
A Clause-Based Heuristic for SAT Solvers

Nachum Dershowitz1, Ziyad Hanna2, Alexander Nadel1,2

1 School of Computer Science
Tel Aviv University, Ramat Aviv, Israel

{nachumd, ale1}@tau.ac.il
2 Design Technology Group

Intel Corporation
Haifa, Israel

{ziyad.hanna, alexander.nadel}@intel.com

Abstract. We propose a new decision heuristic for DPLL-based propositional
SAT solvers. Its essence is that both the initial and the conflict clauses are ar-
ranged in a list and the next decision variable is chosen from the top -most un-
satisfied clause. Various methods of initially organizing the list and moving the
clauses within it are studied. Our approach is an extension of one used in
Berkmin, and adopted by other modern solvers, according to which only con-
flict clauses are organized in a list, and a literal-scoring-based secondary heuris-
tic is used when there are no more unsatisfied conflict clauses. Our approach,
implemented in the 2004 version of zChaff solver and in a generic Chaff-based
SAT solver, results in a significant performance boost on hard industrial bench-
marks.

1 Introduction

Propositional satisfiability (SAT) is the problem of determining, for a formula in the
propositional calculus, whether there exists a satisfying assignment for its variables.
This problem has numerous applications in Formal Verification (e.g., [14]), as well as
in Artificial Intelligence (e.g., [8]). SAT solvers are widely used in these and other
domains.

Modern complete SAT solvers (e.g., Chaff [10,13], Berkmin [5], Siege [15]) are
based on the backtrack-search algorithm of Davis, Putnam, Loveland and Logemann
(DPLL) [3]. A crucial factor influencing the performance of a DPLL-based SAT
solver is its decision heuristic. This heuristic decides which variable to choose at each
decis ion point during the search and what value to assign it first. This paper intro-
duces a new decision heuristic that has been found to be efficient on real-world hard
industrial benchmarks. It is designed to increase the likelihood that interrelated vari-
ables will be chosen in proximity.

In recent years, the field has been a witness to a breakthrough in the design of deci-
sion heuristics that are empirically successful on real-world industrial SAT instances .
The key observation was that the decision heuristic must be dynamic, that is, it must
re-focus the search on recently derived conflict clauses. VSIDS [13]—the first such
dynamic heuristic—maintains a score for each literal. The score is increased when

the literal appears in a conflict clause; once in a while, scores are halved. This strat-
egy ensures that the prover picks literals that were involved in the derivation of recent
conflict clauses.

Another well-known decision heuristic, which proved to be even more successful
than VSIDS on benchmark industrial instances, is Berkmin’s [5]. Its authors claimed
that VSIDS is not sufficiently dynamic, in the sense that it may still pick literals that
are irrelevant to the currently explored branch. Instead, they proposed organizing all
conflict clauses in a list and picking the next decision literal from the top-most unsat-
isfied clause on the list. If no such clause exists, a secondary VSIDS-like choice-
heuristic is used. Berkmin’s heuristic is indeed more dynamic than VSIDS, but we
find another advantage of Berkmin’s heuristic over VSIDS, in that it tends to pick in-
terrelated variables, that is, variables whose joint assignment increases the chances of
both quickly reaching a conflict in an unsatisfiable branch, as well as satisfying and
removing “problematic” clauses in satisfiable branches . However, this potential ad-
vantage is diluted by the fact that Berkmin does not put the initial clauses on the
clause list and applies a secondary VSIDS-like heuristic.

Our proposal, which we call the clause-based heuristic (CBH), maintains a clause
list containing both the initial and the conflict clauses, thus increasing the chances of
picking interrelated variables. The next decision literal is picked from the top-most
unsatisfied clause. No secondary heuristic is required. We propose various methods
of initially organizing the clause list and for moving clauses within it. Our approach
results in a significant performance boost over both VSIDS and Berkmin’s heuristic.

Basic definitions are provided in the next section. In Section 3, we review the
DPLL algorithm [3], enhanced by Boolean constraint propagation [17] and conflict
clause recording [12]. Readers familiar with this material—included in the paper to
make it self-contained—may skip ahead. Some of the commonly used decision heu-
ristics are summarized in Section 4. In Section 5, we present our clause-based heuris-
tic. In Section 6, we report on experiments that show that CBH is superior to VSIDS,
Berkmin’s decision heuristic and the Berkmin-like decision heuristic of zChaff-2004,
when tested on hard industrial benchmarks used in the SAT’04 competition [9]. This
is followed by a brief conclusion.

2 Basic Definitions

In what follows, we denote negation by ¬, conjunction by ∧ and disjunction by ∨ . A
literal is a variable or its negation. We use p, q, r, etc., for literals . A clause is a dis-
junction of literals , usually denoted by letters A, B, …. The number of literals in a
clause A is denoted by |A|. A conjunctive normal form (CNF) formula is a conjunc-
tion of clauses, like ϕ = (p) ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r). It is sometimes convenient to
represent a CNF formula as a set of clauses, rather than as a conjunction. For exa m-
ple, an alternative way to represent ϕ is as the set { p, ¬p ∨ q, ¬q ∨ ¬r }. We denote
an empty clause by ∅.

An (partial) assignment (σ) is a (partial) function assigning a truth value, 1 or 0, to
all (some) variables. An example is the assignment τ(p) = τ(r) = 1, τ(q) = 0. It is
sometimes convenient to consider a (partial) assignment as a subset of literals . For

example, an alternative way to represent τ is as {p, ¬q, r}. A CNF formula ϕ evalu-
ates under partial assignment σ to σ[ϕ] by applying the following rules for each vari-
able p:

1. If σ(p) = 1, remove ¬p from ϕ’s clauses and remove clauses containing p from
ϕ.
2. If σ(p) = 0, remove p from ϕ’s clauses and remove clauses containing ¬p from
ϕ.

If σ[ϕ] contains no clauses, then σ[ϕ] = 1 and σ is a satisfying assignment or a model
for ϕ, and we say that ϕ=1 under σ. If ∅ ∈ σ[ϕ], then σ is an unsatisfying assign-
ment for ϕ, and we say that ϕ=0 under σ. Formula ϕ is satisfiable if there exists an
assignment σ, such that ϕ=1 under σ; otherwise, it is unsatisfiable.

3 Enhanced DPLL

The DPLL algorithm [3] is the basic backtrack-search algorithm for SAT. DPLL is
based upon the validity of the following two rules:

1. Splitting Literal Rule: Let σ = {p} and τ = {¬p}. Formula ϕ is satisfiable iff
σ[ϕ] or τ[ϕ] is satisfiable.

2. Unit Clause Rule: Let σ = {p}. If there is a clause A ∈ ϕ such that A = p, then
ϕ is satisfiable iff σ[ϕ] is .

Boolean constraint propagation (BCP) [17] is a process of extending a partial as-
signment by repeatedly applying the unit-clause rule. A decision variable is a vari-
able assigned as a result of an application of the splitting rule. A decision literal is
the assigned literal of a decision variable. An implied variable is a variable assigned
as a result of the BCP process. An implied literal is the assigned literal of an implied
variable. The decision level of an assigned variable p is one more than the number of
decision variables assigned prior to p.

Let ϕ be an input formula . Modern complete SAT solvers implement the DPLL
algorithm in the following way: A partial assignment σ, initialized to the empty par-
tial assignment, is maintained. The partial assignment σ is extended by executing the
BCP process. Then, if the input formula ϕ is neither 1 nor 0 under σ, the splitting rule
is used, that is, the satisfiability of ϕ is recursively checked under σ∪{p} and then
under σ∪{¬p}, as required. The literal p is picked using some decision heuristic.

Next we describe a powerful technique, used by all the modern SAT solvers,
namely conflict clause recording [12]. A conflict is a situation during DPLL invoca-
tion when a formula ϕ evaluates to 0 under the current assignment σ. After such a
conflict, it is possible to identify an assignment τ ⊆ σ, such that if χ is an assignment
containing τ, extended by invoking BCP on τ[ϕ], then ϕ is 0 under χ. In other words,
applying τ to ϕ is sufficient to create the same conflict as applying σ to ϕ up to BCP.
We refer to such a partial assignment τ as a conflict-sufficient assignment. Let τ be a
conflict-sufficient assignment. Then a clause A consisting of the negations of all the
literals contained in τ is referred to as a conflict clause. The process of adding con-
flict clauses to the formula after each conflict is referred to as conflict clause re-
cording . Conflict-clause recording prevents DPLL from re -exploring the same sub-

space during the subsequent search. Diffe rent conflict recording schemes add conflict
clauses corresponding to different conflict-sufficient assignments. The 1UIP conflict
recording scheme [12,13] has empirically been shown to be the most efficient [15,18].
In what follows, we describe the 1UIP conflict clause identification.

First, we define an “implication clause” for an assigned literal p. Let σ be a partial
assignment held by DPLL prior to assigning p. The implication clause of an implied
literal p, denoted by ic(p), is the clause that became a unit under σ and made the im-
plication of p possible, during BCP. The implication clause of a decision literal p is
the empty clause ∅. After a conflict, a conflicting variable r is the variable that had
been assigned last, before it was identified that σ is an unsatisfying assignment. Both
literals of a conflicting variable are referred to as conflicting literals. According to
the definition of an unsatisfying assignment, an empty clause must belong to σ[ϕ]. It
means that there is a clause F ∈ ϕ that is 0 under σ. One of the conflicting literals
must belong to F, otherwise r would not have been the last variable that was assigned
a value. We denote a conflicting literal that belongs to F by ecl(r). For example, if ϕ
= (p ∨ r) ∧ (p ∨ ¬r); σ = {¬p, r}, then σ[ϕ] = 0; p ∨ ¬r is the 0-clause under σ; r is
the conflicting variable and ecl(r) = ¬r. Observe that the implication clause is well
defined for ¬ecl(r), since ¬ecl(r) is an assigned literal. However, the implication
clause is not defined for ecl(r), since ecl(r) is not an assigned literal. We extend the
definition of the implication clause by setting ic(ecl(r)) = F. Note that by the ex-
tended definition, the conflicting variable has two implication clauses (one for each
literal.)

An implication graph is a directed acyclic graph, in which each vertex is associated
with a literal corresponding to an assignment along with its decision level. There is a
directed edge from vertex p to vertex q if ic(q) = A and ¬p∈A. Consider the example
in Fig. 1, which illustrates concepts presented in this section. DPLL has been invoked
on formula ϕ and the situation at the time of the first conflict is shown in Table 1.
The implication graph is shown at the bottom. The decision literals ¬y, ¬p and ¬s do
not have incoming edges. Any implied literal y has | ic(y) | – 1 incoming edges.

Now we are ready to describe the concept of conflict recording schemes. Any con-
flict clause is generated by a conflict cut of the implication graph. All the decision lit-
erals are on one side of the conflict cut (called the reason side). Both conflicting lit-
erals are on the other side of the conflict cut (called the conflict side). All vertices on
the reason side that have at least one edge to the vertices of the conflict side comprise
the conflict’s reason. Let τ ⊆ σ be a partial assignment containing only the assigned
literals corresponding to the reason of a conflict cut. The partial assignment τ is a
conflict-sufficient assignment.

Next, we describe the 1UIP learning scheme . Let p and q be two literals assigned
at the same decision level dl. Then, in an implication graph, p is said to dominate q, if
and only if any path from the decision variable corresponding to level dl to q contains
p. A unique implication point (UIP) [12] is an assigned literal of the highest decision
level dominating both literals of the conflicting variable. Observe that the decision
literal corresponding to the highest decision level is always a UIP. The 1UIP learning
scheme requires that any literal assigned after the first UIP (counting from the con-
flicting literals) will be on the conflict side of the corresponding conflict cut and all
others will be on the reason side. Consider again the exa mple in Fig. 1. The literals t

and ¬s are UIP’s, since both dominate x and ¬x. The literal t is the first UIP, since it
is closer than ¬s to the conflicting literals . The 1UIP cut is shown on Fig. 1. The
corresponding conflict clause is ¬q ∨ ¬t.

A1 = ¬w ∨ s ∨ v ∨ ¬q; A2 = p ∨ q; A3 = ¬q ∨ r ∨ s ∨ ¬w; A4 = ¬q ∨ ¬t ∨ x;

A5 = s ∨ ¬r ∨ ¬v ∨ t; A6 = ¬t ∨ ¬x; A7 = y ∨ w;
ϕ = A1 ∧ A 2 ∧ A 3 ∧ A 4 ∧ A 5 ∧ A 6 ∧ A 7.

(1)

Fig. 1. An example of an implication graph and 1UIP conflict clause identification. The impli-
cation graph corresponds to a DPLL invocation on Formula (1). The related variable values,
implication clauses and decision level of the variables are shown on Table 1

Table 1. The implication graph and 1UIP conflict clause identification principles. The value,
decision level and implication clause for each variable of formula (1) are shown. The corre-
sponding implication graph and 1UIP conflict cut are displayed in Fig. 1

 p q r s t v w x y
σ 0 1 1 0 1 1 1 1 0

DL 2 2 3 3 3 3 1 3 1
ic ∅ 2 3 ∅ 5 1 7 4 ∅

4 Existing Decision Heuristics

In this section, we describe the most widely used decision heuristics, known to be ef-
ficient on real-world industrial benchmarks.

Early static heuristics (e.g. Jeroslaw-Wang [7], Literal Count [11]) picked the next
variable based on the number of appearances (scores) of different variables in unsatis-
fied clauses. A major drawback of such an approach is that score calculation requires
visiting all the clauses at each node of the search tree, which implies a very significant

¬p[2]

q[2] x[3]

¬s[3]

w[1]

¬x[3]

r[3]

t[3]

 v[3]

1UIP cut. Conflict
clause: ¬q ∨ ¬t.

¬y[1]

overhead. Another disadvantage of static heuristics is that they do not consider in-
formation that can be retrieved after a conflict during implication graph analysis.
Heuristics based upon such analyses were found to be several orders of magnitude
faster [5,13].

The first dynamic heuristic is called Variable State Independent Decaying Sum
(VSIDS) [13]. According to VSIDS, each literal is associated with a counter cl(p),
whose value is increased once a new clause containing p is added to the database.
Counters are initialized to 0. Every once in a while, all counters are halved. The next
literal to be picked is the one with the largest counter. Ties are broken randomly.
Two major advantages of VSIDS over the previous heuristics are that: (1) VSIDS is
characterized by a negligible computational cost; (2) VSIDS gives preference to liter-
als that participate in recent conflicts, i.e. it is dynamic. MiniSat SAT solver [4] im-
plements a variant of VSIDS. Instead of infrequent halving of the scores, MiniSat
multiplies the scores after each conflict by 0.95. This makes the heuristic more dy-
namic.

The authors of the Berkmin SAT solver [5] proposed a successful decision heuris-
tic that has been partially or fully adopted by the most modern SAT solvers, such as
the 2004 version of zChaff [10], Satzoo [4], and Oepir [1]. We show, in the experi-
mental section, that Berkmin’s heuristic is indeed faster than VSIDS on hard indus-
trial benchmarks. The main diffe rence of Berkmin’s heuristic, when compared to
VSIDS, is as follows: Conflict clauses are organized in a list, and every new conflict
clause is appended to the head of the list. The next decision variable is picked from
the top-most unsatisfied clause. If no such clause exists, the next decision variable is
chosen according to a VSIDS-like heuristic. We will describe Berkmin’s heuristic in
detail and analyze why it is advantageous over VSIDS.

Berkmin maintains a counter cl´(p) measuring the contribution of each literal to the
search. Unlike VSIDS, Berkmin augments cl´(p), not only for literals that belong the
conflict clause itself, but also for literals that belong to one of the clauses that were
traversed in the implication graph during 1UIP conflict clause identification. At in-
tervals , Berkmin divides all the counters by 4 (compared to 2 for VSIDS). Let cv´(p)
be a counter measuring the contribution of each variable to the conflicts, defined as
cl´(p) + cl´(¬p). Berkmin maintains all conflict clauses in a list. After each conflict,
the new conflict clause is appended to the top of the list. The next decision variable is
one with the highest cv´(p) out of all the variables of the topmost unsatisfied clause.
If no conflict clauses exist yet, or if all the conflict clauses are satisfied, then the vari-
able with the highest cv´(p) of all unassigned variables is chosen.

Next, we describe how Berkmin decides which literal, out of the two possible liter-
als of the already chosen variable, to pick. Berkmin maintains a counter gcl(p),
measuring the global contribution of each literal to the conflicts. The counter gcl(p) is
initialized to 0 and is increased whenever cl´(p) is increased, but is not divided by a
constant. If a topmo st unsatisfied clause exists, Berkmin picks a literal with the high-
est global score gcl(p). Ties are broken randomly. If there is no unsatisfied topmost
clause, then Berkmin picks the literal with the highest value of two(p), where two(p)
approximates the number of binary clauses in the neighborhood of literal p. The func-
tion two(p) is computed as follows: First, the number of binary clauses containing p is
calculated. Then, for each binary clause B, containing p, the number of binary clauses
containing ¬q is computed, where q is the other literal of B . The sum of all computed

numbers gives the value of two(p). To reduce the amount of time spent computing
two(p), a threshold value of 100 is used. As soon as the value of two(p) exceeds the
threshold, its computation is stopped. Once again, ties are broken randomly.

The most important advantage of Berkmin's approach over VSIDS, as stated by the
authors of Berkmin, is its additional dynamicity. It quickly adjusts itself to reflect
changes in the set of variables relevant to the currently explored branch. Indeed,
Berkmin picks variables from fresh conflict clauses and thus uses very recent data.
Our understanding is that there is another important advantage of Berkmin’s heuristic
over VSIDS: newly assigned variables tend to embrace more interrelated variables.
By “interrelated,” we mean variables whose joint assignment increases the chances of
both quickly reaching a conflict in an unsatisfiable branch and satisfying out “prob-
lematic” clauses in satisfiable branches. According to Berkmin’s heuristic, a series of
new decision variables appear in recent conflict clauses. Hence, these variables were
recently traversed during conflict analysis and consequently contributed to conflict
derivation. Moreover, even if the top-most conflict clauses were recorded a long time
ago, the fact that their variables appeared closely together during conflict analysis,
hints that they are interrelated. However, the impact of this advantage is diluted by
the fact that Berkmin does not put the initial clauses on the list, but instead uses
VSIDS as a secondary heuristic. The novel CBH heuristic, described in the next sec-
tion, takes advantage of this observation.

5 The Clause-Based Heuristic

In our clause-based heuristic (CBH), all clauses (both the initial and the conflict
clauses) are organized in a list. After each conflict, the conflict clause is prepended to
the top of the list. Conflict-responsible clauses, that is, clauses visited during 1UIP
conflict-clause identification, are placed just after the new conflict clause. The next
decision literal is picked from the topmost unsatisfied clause of the list. One can see
that CBH is highly dynamic, since recently visited clauses are placed at the top of the
list. Also, CBH organizes the list in such way that clauses that were responsible for a
recent conflict are placed together. Hence, when one picks a series of decision vari-
ables after backtracking, it will tend to embrace interrelated variables. Indeed, when
literals are picked from the same clause they must be related, even if the clause is an
initial clause. When literals are picked from closely-placed clauses, they also tend to
be related, since the list is organized in such a way that interrelated clauses are near
each other, by placing conflict clauses at the top and moving conflict-responsible
clauses towards the top.

As a variant, CBH can also move clauses found to have exactly two unassigned lit-
erals during BCP to the top of the list. We refer to this strategy as 2LitFirst. The
added value of this strategy is that: (1) more implications are learned during BCP; (2)
short and potentially contradictory clauses tend to be immediately satisfied. The first
point guides the solver to find conflicts in an unsatisfiable area, and the second one is
useful to eliminate conflicts in a satisfiable area. The disadvantages of 2LitFirst are
that: (1) it tends to separate between clauses that contain interrelated variables; (2) it
may promote clauses that have never been responsible for conflicts.

We found experimentally that while usually 2LitFirst hurts performance, it may be
helpful for instances having high clause/variable ratio. This can be explained by the
fact that, in instances having a high clause/variable ratio, variables tend to appear in a
greater number of clauses, since there are fewer variables per clause overall. Hence,
two chains of decisions taken using different decision strategies tend to contain more
common variables. This gives more weight to the order between variables and the lo-
cal context of the search. One should prefer variables whose assignment can have an
immediate impact; this is exactly what 2LitFirst does . The default version of CBH
invokes 2LitFirst on instances where the clause/variable ratio exceeds 10.

One can see that the major differences of CBH comparing with Berkmin’s heuristic
are the following:

(1) Both the initial and the conflict clauses, rather than only conflict clauses, are
organized in a list; therefore, a second choice heuris tic is not required. Thus,
any set of decision variables picked by CBH tends to contain more variables
from the same clause.

(2) After a conflict, in addition to the conflict clause, a number of clauses re-
sponsible for the conflict (including initial clauses) are moved towards the
head of the list. Thus, clauses that are placed nearby are likely interrelated.

(3) As a variant, clauses that were discovered to have two unassigned literals are
moved towards the top of the list.

CBH can be easily implemented using a doubly-linked list. A pointer to the cur-
rently watched clause C, initialized to the top-most clause, is maintained. When a de-
cision is required, we seek the top-most unsatisfied clause A, starting from C towards
the bottom of the list, and pick a literal from A (as described in Section 5.1). Observe
that if no top-most unsatisfied clause exists, then we have a satisfying assignment,
since all the clauses, including the original ones are satisfied. After each conflict, the
solver updates the clause list and sets the currently watched clause to point to the top
of the list.

The next subsection explains how CBH chooses the decision literal from the top-
most unsatisfiable clause. Subsection 5.2 explains the initial organization of the
clause list. Subsection 5.3 describes conflict-responsible clause identification in
greater detail.

5.1 Choosing the Decision Literal from the Top-Most Clause

CBH maintains two counters, lcl(p) and gcl(p), measuring the local and global contri-
butions of each literal to the conflicts, respectively. The counter lcl(p) is initialized to
0 for each p, while gcl(p) is initialized with the number of p’s appearances in initial
clauses. Both counters are incremented whenever a literal belongs to one of the
clauses traversed in the implication graph during 1UIP conflict-clause identification.
Occasionally, the value of lcl(p) is divided by 2.

CBH also maintains two counters for variables lcv(p) and gcv(p), measuring the
contribution of each variable to the conflicts. We define:

lcv(p) = (lcl (p) + lcl (¬p)) + 3 ⋅ min(lcl (p), lcl (¬p)). (2)

The first term gives preference to variables for which both literals are important,
and the second term eliminates variables where only one literal is important. In a
similar manner, we have:

gcv(p) = (gcl (p) + gcl (¬p)) + 3 ⋅ min(gcl (p), gcl (¬p)). (3)

CBH chooses the decision variable from the topmost unsatisfied clause using the
following algorithm: A variable p with maximal lcv(p) is chosen, so as to give prefer-
ence to variables that participated in recent conflicts. Ties are broken by preferring
variables with maximal global score gcv(p). According to the next criterion, variables
that used to have the maximal decision level when assigned the last time are pre-
ferred. (If there still is a tie, it is broken by picking the lexicographically smallest
variable.)

CBH chooses the decision literal out of the two possible, based on the global con-
tribution value gcl(p).

5.2 Initial Clause-List Organization

In general, we aim to:
(1) place clauses containing frequently appearing literals near the top of the list,

and
(2) place clauses containing common literals nearby.

Point (1) guides the solver to start the search using frequent literals , and the second
point increases the chances of picking interrelated literals .

First, the initial global score igs(p) is calculated for each literal p. The function
igs(p) is initialized to 0 and is augmented for each clause that contains the literal p.
The initial global score reflects the overall frequency of a literal.

In the process of clause list construction, we also maintain the initial local score
ils(p) for each literal p. It is calculated similarly to igs(p), except that only clauses
that were already placed on the clause lis t are considered. The local score reflects the
involvement of p in clauses that have been already appended to the clause list. Ini-
tially, no clauses are included in the clause list, hence ils(p)=0 for each literal p. We
also define the initial overall score ios(p) = igs(p) + ils(p) for each literal p. The ini-
tial overall score takes into consideration both the local and global influence of each
literal.

So far, we have defined three functions for each literal reflecting its global, local
and overall influence. Now, we can define the initial variable overall score for each
variable p :

iosv(p) = (ios(p) + ios(¬p)) + 3 ⋅ min(ios(p), ios(¬p)). (4)

The clause list is constructed by repeating the following procedure until all the
clauses are placed on the clause list: Let p be the variable having the maximal variable
overall score amongst all variables that have not already been picked. (Ties are bro-
ken by preferring the smaller variable according to lexicographical order.) We append
clauses containing the variable p that have not yet been appended to the end of the

clause list. Local and overall scores are updated for each literal participating in
clauses that have been appended to the list. Such dynamic update of scores does not
require any overhead, given that we use a priority queue, indexed by the scores . Lit-
erals can be moved within the queues in constant time.

5.3 Conflict-Responsible Clauses

Recall that after a conflict, conflict-responsible clauses are placed at the head of the
list, after the new conflict clause. A clause is responsible for a conflict (in the context
of CBH) if it appears in the implication clause of either a literal that appears on the
conflict side of the 1UIP cut, or else of a literal whose negation appears in the 1UIP
conflict clause.

Consider the example in Fig. 1. Clauses A4, A6, A2 and A5 are responsible for the
conflict. Indeed, clauses A4 and A6 are the implication clauses of the two literals x and
¬x that appear on the conflict side of the 1UIP cut, and clauses A2 and A5 are the im-
plication clauses of the literals q and t, whose negation appear in the conflict clause.

From a practical point of view, it is not hard to identify clauses that are responsible
for the conflict, since these are all the clauses that were visited during 1UIP conflict-
clause construction.

6 Experimental Results

We implemented CBH within two SAT solvers. The first is the newest version of the
famous zChaff solver, namely zchaff_2004.11.15 [10]. zChaff won first place in the
Industrial-Overall category of the SAT’04 competition [9]. This new version of
zChaff implements Berkmin’s heuristic, in contrast with the old version of zChaff
[13] which used VSIDS. The performance of zChaff was measured on a machine
with 4Gb of memory and two Intel® XeonTM CPU 3.06GHz processors with hyper-
threading. The second solver we used in our experiments is SE—a Chaff-like solver,
implementing 1UIP conflict-clause recording [13], non-chronological backtracking
[12], frequent search restarts [5,6,10] and aggressive clause deletion [2,5,10] strate-
gies. We designed SE to implement the aforementioned enhancements of DPLL,
since they play a crucial role for the performance of a modern SAT solver, tuned for
industrial benchmarks, as explained in papers on Berkmin [5] and the newest zChaff
[10]. We did not check whether CBH boosts performance when one or more of the
above mentioned techniques is not used. The performance of SE was measured on a
stronger machine with 4Gb of memory and two Intel® XeonTM CPU 3.20GHz proces-
sors with hyper-threading.

In what follows, we first analyze the overall performance of CBH versus Berk-
min’s heuristic, VSIDS and Berkmin-like new zChaff’s heuristic. We show that CBH
outperforms both Berkmin’s heuristic and VSIDS within the SE SAT solver, and also
that CBH significantly outperforms zChaff’s new Berkmin-like heuristic. Then, we
analyze how various strategies used by CBH contribute to its performance. We tested
CBH inside two solvers to ensure that its measured impact on performance is inde-

pendent of the implementation details of a particular solver. The main measure for
success in our experiments is the number of solved instances within an hour on hard
industrial families used during SAT’04 competition [9]. We find this measure, which
was used during the SAT’04 competition, more convincing than a comparison of the
number of decisions or conflicts (omitted for lack of space), since reducing the run-
ning time is the final goal of any practical heuristic. Our experiments required ap-
proximately 35 days of computation.

Table 3 compares the performance of CBH, VSIDS, VSIDSM—MiniSat-like
VSIDS with frequent scores decay and Berkmin’s heuristic, implemented in SE, on
eight hard industrial families used during the SAT’04 competition (downloaded from
the competition’s website [16]). The description of these families is provided in Ta-
ble 2. VSIDSM mult iplies the score by 0.95 after every 10 conflicts, rather than with
each conflict. The latter rate is used within MiniSat, but the former is preferable
within SE. Other heuristics decay the scores each 6000 conflicts. CBH solves at least
as many instances within each family, when compared to either Berkmin’s heuristic
or either version of VSIDS. CBH solves more instances than both version of VSIDS
in 7 out of 8 cases, and solves more instances than Berkmin’s heuristic in 5 out of 8
cases .

Table 4 shows the performance of CBH within the new version of zChaff. The
performance of a version of CBH that does not use 2LitFirst is also provided. One
can see that zChaff, enabled with CBH, outperforms zChaff in a very convincing
manner for 6 out of 8 families and is inferior in only once case. Moreover, if the
2LitFirst strategy is not used, CBH is never inferior.

One can conclude that CBH definitely contributes to modern SAT-solver perform-
ance, outperforming both VSIDS and Berkmin’s heuristic. Our experiments also con-
firm that Berkmin’s heuristic is preferable to VSIDS, though the gap narrows if
VSIDS uses frequent scores decay. This is to be expected, but—to the best of our
knowledge—has never been reported, despite the fact that Berkmin’s heuristic has
been partially or fully adopted by the most modern SAT solvers [1,4,5,10].

What remains is to analyze the performance of CBH when disabling some of its
specific strategies. Accordingly, we consider CBH_NM, a version that does not move
conflict-responsible clauses to the top of the list (but still appends the conflict clause
itself to the top of the list), and CBH_NI, which does not use the initial strategy, de-
scribed in Section 5.2, but rather appends all clauses to the list in the order of appear-
ance in the input instance. We also experimented with CBH_2L_A, which always
uses 2LitFirst, and with CBH_2L_N, which never does. Table 5 and 6 compare the
performance of CBH within SE and zChaff respectively.

Switching off the initial strategy results in a performance degradation for 3 families
within SE, and in performance gain for one family. In zChaff, switching off the ini-
tial strategy resulted in performance degradation for 2 families. In general, the initial
strategy improves the performance within both SE and zChaff, although it is not the
most crucial factor contributing to CBH’s performance. Even if the initial strategy is
switched off, CBH performs better than other decision heuristics. This can be ex-
plained by the fact that during the search, CBH quickly reorganizes the clause list to
contain groups of interrelated clauses.

Switching off the moving of conflict-responsible clauses to the top of the list re-
sults in a performance degradation for 4 families and performance gain on 3 families

in zChaff. The overall number of solved instances is higher when the strategy is
switched on. Switching off the moving of conflict-responsible clauses to the top of
the list leads to mixed results in the case of SE. Performance seriously degrades for
the SCH family, and also for the ST2 family; however, there is a performance-boost
for the GR, ST2B and VUN families. The overall number of solved instances re-
mains the same. One can conclude that moving the conflict-responsible clauses to the
top of the list can be useful for some families, but hurt others. We recommend invok-
ing it by default, since it results in an overall performance boost in the case of zChaff
and does not hurt overall performance of SE.

Table 2. Description of the hard industrial benchmark families used in our experiments. Fam-
ily name, number of instances in each family as well as the average, and maximal and minimal
clause/variable ratios are provided

Abbrevia-
tion

Family Name Inst.
Num.

Cls/Var
Avrg

Cls/Var
Max

Cls/Var
Min

HEQ goldberg03-hard_eq_check 13 6.4 6.7 6.1
GR maris03-gripper 10 9.1 9.7 8.5
SCH schuppan03-l2s 11 3.2 3.3 3.0
ST2 simon03-sat02 9 3.3 4.2 2.7
ST2B simon03-sat02bis 10 23.9 71.9 2.9
CLR vangelder-cnf-color 12 42.9 195.4 4.0
PST velev-pipe-sat-1-1 10 33.7 33.8 33.7
VUN velev-vliw_unsat_2.0 8 15.6 20.1 10.7

Table 3. Performance of CBH vs. two versions of VSIDS and Berkmin’s heuristic, imple-
mented in the SE SAT solver, on eight hard industrial families. The first column contains an
abbreviated family name. Each pair of subsequent columns is dedicated to a specific heuristic,.
The number of instances, solved within an hour, is provided

Family CBH solved Berkmin heur. VSIDSM

VSIDS

HEQ 5 4 4 3

GR 1 1 0 1

SCH 5 2 2 0

ST2 5 4 4 2

ST2B 2 2 2 1

CLR 6 4 4 4

PST 10 10 4 5

VUN 4 2 1 0

ALL 38 29 21 16

Regarding the impact of 2LitFirst strategy, first observe that according to Tables 5

and 6, invoking 2LitFirst on every instance does not pay off. Note that the default
strategy used by CBH invokes 2LitFirst if the clause/variable rate is greater than 10.
The motivating experimental observation for designing CBH in this manner is that SE
without 2LitFirst performs the same as the default version on all families, except
VUN, where performance seriously degrades. VUN is the only family, other than
PST, for which the clause/variable ratio is greater than 10 for all instances. To con-

firm that SE performs better when 2LitFirst is invoked on instances with high
clause/variable ratio, we launched SE on 26 handmade families that were submitted to
SAT’04 (and are available at [16]). SE was able to solve at least 1 instance from 13
families. The default CBH strategy performed better than a strategy with 2LitFirst
disabled on 2 out of 13 families, and it performed the same on other families. In the
case of zChaff, we found that 2LitFirst invocation hurts performance in a dramatic
manner on families with low clause/variable ratio, and leaves the performance the
same or slightly degraded on families having high clause/variable ratio. The families
HEQ, GR, SCH and ST2 are those with a ratio for all its instances lower than 10. If
2LitFirst is always used, zChaff is able to solve only 4 instances of these 4 families,
comparing to 20 instances solved by the version that never uses 2LitFirst. The other
4 families have either mixed or high clause/variable ratio. On these families, when
2LitFirst is always used, zChaff is able to solve 12 instances, compared to 16 by a
version that never uses 2LitFirst. One can conclude that within zChaff, 2LitFirst us-
age is not justified. Overall, 2LitFirst performs much better on instances having a
high clause/variable ratio.

Table 4. CBH vs. the default heuristic within zChaff_2004.11.15. CBH_2L_N is a version of
CBH that does not use the 2LitFirst strategy

Family zChaff + CBH zChaff+ CBH_2L_N zChaff default

HEQ 8 8 4

GR 3 3 0

SCH 5 5 2

ST2 4 4 1

ST2B 2 2 1

CLR 3 4 1

PST 5 8 8

VUN 2 2 2

ALL 32 36 19

Table 5. Performance of different configurations of CBH in terms of solved instances within
an hour in SE solver

Family CBH CBH_NM CBH_NI CBH_2L_A CBH_2L_N

HEQ 5 4 5 3 5

GR 1 2 2 0 1

SCH 5 2 4 5 5

ST2 5 4 5 2 5

ST2B 2 3 1 2 2

CLR 6 7 5 5 6

PST 10 10 10 10 10

VUN 4 6 4 4 1

ALL 38 38 36 31 35

Table 6. Performance of different configurations of CBH in terms of solved instances within
an hour in zChaff solver

Family CBH CBH_NM CBH_NI CBH_2L_A CBH_2L_N

HEQ 8 4 8 4 8

GR 3 1 3 0 3

SCH 5 2 4 0 5

ST2 4 2 4 0 4

ST2B 2 3 2 2 2

CLR 3 3 3 3 4

PST 5 10 3 5 8

VUN 2 3 2 2 2

ALL 32 28 29 16 36

7. Conclusions

We have presented a novel clause-based heuristic, CBH. It maintains a clause list or-
ganized in a manner that allows the algorithm to choose sequences of interrelated
variables that were responsible for recent conflict derivation.

CBH maintains both the initial and the conflict clauses in a single list. The next
decision literal is picked from the topmost unsatisfied clause of the list. After each
conflict, the conflict clause is prepended to the top of the list. Clauses visited during
conflict-clause identification, are placed just after the new conflict clause. As a vari-
ant, if the clause/variable ratio of the input instance is greater than a predefined value
(10 is a reasonable choice), newly identified binary clauses are moved to the top of
the list.

We have demonstrated that using CBH results in a significant performance boost
on hard industrial families, when compared with Berkmin’s heuristic or VSIDS.

Acknowledgements

The work of the third author was carried out in partial fulfillment of the requirements
for a Ph.D. We thank Ranan Fraer for his careful reading and helpful comments.

References

[1] J. Alfredsson. The SAT solver Oepir. URL
http://www.lri.fr/~simon/contest/results/ONLINEBOOKLET/OepirA.ps (viewed Janu-
ary, 16 2005).

[2] R. Bayardo, Jr., and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence, pp.
203-208, 1997.

[3] M. Davis, G. Logemann and D. Loveland. A machine program for theorem proving.
In Communications of the ACM, (5): 394-397, 1962.

[4] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT2003), May
2003.

[5] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE '02), p. 142-149, March 2002.

[6] C.P. Gomes, B. Selman and H. Kautz. Boosting combinatorial search through ran-
domization. In Proceedings of the National Conference on Artificial Intelligence, July
1998.

[7] R.G. Jeroslaw and J. Wang. Solving propositional satisfiability problems. In Annals of
mathematics and Artificial Intelligence, (1):167-187, 1990.

[8] H. Kautz, B. Selman. Planning as satisfiability. In Proceedings of the 10th European
conference on Artificial intelligence, 1992.

[9] D. Le Berre and L. Simon. Fifty-five solvers in Vancouver: The SAT 2004 competition.
In Proceedings of the Seventh International Conference on Theory and Applications of
Satisfiability Testing (SAT2004), volume Lecture Notes in Computer Science, 2004. Ac-
cepted for publication.

[10] Y.S. Mahajan, Z. Fu, S. Malik. ZChaff2004: an efficient SAT solver. In Proceedings of
the Seventh International Conference on Theory and Applications of Satisfiability Test-
ing (SAT2004), volume Lecture Notes in Computer Science, 2004. Accepted for publica-
tion.

[11] J.P. Marques-Silva. The impact of branching heuristics in propositional satisfiability
algorithms. In Proceedings of the 9th Portuguese Conference on Artificial Intelligence
(EPIA), September 1999.

[12] J.P. Marques-Silva and K.A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, (48):506-521, 1999.

[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the Design Automation Conference, 2001.

[14] M. R. Prasad, A. Biere, A. Gupta. A survey of recent advances in SAT-based formal
verification, Intl. Journal on Software Tools for Technology Transfer (STTT), (7):156-
173, January 2005.

[15] L. Ryan, Efficient algorithms for clause-learning SAT solvers. Masters thesis, Simon
Fraser University, February 2004.

[16] Seventh International Conference on Theory and Applications of Satisfiability Testing
(SAT2004), May 2004. URL http://satlive.org/SATCompetition/2004/ (viewed Septem-
ber 1, 2004).

[17] R. Zabih and D.A. McAllester. A rearrangement search strategy for determining pro-
positional satisfiability. In Proceedings of National Conference on Artificial Intelli-
gence, p. 155-160, 1988.

[18] L. Zhang, C.F. Madigan, M.H. Moskewicz and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. International Conference on Computer-Aided
Design (ICCAD'01), p. 279-285, November 2001.

