvg is the
average number of clauses representing each computed interpolant; Extract[s] is the average time
to compute an interpolant in seconds; MC[s] is the total runtime of the algorithm in seconds.
Values in boldface are the best of all three.Underlined runtime is for cases where CNF-ITP
outperforms ITP andItalic is for cases where CNF-ITP outperforms IC3.

IC3ABC ITPABC ITP CNF-ITP
Name ♯Vars MC[s] MC[s] k totaln clausesAvg Extract[s] MC[s] k totaln clausesAvg Extract[s] MC[s]

beembkry1b1 76 4.68 758 15 72 94495 3.14 792 20 83 1830 0.65 248
beemcoll1b1 132 11.77 TO 9 51 45563 2.09 577 11 52 487 0.28 201
beemexit5f1 246 7.11 106 25 218 15792 1.21 611 25 255 792 0.3 466
beemfish4f1 94 4.41 TO 15 50 63423 3.26 TO 14 59 1348 0.72 85
beemfwt5f2 3045 543.32 14.68 5 9 854 0.009 2.2 5 10 22 0.00 2.01
beemfwt1b1 1214 321.86 396 4 18 5721 0.2310.58 4 15 62 38.14 TO

beemndhm2f2 251 13.53 138 7 49 29051 1.07 213 5 10143 0.14 2.92
beempgmprot1b1 1025 8.03 97 33 218 1121 0.82 TO 19 113 61 0.00 27.65
beempgmprot7b1 1033 591.49 204 27 168 2717 1.23 TO 18 153237 0.00 36.21

beemtlphn5f1 249 29.81 TO 12 60 73460 5.27 TO 20 661197 0.06 TO
beemtrngt2b1 170 1.55 TO 29 193 31942 1.95 TO 15 154 618 0.08 23.42
beemtrngt4b1 228 44.71 TO 29 196 22144 1.56 TO 30 281371 0.71 TO

bob05 2404 7.5 275 24 121 962 0.37 221 24 136 198 0.38 113
bob1u05cu 4377 7.66 235 24 124 3116 0.45 251 24 147 272 0.19 152
eijkbs3330 246 7.2 TO 3 6 764550 22.74 TO 3 9 5873 10.44 154

6s38 1931 TO TO 10 33 84988 1.19 TO 7 22 4299 15.7 423
6s108 782 4.83 TO 8 43 89493 3.67 TO 7 25 1787 0.56 42.65
6s120 58 0.71 4.1 3 6 365 0.34 6.5 3 8 373 0.12 2.92
6s121 419 821.54 TO 24 214 4542 0.08 46.25 18 98389 0.04 14.42
6s132 139 2.87 7.5 7 13 35973 2.88 85 5 13 4221 3.5 76
6s136 3342 TO 3.1 20 58 2471 0.005 4.4 20 53 16 0.00 1.94
6s151 150 TO TO 14 515 1998 0.22 461 10 122 6226 3.15 TO
6s159 252 0.03 7.8 15 143 656 0.01 4.9 10 60 27 0.00 0.34
6s164 198 8.96 TO 18 77 753 0.02 3.7 18 85 135 0.006 2.43
6s181 607 TO 26.2 8 19 63509 4.58 232 6 10 2556 6.45 TO

intel021 365 TO TO 18 316 2503 0.05 51.3 18 489 331 0.14 117
intel022 530 TO TO 21 435 18818 0.5 629 20 555 585 1.05 TO
intel024 357 TO TO 15 233 3087 0.04 34.5 15 341 206 0.12 83
intel031 531 TO TO 21 268 3465 0.15 114 18 235 183 0.03 61
intel034 3297 TO TO 16 425 1477 0.02 85 16 432 83 0.19 119

Total 10544 16672 1469009 59 12535 34928 83 7854

6 Conclusion

We have presented a novel approach for deriving interpolants for SAT-based model
checking. Our procedure generates small interpolants in CNF using a twofold scheme:
First, an interpolant approximation is computed with an algorithm that exploits res-
olution refutation properties. Following this, inductivereasoning is used to complete
transforming the approximation into an interpolant. Our experiments show that our ap-
proach generates interpolants that are much smaller (by 42 times overall) than those
generated by the classical ITP approach.

In addition, we have implemented CNF-ITP, a model checking algorithm that uses
the above method to compute interpolants. CNF-ITP significantly outperformed ITP
and outperformed IC3 in a large number of cases. We believe that this approach may
be further developed and enhanced, yielding an even more efficient model checking
algorithm.

15

Acknowledgments The authors would like to thank H̊akan Hjort and Paul Inbar for
their valuable comments.

References

1. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-time reductions
of resolution proofs. InHaifa Verification Conference, pages 114–128, 2008.

2. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Boundedmodel checking.
Advances in Computers, 58:118–149, 2003.

3. A. R. Bradley. SAT-based model checking without unrolling. InVMCAI, 2011.
4. G. Cabodi, M. Murciano, S. Nocco, and S. Quer. Stepping forwardwith interpolants in

unbounded model checking. InICCAD, pages 772–778, 2006.
5. H. Chockler, A. Ivrii, and A. Matsliah. Computing interpolants without proofs. In HVC,

2012.
6. W. Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb. Log.,

22(3), 1957.
7. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,

7(3):201–215, July 1960.
8. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant strength. In

VMCAI, pages 129–145, 2010.
9. N. Éen and A. Biere. Effective preprocessing in SAT through variable andclause elimina-

tion. In F. Bacchus and T. Walsh, editors,SAT, volume 3569 ofLecture Notes in Computer
Science, pages 61–75. Springer, 2005.

10. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiabilityfor CNF formulas. In
DATE, pages 886–891, 2003.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In
POPL, 2004.

12. R. Jhala and K. L. McMillan. Interpolant-based transition relation approximation. InCAV,
2005.

13. J. Marques-Silva. Interpolant learning and reuse in SAT-based model checking.Electr. Notes
Theor. Comput. Sci., 174(3):31–43, 2007.

14. K. L. McMillan. Interpolation and SAT-based Model Checking. InCAV, 2003.
15. K. L. McMillan. Lazy Abstraction with Interpolants. InCAV, 2006.
16. K. L. McMillan and N. Amla. Automatic Abstraction without Counterexamples. InTACAS,

2003.
17. P. Pudĺak. Lower bounds for resolution and cutting plane proofs and monotonecomputations.

J. Symb. Log., 62(3), 1997.
18. S. Rollini, R. Bruttomesso, and N. Sharygina. An efficient and flexible approach to resolution

proof reduction. InHaifa Verification Conference, pages 182–196, 2010.
19. V. Ryvchin and O. Strichman. Faster extraction of high-level minimalunsatisfiable cores. In

SAT, pages 174–187, 2011.
20. Y. Vizel and O. Grumberg. Interpolation-sequence based modelchecking. InFMCAD, 2009.
21. Y. Vizel, O. Grumberg, and S. Shoham. Intertwined forward-backward reachability analysis

using interpolants. InTACAS, pages 308–323, 2013.
22. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable Boolean

formula. InSAT, 2003.

16

	Efficient Generation of Small Interpolants in CNF

