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Abstract

Our aim is to improve bit-vector reasoning in modern SMT solvers. We enhance bit-
vector preprocessing by introducing algorithms that explicitly handle an important class
of bit-vector operations which we call bit-propagating. Such operations fulfill the following
property: each output bit is either a bit of one of the inputs or a constant (0 or 1). We
identified ten bit-propagating operations in the SMT-LIB 2.0 language; these operations
are encountered frequently in practice. Our algorithms seek to improve the run-time of
SMT solvers by simplifying the problem that is eventually provided to the underlying SAT
solver. Empirical evaluation of our algorithms reveals a performance boost across a variety
of SMT-LIB benchmark families.

1 Introduction

Bit-vector (abbr., BV) reasoning is widely used in practice. Over 48% out of more than 93,000
benchmarks in SMT-LIB [4] are either plain BV benchmarks or combine the BV theory with the
theory of arrays (where 33% are plain BV benchmarks) [1]. Bit-vector reasoning is supported
by a variety of solvers, such as Boolector [7], STP [12], Mathsat [8] and others. In the eager
approach to BV solving (used by Boolector and STP, for example), the solver preprocesses the
word-level formula, then translates the simplified formula to Conjunctive Normal Form (CNF)
and solves it with a SAT solver. In this paper we identify an important class of BV operations
and propose an efficient way of handling them in the preprocessor. We restrict further discussion
in this paper to eager SMT solvers applied to solving bit-vector benchmarks that conform to
the QF BV logic syntax [2]. However, our results are applicable whenever BV reasoning is
required.

The central notion of our paper is that of a bit-propagating operation. A bit-propagating
operation fulfills the following property: each output bit is either a bit of one of the inputs
or a constant 0 or 1 (a more precise definition appears in Section 3.1). We identified 10 bit-
propagating operations amongst the 38 operations over bit-vectors supported in QF BV (that
is, the union of the 35 operations in the Fixed Size BitVectors theory and the 3 operations in
the Core theory). The two basic bit-propagating operations are concat and extract, while
the others comprise two rotation operations, repeat, and three shift operations (we consider
the shift operations to be bit-propagating only when the shift is by a constant). A full list
of bit-propagating operations is provided in Fig. 1. We found that bit-propagating operations
appear frequently in practice. See Table 1 for more details.

As an example of a bit-propagating operation, consider the shift left operation bvshl. As-
sume that a bit-vector variable of width 4 v =

[
v[3], v[2], v[1], v[0]

]
(v[0] is the least significant

bit) is shifted by the constant 3. The result would be v =
[
v[0], 0, 0, 0

]
. Clearly, our property

holds: bits 0 through 2 of the output are constants, while bit 3 of the output is bit 0 of the
input.
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We assume that the SMT solver maintains a directed acyclic graph to represent the input
formula, where each node correponds to either a bit-vector constant, an input bit-vector vari-
able, or an internal bit-vector variable created as a result of applying an operation. We call a
variable bit-propagating if it was created as a result of applying a bit-propagating operation.

The main observation behind our work is that given a nested application of bit-propagating
operations, the bits of the resulting variable can always be expressed in terms of bits of non-
bit-propagating variables and the constants 0 and 1. For example, assume that the following
variables were created in the order specified, with the width being 4 bits for every variable
except v3:

1. v1 := bvadd(u1, u2) (bit-vector addition of two previously declared variables)

2. v2 := bvshl(v1, 1) (a shift by a constant)

3. v3 := extract(v2, 3, 2) (extracting bits 2 through 3)

Both v2 and v3 can be expressed in terms of the bits of v1 and the constant 0. More

specifically, we have v2 =
[
v

[2]
1 , v

[1]
1 , v

[0]
1 , 0

]
and v3 =

[
v

[2]
1 , v

[1]
1

]
.

Our main idea is of associating each newly created variable with the so-called Bit-Propagating
Normal Form (BPNF) which expresses the variable in terms of bits of non-bit-propagating
variables and constants. BPNFs of all the variables are stored in a hash table. We propose a
succint representation for BPNF in Section 3.1.

The idea of associating a normal form with bit-vector expressions over concat and extract

operations is well known [9, 6, 5]. In particular, the concatenation normal form [6], detailed
in [11], is largely similar to our BPNF. The added value of our proposal is that it extends
the normal form to variables created with eight additional operations available in the modern
SMT-LIB 2.0 language and integrates the normal-form-based reasoning into a modern SMT
solver.

One advantage of maintaining a BPNF is that one can avoid creating new variables when bit-
vector variables with identical BPNFs are created through different sequences of bit-propagating
operations. Let us continue our example:

4. v4 := repeat(v1, 2)

5. v5 := extract(v4, 6, 5)

We have v4 =
[
v

[3]
1 , v

[2]
1 , v

[1]
1 , v

[0]
1 , v

[3]
1 , v

[2]
1 , v

[1]
1 , v

[0]
1

]
and v5 =

[
v

[2]
1 , v

[1]
1

]
. Hence v5 is identical

to v3. Imagine that the SMT solver is required to create an internal variable coresponding to
the operation extract(v4, 6, 5). After calculating the BPNF and looking in the BPNF hash
table, the solver can conclude that a new internal variable is not required, since v3 can be used
instead.

Another advantage of maintaining a BPNF is that when the formula is translated to CNF,
we create new CNF variables only for non-bit-propagating word-level variables, since we can
express all bits of the bit-propagating variables in terms of constants and bits of non-bit-
propagating variables. Hence, maintaining BPNFs is expected to reduce the number of CNF
variables and clauses, thus simplifying the problem for the SAT solver.

An alternative way of refraining from creating new CNF variables for the outputs of bit-
propagating operations would simply be to reuse CNF variables during the bit-blasting stage.
In our example, in order to represent v3 in CNF, one could use the CNF variables created
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to represent v
[2]
1 and v

[1]
1 .1 However, such an approach would not have the first advantage of

maintaining a normal form we mentioned, that is, creating only one actual word-level vari-
able for variables with identical BPNFs created through different sequences of bit-propagating
operations. Our proposal has this advantage over any approach based on hashing individual
bits.

We implemented our algorithms in Intel’s new eager BV solver Hazel, whose architecture is
largely similar to that of Boolector and STP, and tested their usefulness on benchmark families
from SMT-LIB [3]. We show that applying our algorithms results in a performance boost across
a variety of SMT-LIB families. We also show that on these families, Hazel is usually faster than
the state-of-the-art academic solvers.

In what follows, Section 2 contains preliminaries. Section 3 describes the core algorithms
we propose. Experimental results are provided in Section 4. Section 5 concludes our paper.

2 Preliminaries

We need to define notions related to the basics of BV reasoning.

Definition 1 (Bit, Bit-Vector Variable, Constant). A bit is a Boolean variable (it can be inter-
preted as 0 or 1). A bit-vector variable v of width |v| is a sequence v =

{
v[|v|−1], . . . , v[1], v[0]

}
,

where v[i] is a bit for each |v| > i ≥ 0. The set of all bit-vectors is denoted by B. A constant is
a bit-vector variable, whose every bit is interpreted as 0 or 1. The set of all constants is denoted
by C.

We will sometimes refer to bit-vector variables as either bit-vectors or variables. We consider
bits to be bit-vectors of width 1. We denote by 0w a constant of width w whose every bit is 0.

It is not hard to check that the domain of every operation supported in QF BV is a cross
product of one, two or three bit-vectors (we consider variables of sort Bool to be bit-vectors
of width 1) and zero, one or two natural numbers, while the range comprises a bit-vector. We
denote by N the set of natural numbers (including 0), and by bits(v) the set of all bits of a
bit-vector v. Formal definitions of a bit-propagating operation and a bit-range follow.

Definition 2 (Bit-Propagating Operation). An operation ω : B × B × . . .B︸ ︷︷ ︸
1≤k≤3

×N ×N × . . .×N︸ ︷︷ ︸
0≤l≤2

→

B is bit-propagating if for every application of ω: ω(vk ∈ B, . . . , v1 ∈ B, xl ∈ N , . . . , x1 ∈ N ) =
u ∈ B, for every |u| > i ≥ 0 it holds that u[i] ∈ {0, 1} ∪ bits(vk) ∪ . . . ∪ bits(v2) ∪ bits(v1) and
that u[i] can be computed at the time the operation is applied.

Definition 3 (Bit-Range). Let v be a bit-vector of width n. Then for every n > i ≥ 0 and
n > j ≥ i, the sequence v[j:i] =

{
v[j], . . . , v[i+1], v[i]

}
is a bit-range of v.

Fig. 1 provides the set of all bit-propagating operations in the SMT-LIB 2.0 language.
The shift operations in the language (bvshl–shift left, bvlshr–logical shift right, and bvashr–
arithmetic shift right) support shifting by an arbitrary bit-vector. However, we consider shifts
to be bit-propagating only when the shift is by a constant, since otherwise the match between
the output and the input bits is not known at the time the operation is applied. Hence, in
Fig. 1, the shift operations receive a natural number as their second parameter. Note that
all the operations can be expressed in terms of one or more applications of extract and/or

1Unfortunately, we are not aware of any publications containing details of bit-blasting algorithms applied by
SMT solvers. To the best of our knowledge, some SMT solvers re-use CNF variables while handling the extract

and concat operations during bit-blasting, but not the other eight bit-propagating operations we identified.
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1. concat(v1 ∈ B, v2 ∈ B) =
{
v

[|v1|−1]
1 , . . . , v

[1]
1 , v

[0]
1 , v

[|v2|−1]
2 , . . . , v

[1]
2 , v

[0]
2

}
2. extract(v ∈ B,m ∈ N , l ∈ N ) = v[m:l], where |v| > m, l ≥ 0 and m ≥ l

3. repeat(v ∈ B, s ∈ N ) = concat(repeat(v, s − 1), v) for s > 1; repeat(v ∈ B, 1) = v;
repeat(v, 0) is undefined

4. zero extend(v ∈ B, s ∈ N ) = concat(0s, v) for s > 0; zero extend(v, 0) = v

5. sign extend(v ∈ B, s ∈ N ) = concat(repeat(v[|v|−1], s), v) for s > 0;
sign extend(v, 0) = v

6. bvshl(v ∈ B, s ∈ N) = concat(extract(v, |v| − 1 − s, 0), 0s) for |v| > s > 0; bvshl(v ∈
B, 0) = v; bvshl(v, s ≥ |v|) = 0|v|

7. bvlshr(v ∈ B, s ∈ N) = concat(0s, extract(v, |v| − 1, s)) for |v| > s > 0; bvlshr(v ∈
B, 0) = v; bvlshr(v, s ≥ |v|) = 0|v|

8. bvashr(v ∈ B, s ∈ N) = concat(repeat(v[|v|−1], s), extract(v, |v| − 1, s)) for |v| > s > 0;
bvashr(v ∈ B, 0) = v; bvashr(v, s ≥ |v|) = repeat(v[|v|−1], s)

9. rotate left(v ∈ B, s ∈ N) = concat(extract(v, (|v| − 1 − s)%|v|, 0), extract(v, |v| −
1, (|v| − s)%|v|)) for s : s%|v| 6= 0; rotate left(v, s) = v for s : s%|v| = 0

10. rotate right(v ∈ B, s ∈ N) = concat(extract(v, (s − 1)%|v|, 0), extract(v, |v| −
1, s%|v|)) for s : s%|v| 6= 0; rotate right(v, 0) = v for s : s%|v| = 0

Figure 1: Bit-Propagating Bit-Vector Operations in the SMT-LIB 2.0 Language (% stands for
the modulo operation)

concat. Note also that all the bit-propagating operations are equally applicable to bit-vector
variables and constants.

3 Handling Bit-Propagating Operations

In this section we describe our algorithms for handling bit-propagating operations. Subsec-
tion 3.1 introduces the Bit-Propagating Normal Form (BPNF), while subsection 3.2 shows how
to take advantage of BPNFs to boost the performance of the SMT solver.

3.1 Bit-Propagating Normal Form

We start with a definition of a segment, where a variable is bit-propagating if it was created as
a result of applying a bit-propagating operation.

Definition 4 (Segment). A segment is either: (1) a bit-range of a non-bit-propagating variable,
or (2) a constant. The set of all segments is denoted by S.

Bit-propagating variables can be expressed in terms of sequences of segments. Consider

the example presented in Section 1. We would have: v2 =
[
v

[2:0]
1 , 01

]
, v3 = v5 =

[
v

[2:1]
1

]
and

4



Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

v4 =
[
v

[3:0]
1 , v

[3:0]
1

]
.

To define the standard form we need to make sure that adjacent segments are merged. For
example, consider the variable v created by the following operation v = concat(v[3:2], v[1:0]).
The variable v could be expressed as any one of the following sequences of segments: r1 =[
v[3:2], v[1:0]

]
, or r2 =

[
v[3:3], v[2:0]

]
, or r3 =

[
v[3:0]

]
. The last representation is the one that is

desirable as the normal form. We formalize merge-related notions.

Definition 5 (Mergeable and Non-Mergeable Segments). Let s2, s1 ∈ S be two segments. The
segments s2 and s1 (provided in that particular order) are mergeable iff one of the following
conditions holds, otherwise they are non-mergeable:

1. Both s2 and s1 are constants, that is s2, s1 ∈ C

2. Both s2 and s1 are bit-ranges, such that s2 = v[k:j+1] and s1 = v[j:i]

Definition 6 (Merge). Let s2, s1 ∈ S be two segments. The merge operation !(s2, s1) returns
a sequence of one or two segments as follows:

1. If s2 and s1 are non-mergeable, !(s2, s1) = [s2, s1]

2. If s2 and s1 are mergeable and are constants, !(s2, s1) = [concat(s2, s1)]

3. If s2 = v[k:j+1] and s1 = v[j:i] are mergeable and are bit-ranges, !(s2, s1) =
[
v[k:i]

]
In our latest example (provided just before Def. 5), merging the two segments of r1 and

merging the two segments of r2 results precisely in r3 for both cases. We are now ready to
introduce the Bit-Propagating Normal Form.

Definition 7 (Bit-Propagating Normal Form (BPNF)). Given a bit-vector or a constant t ∈
B ∪ C, the bit-propagating normal form (BPNF) Φ(t) =

[
φt|Φ(t)|−1 ∈ S, . . . , φ

t
1 ∈ S, φt0 ∈ S

]
is

a sequence of one or more segments, where for every |Φ(t)| − 2 > i ≥ 0, it holds that φti+1 and
φti are non-mergeable.

In our example, we have Φ(v) = r3. Before presenting an algorithm for calculating the
BPNF, we need some more definitions. We denote the number of bits in a segment s ∈ S by
|s|.

Definition 8 (Sub-segment). Let s ∈ S be a segment and i, j be numbers, such that |s| > j, i ≥ 0
and j ≥ i. Then the sub-segment s[j:i] is a new segment defined as follows:

1. If s is a constant
{
s|s|−1, . . . , s1, s0

}
, s[j:i] = {sj , . . . , si+1, si}

2. If s = v[k:l] is a bit-range, s[j:i] = v[j+l:i+l] (assuming k ≥ j + l)

It is not difficult to verify that a sub-segment is a segment. We will sometimes need to refer
to the segment in Φ(v) of a bit of a given variable v[i] and the bit corresponding to v[i] in its
segment.

Definition 9 (Segment Number, Segment Bit). Let v[i] be the i’s bit of v. Let s ≥ 0 be the

largest number, such that i ≥ σ, where σ =

s−1∑
j=0

|φvj |. Then, the segment number sn(v[i]) and

the segment bit sb(v[i]) are defined as follows: sn(v[i]) = s; sb(v[i]) = i− σ.
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1. For a constant c: Φ(c) = [c].

2. For a non-bit-propagating variable v: Φ(v) =
[
v[|v|−1:0]

]
.

3. For a bit-propagating variable v = concat(v1, v2): Φ(v) =
[
φv2|Φ(v2)|−1, . . . , φ

v2
2 , φ

v2
1

]
◦

!(φv20 , φ
v1
|Φ(v1)|−1) ◦

[
φv1|Φ(v1)|−2, . . . , φ

v1
1 , φ

v1
0

]
4. For a bit-propagating variable v = extract(u,m, l):

Φ(v) =

[
φ
u[sb(u[m]),0]
sn(u[m])

, φusn(u[m])−1
, . . . , φusn(u[l])+1

, φ
u
[
|φu

sn(u[l])
|−1,sb(u[l])

]
sn(u[l])

]
5. For a bit-propagating variable v created by neither concat nor extract, create Φ(v) by

reducing the operation to applications of concat and extract as presented in Fig. 1.

Figure 2: Algorithm for calculating the Bit-Propagating Normal Form (BPNF) for a variable
v. The operator ◦ stands for concatenation of sequences.

For example, given v2 =
[
v

[2:0]
1 , 01

]
, we have sn(v

[0]
2 ) = 0; sn(v

[1]
2 ) = sn(v

[2]
2 ) = sn(v

[3]
2 ) = 1;

sb(v
[0]
2 ) = 0; sb(v

[1]
2 ) = 0; sb(v

[2]
2 ) = 1; sb(v

[3]
2 ) = 2.

In our approach, the SMT solver creates the BPNF for each new constant, input variable
and internal variable representing the result of an operation. The algorithm for calculating
the BPNF is provided in Fig. 2. Calculating the BPNF for constants, non-bit-propagating
variables, and variables associated with the extract operation is straightforward. Finding the
BPNF for concat requires concatenating the BPNFs of the two operands, where the BPNFs
of the new neighbour pair are merged. Due of space limitations, we omit the proof that the
algorithm in Fig. 2 returns a BPNF.

3.2 Implementation

In this section we show how to take advantage of BPNFs to speed-up the SMT solver.

Hashing BPNFs. To ensure that variables with the same BPNF are not created more than
once, we maintain a hash table with all the current BPNFs and their corresponding variables.
Whenever an operation is applied by the user, the solver creates a BPNF for a variable repre-
senting that operation (an actual variable is not created at this stage). If the BPNF appears
in the hash table, its corresponding variable is returned to the user, otherwise a new variable
is created and returned to the user, and the hash table is updated accordingly. The overhead
of creating and maintaining the hash table is negligible in practice.

Using BPNFs for Translating to CNF. A major goal in introducing BPNFs is decreasing
the number of CNF variables and clauses. This is achieved by never introducing any CNF
variables or CNF clauses to represent bit-propagating variables and operations. Instead, to
represent a bit-propagating variable v in CNF, we use the CNF variables that represent the
non-bit-propagating variables that appear in v’s BPNF.
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User-Given Threshold on the Number of Segments. Maintaining too many segments
in a BPNF might inflate the memory and lead to a performance degradation (at least in theory),
because the algorithm for calculating BPNFs in Fig. 2 is linear in the number of segments. Hence
we allow the user to impose a threshold, T , on the maximal number of segments permitted
in a BPNF. If the number of segments for a variable v is greater than T , the variable will
be considered to be a non-bit-propagating variable by the algorithm. Hence its BPNF will
contain v[|v|−1:0], and the soundness of the SMT solution with respect to the corresponding
bit-propagating operation will be ensured by bit-blasting that operation to CNF. We analyze
the empirical impact of experimenting with different T values in Section 4.

Rewriting assert-based variable definitions. The SMT-LIB 2.0 language allows the user
to build formulas in various ways. One of the common ways to create a new variable corre-
sponding to a new operation is to use the declare-fun command to create a fake input variable
and then to assert (using the assert command) that the new variable is, in fact, the result of
an operation over existing variables. For example, the following sequence creates a new variable
v that is defined to be repeat(u, 2):

i. (declare-fun u () ( BitVec 32)); ii. (declare-fun v () ( BitVec 64)); iii. (assert (=
v (repeat u 2)).

Such a way of creating variables is incompatible with our algorithm for calculating BPNFs,
since our algorithm would consider variables bound to operations to be non-bit-propagating
input variables. In our example, instead of figuring that Φ(v) is

[
u[31:0], u[31:0]

]
, the algorithm

would consider v to be a non-bit-propagating input variable with Φ(v) =
[
v[63:0]

]
. To overcome

this problem, the preprocessor must identify such cases and rewrite them into a BPNF-friendly
dag-oriented representation. In our example, rewriting the last assert command into the
following form solves the problem: (define-fun v () ( BitVec 64) (repeat u 2)).

The preprocessing algorithm for carrying out such rewriting is straghtforward. Its complex-
ity is linear in the size of the problem, and the overhead is still low. Moreover, such an algorithm
can be seen as a particular case of term substitution [11], which in any event is implemented in
modern solvers and is known to be useful for BV reasoning [11, 10].

Constant Propagation. Constant propagation is known to boost the performance of SMT
solvers, and hence it is commonly used [11, 10]. It is essential to make sure that constant prop-
agation is applied to take full advantage of BPNF-based algorithms over three shift operations,
because there exist cases where the second operands of shift operations are not constants orig-
inally, but become constants after constant propagation. Recall that our algorithms consider
shifts to be bit-propagating operations only when the second parameter is a constant.

4 Experimental Results

We carried out a number of experiments over SMT-LIB benchmark families from the QF BV
category to demonstrate the usefulness of our algorithms.

In the first experiment, we measured the proportion of bit-propagating operations in all the
families (with the exception of the mcm family, whose benchmarks do not always conform to
QF BV syntax). The results are displayed in Table 1. One can see that for 37 families, the
proportion of bit-propagating operations is at least 5%.

In our second (and main) experiment we ran Hazel over these 37 families (with the excep-
tion of all the sub-families of sage except app10 and app6, since they have a huge number of

7



Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

benchmarks) with different T values. Recall from Section 3.2 that T is a user-given threshold
value that limits the number of segments allowed in a BPNF. Note that our BPNF-based algo-
rithms are disabled when T = 0. Recall also that Hazel is Intel’s new eager BV solver. For the
experiments we used machines running Intelr Xeonr processors with 3Ghz CPU frequency
and having 32Gb of memory. The time-out for all the experiments was 600 sec. Table 2 shows
the results for all the families where Hazel’s cumulative run-time was more than 1 second for at
least one configuration. Benchmarks where all the configurations timed-out are not considered
in the table. The time-out value was added to the run-time when a memory-out occured.

One can see that our algorithms result in a performance boost in the case of 14 families.
More specifically, for these families there exists at least one configuration of Hazel with T 6= 0
that outperforms the configuration with T = 0. The speed-up is at least 30% for eight of the
families. The performance boost is especially significant for the top three families. The family
spear/openldap v2.3.35 can only be solved when our algorithms are applied and T is high
enough. The family pipe can only be solved with the configuration T = 10, while we observe
a solid performance boost of over 2x for the family brummayerbiere for non-0 configurations.
The choice between T = 10 and T = 1000 is family-specific, while an additional experiment
has shown that increasing T from 1000 to 100000 does not change the performance.

Table 3 shows the number of word-level operations before bit-blasting the formula to CNF,
as well as the number of CNF clauses and CNF variables for the configuration with T = 0.
It also shows the ratio by which these numbers are reduced for configurations with T = 10
and T = 1000 as compared to the configuration with T = 0. The main conclusions to be
drawn from the table are as follows. First, the number of word-level operations is only slightly
reduced or not reduced at all, while the number of CNF clauses and variables is usually reduced
considerably. This hints that the contribution to performance of BPNF-based translation to
CNF is higher than that of BPNF hashing. Second, in most cases, the reduction in the number
of CNF clauses and variables translates to a performance boost. However, this correlation is
not absolute. Consider the family brutomesso/core, where our algorithms exhibited their worst
performance. The number of clauses and variables was considerably reduced for that family.
The reason for the lack of correlation in this case is apparently related to the sensitivity of
SAT solver heuristics to the problem representation. We leave the study of this phenomenon
to future reasearch.

Finally, to demonstrate that Hazel can compete with academic state-of-the-art SMT solvers,
we ran Hazel against the latest versions of Boolector [7] (version 1.5.118), STP [12] (version
1373M), and Mathsat 5 [8] (with the configuration applied at the SMT’12 competition) over
the eight families where use of our algorithms resulted in a performance boost of at least 30%.
See Table 4 for the results. Hazel outperforms the academic solvers on all but one family. In
our experiments, model generation was enabled for all the solvers. When model generation is
disabled, the only significant change in run-time is for Boolector over the family uclid/catchconv,
where the run-time is reduced to 702 seconds. Hazel is still much faster on this family.

5 Conclusion

Our goal was to improve bit-vector reasoning in modern SMT solvers. We identified a family of
ten bit-propagating bit-vector operations in the SMT-LIB 2.0 language that fulfill the following
property: each output bit is either a bit of one of the inputs or a constant (0 or 1). We demon-
strated that bit-propagating operations are encountered frequently in SMT-LIB benchmarks.
We proposed dedicated algorithms for handling such operations during SMT preprocessing and
confirmed their empirical usefulness over a variety of SMT-LIB benchmark families.
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Table 1: The number of benchmarks and the proportion of bit-propagating operations are provided per
each SMT-LIB family in the QF BV category. The families are sorted, in descending order, according
to the proportion of bit-propagating operations. The sub-families of asp are not shown since the
proportion is zero for all asp benchmarks.

Family # Proportion Family # Proportion
uclid/tcas 2 0.61 calypto 23 0.56
sage/app11 611 0.5 bruttomesso/core 672 0.49
bench ab 285 0.44 sage/app10 51 0.42
bruttomesso/lfsr 240 0.38 brummayerbiere2 65 0.37
uum 8 0.36 crafted 21 0.35
check 5 0.35 sage/app6 245 0.34
sage/app12 5784 0.29 wienand-cav2008/Booth 6 0.25
pipe 1 0.25 stp samples 426 0.24
sage/app2 1417 0.22 check2 6 0.21
sage/app7 8663 0.19 brummayerbiere 52 0.17
sage/app5 1103 0.16 sage/app9 3301 0.16
sage/app8 2756 0.16 sage/app1 2676 0.14
spear/openldap v2.3.35 8 0.14 galois 4 0.14
bruttomesso/simple processor 64 0.13 uclid contrib smtcomp09 7 0.13
spear/inn v2.4.3 219 0.08 wienand-cav2008/Commute 6 0.08
spear/wget v1.10.2 42 0.08 spear/samba v3.0.24 1386 0.08
wienand-cav2008/Distrib 6 0.07 uclid/catchconv 414 0.07
spear/xinetd v2.3.14 2 0.06 stp 1 0.05
brummayerbiere3 79 0.05 spear/zebra v0.95a 9 0.048
rubik 7 0.04 spear/cvs v1.11.22 29 0.03
brummayerbiere4 10 0.02 dwp formulas 332 0.01
asp (23 sub-families) 501 0 gulwani-pldi08 6 0
tacas07 5 0 VS3 11 0

Table 2: The impact of BPNF-based algorithms. We show the run-time of Hazel in seconds correspond-
ing to 3 different T values (0, 10, 1000), the speedups of configurations with T 6= 0 over configuration
with T = 0, and the number of solved instances corresponding to the 3 different T values. The results
are sorted by the maximal speed-up over the configuration with T = 0. Best run-times are highlighted.

Run-time in Seconds Time Ratio Solved Instances
Family Hzl 0 Hzl 10 Hzl 103 10/0 103/0 Hzl 0 Hzl 10 Hzl 103

spear/openldap v2.3.35 1800 600 19 3.000 96.774 5 7 8
pipe 600 155 600 3.872 1.000 0 1 0
brummayerbiere 1649 709 711 2.326 2.321 40 41 41
wienand-cav2008/Booth 43 26 26 1.643 1.626 2 2 2
uum 18 12 12 1.535 1.534 2 2 2
brutomesso/simple processor 374 266 266 1.404 1.405 64 64 64
uclid contrib smtcomp09 226 200 169 1.130 1.340 7 7 7
uclid/catchconv 9 8 7 1.115 1.312 414 414 414
brummayerbiere3 2921 2600 2885 1.123 1.012 42 42 42
brutomesso/lfsr 8039 7435 7439 1.081 1.081 230 227 227
spear/samba v3.0.24 3516 3359 3433 1.047 1.024 1386 1386 1386
spear/inn v2.4.3 624 607 708 1.027 0.880 219 219 219
stp 11 10 11 1.023 1.000 1 1 1
spear/wget v1.10.2 308 319 306 0.966 1.006 42 42 42
brummayerbiere2 719 801 799 0.899 0.901 32 33 33
calypto 213 254 253 0.838 0.843 11 11 11
brutomesso/core 19355 24307 24307 0.796 0.796 933 925 925
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