
Implicative Simultaneous Satisfiability and
Applications

Zurab Khasidashvili and Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
{zurab.khasidashvili,alexander.nadel}@intel.com

Abstract. This paper proposes an efficient algorithm for the system-
atic learning of implications. This is done as part of a new search and
restart strategy in the SAT solver. We evaluate the new algorithm within
a number of applications, including BMC and induction with invariant
strengthening for equivalence checking. We provide extensive experimen-
tal evidence attesting to a speedup of one and often two orders of mag-
nitude with our algorithm, on a representative set of industrial and pub-
licly available test suites, as compared to a basic version of invariant
strengthening. Moreover, we show that the new invariant strengthening
algorithm alone performs better than induction and interpolation, and
that the absolutely best result is achieved when it is combined with in-
terpolation. In addition, we experimentally demonstrate the superiority
of an application of our new algorithm to BMC.

1 Introduction

The need to efficiently solve many closely related problems arises in nu-
merous applications of model checking [8] and equivalence checking [12].
Various automatic invariant strengthening algorithms fall into this class of
applications. In such algorithms one has to guess the missing invariants
that strengthen the target property, thereby making it easier to prove.
However, for the guessing to succeed, many potential invariants must be
tried out, and therefore for overall efficiency it is very important that the
evaluation of potential invariants be very fast.

In the domain of SAT solving [3, 14], several efficient approaches to
solving multiple related objectives incrementally [26, 27] or simultane-
ously [13] have been developed in the past, and due to its increasing im-
portance this is an active research area. The two approaches are closely
related, yet there are subtle fundamental differences between the two.
Their relative performance depends on the nature of the benchmarks.

In this work we focus on improving and refining the Simultaneous
SATisfiability (or SSAT) approach to solving multiple closely related
SAT tasks. Recall that the SSAT algorithm aims at proving a number

of related objectives (called proof objectives, or POs) in one backtrack
search. The algorithm receives a CNF instance and a number of literals
that occur in the CNF. These literals represent the POs. If there is a
satisfying assignment to the CNF where a PO is assigned false, then the
PO is not a logical consequence of the CNF instance and is therefore
called falsifiable; otherwise it is valid. For each PO, the SSAT algorithm
returns one of the following statuses: valid, falsifiable, or indeterminate
(in case the algorithm is interrupted). This is different from solving the
satisfiability status of the conjunction of all POs.

As an example, consider the problem of combinational or sequential
equivalence checking of circuits. By the nature of the problem, and in
particular, by the nature of the design or synthesis of an implementation
model based on a specification model, there are many internal nodes in the
circuits that are equivalent. Exploiting these internal equivalences often
helps enormously in proving the functional equivalence of the correspond-
ing outputs of the two circuit designs. The POs are then equivalences of
the form x↔ y or x↔ ¬y between internal nodes x and y of the specifi-
cation and implementation circuits. On a large set of Intel and academic
benchmarks, we found that SSAT is more efficient within the invariant-
strengthening algorithms than saturation or multiple incremental calls to
the SAT solver. Still, there is an inefficiency caused by the fact that the
definitions of many (sometimes tens or hundreds of thousands) of the POs
corresponding to the candidate invariants must be added to the CNF in-
stance: an equivalence of the form x ↔ y or x ↔ ¬y is translated into
four clauses (with the standard Tseitin encoding), and these extra clauses
noticeably slow down the SAT solver.

We introduce a novel DPLL-based approach, called implicative SSAT
(or SSAT→), that leverages from the fact that the POs are equivalences
consisting of two implications, e.g., x→ y and y → x. The SSAT→ algo-
rithm learns these implications and equivalences without encoding them
into the CNF. Instead, it deals with them during the search using a dedi-
cated algorithm. This leads to a speedup of up to two orders of magnitude
as compared to other approaches to invariant strengthening that also try
to prove a maximal number of candidate invariants at a given induc-
tion depth. Our algorithm can solve any number of user-given properties
simultaneously. The algorithm is discussed in Section 2.

We propose two new applications of SSAT and SSAT→ (Sections 3
and 4, respectively). One is in-depth BMC, which uses simultaneous solv-
ing in a BMC [2] scheme where unrolling happens with intervals [11, 28]
(the SAT solver is not called after each unrolling step). The other appli-

cation is an invariant strengthening algorithm for equivalence checking
known as van Eijk’s method [10]. Both Sections 3 and 4 present a rich
collection of experiential results demonstrating the efficiency of our algo-
rithms. In Section 5 we provide an extensive overview of related work, in
order to make it clear how our research advances to the state of the art.
Conclusions and discussion of future work appear in Section 6.

2 Implicative SSAT

Recall that SSAT modifies the modern SAT solver’s algorithm in a way
that allows it to solve multiple proof objectives in one search ([13], Sec-
tion 5). The SSAT algorithm always maintains a PO literal, called the
currently watched PO (CWPO), that the SAT search tries to falsify. At
the beginning of the search CWPO is set to be any PO literal. At every
stage of the search, prior to invoking a generic decision heuristic, CWPO
is assigned false. The CWPO ceases to be the currently watched PO in
two circumstances:

(1) When a model containing CWPO = false is discovered, in which case
we mark as falsifiable the CWPO as well as all the POs that are
assigned false (or are don’t care literals) in the model;

(2) When the CWPO is discovered to be globally true, in which case we
mark the CWPO as valid.

In either of these circumstances, we check whether there exists an
unresolved PO l – a PO that has not been found valid or falsifiable.
If such an unresolved PO l exists, we set the CWPO to l, otherwise the
algorithm halts. The algorithm returns the pair (vPOs, fPOs) consisting
of POs proved valid and POs proved falsifiable.

We found it very useful to frequently reschedule POs in the SSAT
algorithm: each CWPO ceases to be a CWPO after a given number of
restarts, and the next PO in a sorted list of POs is selected as the CWPO.
In other words, the list of unresolved POs is rotated. This is different from
the original SSAT algorithm (where a CWPO ceases to be a CWPO
only after it gets resolved), and often prevents wasting search effort in
irrelevant search space: the learning gained resolving other POs often
makes it easier to resolve the once problematic CWPO later. In particular,
thanks to frequent rescheduling, simpler invariants are discovered easily
and solved first; rescheduling can thus be seen as an improved version
of the widely used method according to which candidate invariants are
sorted in a bottom-up fashion and solved in that order.

As discussed earlier, in applications where the POs are equivalences
of the form PO = os ↔ oi, and there are many POs, translating them
all into the CNF instance can be a significant overhead for the solver.
Therefore, we propose implicative SSAT , or SSAT→, as an algorithm
that takes a number of pairs (ojs, o

j
i) as input and reports the status of

each equivalence ojs ↔ oji for each j: if there is a satisfying assignment

with ¬ojs∧o
j
i or ojs∧¬o

j
i , then the equivalence is false and POj = ojs ↔ oji

is falsifiable; otherwise it is valid.
For deciding the validity of an equivalence PO = os ↔ oi, the algo-

rithm checks the satisfiability status of two implications PO→ : os → oi
and PO← : os ← oi. A pseudo algorithm for SSAT→ is described in
Figure 1. For simplicity of presentation, we do not treat the circumstance
where there are initial unit clauses, in which case some POs might be
found valid before the loop at line 2. The algorithm’s structure is simi-
lar to that of SSAT. The main difference is that the SSAT→ algorithm
needs to track the status of implications, rather than single literals. Con-
sequently, the treatment of the CWPO in lines 8 – 19 becomes more
complex, since each PO has two implications and each implication has
two literals. Consider line 25, which is supposed to find globally valid
PO implications. Our algorithm (not specified in Figure 1) returns that a
PO implication PO→ : os → oi is valid if one of the following conditions
holds:

(1) os is globally false (false at decision level 0);
(2) oi is globally true;
(3) At decision level 1: both os and oi are true, where os is the decision

literal and oi is an implied literal.

3 In-depth BMC with SSAT→

In this section we discuss a variant of the BMC algorithm that em-
ploys SSAT→ in a way that differs from the known usages of incremen-
tal SAT with assumptions in BMC [9]. Besides the maximal bound k,
BMC with intervals [11] takes an argument i that denotes the length of
the bound intervals in which SAT checks for falsification of the property
are performed. For instance, with i = 10 and k = 100, bound intervals
0−9, 10−19, . . . , 90−99, 100 are checked consecutively and incrementally.
More precisely, given a safety property P and a state s, assume that P (s)
is a variable denoting P in state s. Then in the interval 0− 9, BMC with
intervals calls the SAT solver to check the satisfiability of the following

SSAT→ (cnf , [PO1 = (o1s, o
1
i), . . . , POn = (ons , o

n
i)])

1: CWPO = any PO pair;
2: while (true) do
3: if CWPO is marked valid or falsifiable then
4: if all the POs are marked valid or falsifiable then
5: return (vPOs, fPOs);
6: end if
7: CWPO = any PO pair (ojs, o

j
i) that is yet unresolved;

8: if PO→ is unresolved then
9: σ = true

10: else
11: σ = false
12: end if
13: if os is unassigned then
14: Assign os = σ
15: else
16: if oi is unassigned then
17: Assign oi = ¬σ
18: end if
19: end if
20: else
21: Assign choose-decision-literal();
22: end if
23: while (status == local-conflict) do
24: status = BCP();
25: Mark any PO implication PO→ or PO← that is discovered to be globally

true as valid;
26: If for an unresolved PO both PO→ and PO← are marked valid, mark the

PO valid;
27: if status == global-conflict then
28: Mark all unmarked POs valid;
29: return (vPOs, fPOs);
30: end if
31: if (status == model) then
32: Mark any falsified PO implication PO→ or PO← falsifiable;
33: If for an unresolved PO one of the implications PO→ and PO← is marked

falsifiable, mark the PO falsifiable;
34: Unassign all the literals that are not globally true;
35: end if
36: if (status == local-conflict) then
37: Add a conflict clause; Backtrack;
38: Assign literal that must be flipped following conflict analysis;
39: end if
40: end while
41: end while

Fig. 1. Pseudo algorithm for implicative SSAT (or SSAT→).

Family BMC BMC10 BMC10→ BMC25 BMC25→ ABC-BMC2 ABC-BMC3
bj 405 393 461 328 462 485 553
bob 674 645 736 427 697 706 710
cmu 137 140 138 150 143 158 174
eij 785 765 846 551 848 585 730
nus 283 301 301 301 355 225 385
pdt 3393 3504 3963 2957 3983 3430 3673
pj 300 312 331 252 347 404 404
texas 202 202 168 176 199 202 202
Total (bound) 6179 6262 6944 5142 7034 6195 6831

Table 1. Comparing the bound for 115 timed-out instances.

Family BMC BMC10 BMC10→ BMC25 BMC25→ ABC-BMC2 ABC-BMC3
bj 215.8 324.9 190.6 341.4 103.3 407.07 51.08
bob 116.7 853.1 648.9 1622 1176 186.99 174.61
cmu 203.4 21.1 14.6 21.9 17.3 3.9 3.38
eij 678.2 513.1 190.2 1446.1 141.4 62.38 171.58
nus 2609.1 747.5 617 933.4 883.8 311.87 396.16
pdt 4202 2837.1 1981.8 4230.3 1884.8 1350.72 955.41
pj 513.2 911.1 449 829.4 555.8 569.72 940.1
texas 8.4 22.4 142.1 33.7 37.7 25.67 25.06
vis 311.9 238 138.7 406.3 147.6 94.7 169.52
Total (cpu time) 9614.6 8049.7 5187.5 12336.5 5697.9 4458.19 3108.8

Table 2. Comparing the run-time for 302 completed instances.

formulas, where Tr and I denote the transition and initial state relations,
and P0−9 = P (s0) ∧ . . . ∧ P (s9).

I(s0) ∧ path(s0, . . . , s9) ∧ ¬P0−9
path(s0, . . . , sk) = Tr(s0, s1) ∧ . . . ∧ Tr(sk−1, sk)

In the in-depth BMC algorithm that we propose, in each interval
such as 0−9, we call SSAT→ with POs P (s0), . . . , P (s9), on the unrolled
instance.

Tables 1 and 2 compare our implementations of incremental BMC [9]
(column BMC), incremental BMC with intervals (BMC10, BMC25), and
in-depth BMC (BMC10→, BMC25→), for the maximal bound k = 100
and intervals 10, 25, on 417 problems from several families of HWMCC’10
benchmarks. We also compare our results with ABC-BMC3, which is
ABC’s implementation of incremental BMC, and ABC-BMC2, which is
similar to BMC with intervals but whose unrolling intervals are deter-
mined based on the extra gate count [19]. We selected the problems that
were unsatisfiable for both the ABC-BMC2 strategy in the competition
and our BMC implementation, since most of the falsifiable instances in
the HWMCC’10 set are too easy. The first table shows 115 problem in-
stances for which a 900-second time-out occurred for at least one of the
strategies before the maximal bound was reached; for each group the sum

of the reached bounds is shown. The second table shows the run-times
per group and per strategy for the remaining 302 problem instances.

The tables show that in-depth BMC reaches higher bounds than any
other version of BMC. Implication learning was disabled in these exper-
iments, since for BMC these techniques are useful only for very difficult
instances. The advantage of in-depth BMC over BMC can be explained
as follows: In the interval 0 − 9, while trying to falsify, say, P (s3), the
SSAT→ solver has a view of the cones of P (s4), . . . , P (s9) as well; this
allows the solver to infer and use useful correlations among signals at
bounds up-to 3 from the definitions, user constraints (possibly sequen-
tial), and PO assignments at higher bounds. While BMC with intervals
also has the view of the cones of all the POs P (so), . . . , P (s9), in contrast
to in-depth BMC, it can either solve them all together (by proving that
¬P0−9 is unsatisfiable) or solve none of them. Solving all the POs is more
complex than only proving valid POs up to P (s3).

4 SSAT→ and strengthening inductive invariants

A basic scheme combining invariant strengthening and temporal induc-
tion is depicted in Figure 2. This scheme was proposed in [4]. The in-
duction and invariant strengthening algorithms in [23, 10], as well as the
algorithms that we propose, can be seen as instances of this algorithm
scheme. Recall that, according to the temporal induction scheme [23], a
property P is valid if for some m, the formulas base(P, k) and step(P,m)
defined below are unsatisfiable for all 0 ≤ k ≤ m (for simplicity, we omit
discussion of the loop-free condition for the induction step).

base(P, k) = I(s0) ∧ path(s0, . . . , sk) ∧ P (s0) ∧ . . . ∧ P (sk−1) ∧ ¬P (sk)

step(P, k) = path(s0, . . . , sk+1) ∧ P (s0) ∧ . . . ∧ P (sk) ∧ ¬P (sk+1)

To interface the base and step formulas base(P, k) and step(P, k) for
a property P = l ↔ r with SSAT→, we change them as follows, where
l(si)↔ r(si) represents P at state si:

base cnf(k) = I(s0) ∧ path(s0, . . . , sk)
base PO pairs(P, k) = [(l(sk), r(sk))]
step assumption(P, k) = P (s0) ∧ . . . ∧ P (sk)
step cnf(k) = path(s0, . . . , sk+1)
step assum cnf(P, k) = step cnf(k) ∧ step assumption(P, k)
step PO pairs(P, k) = [(l(sk+1), r(sk+1))]

Then, base(P, k) is satisfiable iff

Induction with invariant strengthening (P, nMaxDepth)

k = 0;
POs = Create candidate invariants() (where P ∈ POs);
while (k <= nMaxDepth) do
POs = BASE(POs, k);
if (POs 6= []) then
POs = STEP (POs, k);

end if
if (POs 6= []) then
k + +;

end if
end while

Fig. 2. Pseudo algorithm for induction with invariant strengthening.

SSAT→(base cnf(k), base PO pairs(P, k))

returns P as falsifiable; similarly step(P, k) is unsatisfiable iff

SSAT→(step assum cnf(P, k), step PO pairs(P, k))

returns P as valid. Thus the above formulas define a sound way of using
SSAT→ in temporal induction.

Now, if we want to perform the base and step checks simultaneously
for a number of POs PO0, . . . , POn, the definitions of base cnf(k) and
step cnf(k) remain unchanged – they do not depend on the properties
that one is interested in. The step assumption is the conjunction of for-
mulas step assumption(POi, k) for 0 ≤ i ≤ n, and the base and step PO
lists are defined as follows:

base PO pairs(POs, k) = [(l0(sk), r0(sk)), . . . , (ln(sk), rn(sk))]
step PO pairs(POs, k) = [(l0(sk+1), r0(sk+1)), . . . , (ln(sk+1), rn(sk+1))]
step assumption(POs, k) = ∧i=n

i=0step assumption(POi, k)
step assum cnf(POs, k) = step cnf(k) ∧ step assumption(POs, k)

The BASE(POs, k) procedure employing SSAT→, called base issat, is
depicted in Figure 3.(a). vPOs denote the POs whose corresponding
base formulas are valid in state sk. Similarly, Figure 3.(b) depicts the
STEP (POs, k) procedure employing SSAT→, called step issat.

We call the invariant strengthening algorithm just described invSSAT→.
In the same vein, we refer to the similar invariant strengthening algorithm
employing SSAT as invSSAT . Further, in the experiments reported be-
low, we use invSATURk to denote the invariant strengthening scheme

(a) base issat (POs, k)

(vPOs, fPOs) = SSAT→(base cnf(k), base PO pairs(POs, k));
report fPOs as falsifiable;
return vPos;

(b) step issat (POs, k)

i = 0;
POs0 = POs;
while (true) do

(vPOsi, fPOsi) = SSAT→(step assum cnf(POsi, k), step PO pairs(POsi, k));
POsi+1 = vPOsi;
if (fPOsi = []) then

break;
end if
i = i+ 1;

end while
report POsi as valid;
return POs \ POsi;

Fig. 3. BASE(POs, k) and STEP (POs, k) for invariant strengthening with SSAT→.

of [4], where k-saturation is used as combinational reasoning engine. By
invCONJ , we refer to the invariant strengthening scheme where satura-
tion is replaced by SAT. That is, in invCONJ , the candidate invariants
are proven using the conjunction approach to verifying multiple properties
presented in [11].

Fam. 1 Fam. 2 Fam. 3 Fam. 4 Fam 5 Fam. 6 Fam. 7 Total
Algorithm time solv time solv time solv time solv time solv time solv time solv time solv
invSSAT→ 8 132 366 574 39 659 1 142 475 147 513 3775 2983 230 4387 5659
& interp.
invSSAT→ 9 132 365 574 36 659 1 142 16 147 512 3775 3686 230 4627 5659
invSSAT 6 132 418 574 45 659 1 142 14 147 258 3775 21311 218 22055 5647
invSATUR0 94 132 4345 529 115 659 2 142 221 147 1841 3774 683 230 7304 5613
& interp.
invSATUR0 5 132 10390 532 675 654 1000 140 1000 145 55 3773 26059 217 39186 5593
& induction
invCONJ 97 132 1233 574 3783 659 10 142 61 147 2077 3775 229856 1 237120 5430
interp. 4018 128 21171 494 20487 548 38 142 3943 45 4526 3774 19349 217 73535 5348
induction 18020 43 24836 478 52737 185 1000 133 2037 131 70159 184 60053 187 228845 1341
invSATUR1 11 40 283 19 44 408 2 13 12 18 305 53 752 28 1413 579

Table 3. Comparing invariant strengthening algorithms as well as strategy combina-
tions with induction and interpolation.

In Table 3 we report experimental results for 7 families of equivalence
checking problems from recent microprocessor designs at Intel. Each fam-
ily corresponds to a functional module. These 7 families together contain

5659 sequential equivalence checking problem instances. The designs are
non-state-matching, therefore provable internal equivalences form a very
small portion of all potential equivalences (the number of provable equiv-
alences is typically a few hundreds, and many of them are very simple.)
The timeout used in our experiments was 1000 seconds (in combined
algorithms, the timeout was divided between the strategies). The max-
imal unrolling bound in all algorithms was 100. In the columns named
solv we report the number of problem instances solved by each algorithm
per family and in total. In the columns named time we report the time
spent on each family and in total. We compare the different versions of
invariant strengthening algorithms discussed in this section, as well as
combinations of the best invariant strengthening algorithms with tempo-
ral induction [23] and interpolation [18]. We used a rescheduling rate of
5 in the experiments for invSSAT→.

invSATUR0 and invSATUR2 could not solve any of the problem
instances, and therefore these algorithms do not appear in the table.
Compared to the SAT-based conjunction method invCONJ , employ-
ing SSAT in invSSAT yields an order of magnitude speedup, and an
additional 217 problem instances were solved. Employing SSAT→ in
invSSAT→ yields an average 52.6x speedup compared to invCONJ , and
an additional 229 problems were solved. The additional gain in invSSAT→

compared to invSSAT is due to quick processing of candidate implica-
tions in SSAT→, which was our main motivation for introducing SSAT→.
While invSATUR0 is too weak to solve any of the problem instances, it
can very quickly prove important equivalences which might help the in-
duction [23] and interpolation [18] algorithms. Similarly, invariants proven
by invSSAT→ can significantly improve the runtime of interpolation. The
results show that invSSAT→ outperforms both the induction and inter-
polation algorithms, and that invSSAT→ combined with interpolation is
the winning algorithm overall: it solves all 5659 problem instances, and
is faster than any other single or combined algorithm.

We also ran several strategy combinations on the 417 problems dis-
cussed in Section 3, and compared them with their counterparts in ABC
(ABC-scorr denotes ABC’s scorr algorithm with unrolling bound 100;
scorr is the algorithm within ABC that is the closest to our invariant
strengthening algorithms). The summary of these results is presented in
Table 4: as one can see, the results, both in terms of solved problems and
runtimes, are similar to what was observed on Intel benchmark families,
although the impact of combining invariant strengthening strategies with
induction and interpolation algorithms is even greater. The combination

Algorithm time solv
invSSAT→& interp. 78106 319
ABC-interpolation 109166 310
invSSAT→ 133266 296
invCONJ 135519 294
invSSAT 135774 294
invSATUR0& interp. 141619 283
interpolation 144131 282
ABC-scorr & ABC-interp 149540 281
invSATUR0& induction 147645 265
ABC-scorr 146685 242
induction 176056 231

Table 4. Comparing strategy combinations on 417 HWMCC’10 problem instances.

of invSSAT→ followed by interpolation (which reuses the learning) re-
mains the best combination.

5 Related work

The CNF and the POs for an SSAT→ instance are often produced by
translating a circuit ckt into CNF. Following [22], in our model-checking
tool, a circuit is represented as a collection of triplets of the form x := y →
z or x := y ↔ z, where x, y, and z are literals. This is close to the widely
used And-Inverter Graph (AIG) representation [16], where the triplets
are of the form x := y ∧ z. Besides the structural information recorded as
triplets, our representation of ckt maintains its variables in equivalence
classes (E-classes, for short) [22]; each class has a representative variable,
and all the variables in an equivalence class are known to be (logically)
equivalent to the representative or its negation. When converting ckt into
an SSAT instance, only the representative variables and the relations be-
tween them are reflected in the resulting CNF. The unit and two-literal
clauses learned during the SSAT search are added to ckt. Saturation [24]
on the enhanced ckt may yield additional learning, including the learning
of equivalences and inverse equivalences among the representative vari-
ables of E-classes; this in turn enables merging E-classes and reducing
the number of representative variables.

The aim of SSAT→ is to solve closely related objectives in at most
one complete search. The SSAT→ solver has a view of the entire problem
instance, and has the freedom to focus on resolving a particular objec-
tive and to switch between the objectives as part of the search strategy.
Furthermore, again as part of the search strategy, SSAT→ tries to learn
the entire instance by learning the implications between all pairs of vari-
able assignments. These implications are recorded as two-literal clauses

(which are known to be very important learnings). Equivalences derived
from them enable merging variables by merging their equivalence clauses.

The idea of learning the implications between circuit signal values
was introduced in the recursive learning algorithm [17], in the context
of circuit ATPG [1]. There implications are learned iteratively using a
dedicated constant propagation algorithm, with increasing effort at each
iteration. The learned implications are used to speedup the backward
justification process (which is the main routine of ATPG). SSAT→ can
be seen as a SAT-based implementation of recursive learning, where the
learning of implications happens as part of the SAT search rather than as
a separate routine. Indeed, SSAT→ introduces a new dimension to restart
strategies. Traditionally, a restart strategy refers to when to restart, not
how to restart. SSAT introduces fairness into the how-to-restart strat-
egy: the first two variable assignments after a restart do not follow the
default search heuristic of the SAT solver; instead, every pair of variables
in the candidate equivalences list is considered with four possible value
assignments. We note that the when part of the restart strategy in our
SSAT→ solver is the same in all the reported experiments; and our SAT
solver is implemented as a special case of SSAT→ since the latter has
more generic (incremental) interface (API).

The crucial idea of simplifying equivalence checking by proving (ob-
servable) internal equivalences and merging equivalent nodes was intro-
duced in [6]. The AIGs data structure and BDD and SAT sweeping [16,
15] allow for very efficient implementation of this idea. The triplet and
equivalence classes data structure is closely related to the AIGs data
structure, however it is no longer a DAG. In addition we work with con-
straints explicitly, a fact which entangles the cones of the objectives even
more tightly. Finally, we do not use local BDDs [16] or AIG rewriting [5]
to optimize the problem instance; instead we rely on saturation [24] and
on learning from SSAT→ to achieve a compact representation.

An incremental version of SAT sweeping was proposed in [19], where,
in addition, rescheduling of candidate equivalences was first considered. In
that paper the authors work incrementally with a SAT-with-assumptions
interface [9]. The idea behind SSAT→ could be used to extend SAT-
with-assumptions, so that it could treat assumptions that are implications
rather than literals.

Unlike SSAT→, in [19] each CWPO is targeted for falsification in its
cone of influence; this is achieved by an API that allows the SAT solver
to work with a subset of relevant variables (computed based upon the
circuit), and Boolean Constraint Propagation (BCP) needs to be modi-

fied accordingly. This modified search procedure is not described in detail
in [19], we therefore couldn’t re-implement it for a fair comparison (more-
over, recall that we use a very different circuit representation). Our early
experience with simultaneous solving of multiple POs by solving each PO
in its cone of influence and re-using pervasive learned clauses compared
to SSAT is reported in [13], and is negative. In fact, one of the main orig-
inal motivations for introducing SSAT was to eliminate the overhead of
computing the cones of each objective and managing the conflict clauses.
The relative performance of these two methods certainly depends on the
nature of the problems at hand; Overall, our experience (within our im-
plementation) is that SSAT performs much better when the POs that
are solved simultaneously are closely related (and their cones have a high
percentage of overlap). As observed in [15], modern SAT solvers are effi-
cient in focusing on relevant parts of the problem. This saves us the effort
of forcing the SAT solver to work exclusively with the cone-of-influence
of the CWPO. Furthermore, when working with the entire instance, one
has a greater freedom in deciding assignments for other PO implications
(that might not be in the cone), thereby increasing the chance of solving
them as a side-effect of the search. For example, in SSAT→, the default
behavior is that after assigning the CWPO, the other yet unresolved user
POs are assigned next, with false. Experimental evaluation of the in-depth
BMC strategy clearly demonstrates that giving a solver a wider view of
the problem instance and letting it decide how to perform the search is
beneficial.

Since in SSAT→, unlike in previous work, solving candidate equiva-
lences is a by-product of the search heuristic, in our approach it becomes
much less important to reduce candidate equivalences by quick falsifica-
tion methods such as simulation with random or biased input patterns or
satisfying-assignments [6, 15, 19]. Since we work with user constraints ex-
plicitly, as part of the E-classes data structure, we cannot use random sim-
ulation of inputs for quick falsification (the constraints need not hold for
arbitrary input assignments). We have experimented with multiple meth-
ods of diverse satisfying assignment generation [21] in order to use them as
simulation patterns for quick falsification of candidate equivalences, and
while they can significantly reduce the number of candidate equivalences,
this didn’t noticeably affect overall runtime, because SSAT→ typically
generates many satisfying assignments during the search (biased towards
the falsification of as many POs as possible) and they filter out false
candidate equivalences very efficiently.

The basic idea of invariant strengthening for sequential equivalence
checking was proposed by van Eijk in [10]. The transition invariants were
computed using BDDs. This idea was further generalized in [4], in two
ways: the basic transition invariant scheme was enhanced by the temporal
induction scheme [23], and saturation [24] replaced the usage of BDDs.
Numerous circuit-level optimizations were proposed in [7]; the main dif-
ferences with our approach has been discussed above. The speculative
reduction technique [20] further advances van Eijk’s method by strength-
ening the inductive assumptions within refinement iterations of candidate
invariant set; this is done by creating copies of the current set of candi-
date invariants and assuming them (in all reachable states) when proving
other candidates.

6 Conclusions

The main contribution of this paper is the introduction of a highly scalable
and efficient DPLL-based algorithm SSAT→ that can decide the satis-
fiability of a large number of (user-given and automatically generated)
proof objectives in a single DPLL search, where each proof objective can
be either a single literal or an implication between two literals.

We have presented a number of applications of SSAT→ in bounded
and unbounded model checking. The experimental results on academic as
well as Intel benchmarks for in-depth BMC and for induction with invari-
ant strengthening fully support the usefulness of these new algorithms
compared to the state-of the art.

The SSAT→ algorithm has already been used as an efficient core
DPLL-based engine in many other verification applications at Intel.

Our implication learning algorithms can be viewed as advanced tech-
niques for simplifying combinational problems by systematically learning
2-literal clauses. An interesting future work would be to investigate how
to deal with more complex relations between pairs or triplets of literals
using a dedicated DPLL-based algorithm. In particular, an immediate
generalization of the idea of SSAT→ would be to designate an algorithm
that would efficiently learn 3-literal clauses as part of the SAT search: for
example, if no implications have been learned between variables a, b, c, a
clause a∧¬b∧c can be learned if any other combination of the assignments
leads to a global conflict.

Acknowledgements We thank the ABC developers for help in running the ABC
experiments reported in the paper. Baruch Sterin contributed to the ideas and the
implementation of some of the reported algorithms.

References

1. Abramovici A., M.A., Breuer, A.D. friedman. Digital Systems Testing and Testable
Design, Computer Science Press, 1990.

2. Biere A., A. Cimatti, E. Clarke, Y. Zhu. Symbolic model checking without BDDs,
TACAS 1999.

3. Biere A., M. Heule, H. Van Maaren, T. Walsh. Handbook of Satisfiability, IOS
Press, 2009.

4. Bjesse P., Claessen C. SAT based verification without state space traversal, FM-
CAD 2000.

5. Bjesse P., A. Boralv. DAG-aware circuit compression for formal verification, IC-
CAD 2004.

6. Brand D. Verification of large synthesized designs, ICCAD 1993.
7. Case M. L., A. Mishchenko, R. K. Brayton, J. Baumgartner, and H. Mony.

Invariant-strengthened elimination of dependent state elements, FMCAD 2008.
8. Clarke E.M., O. Grumberg, D.A. Peled. Model Checking, MIT Press, 1999.
9. Eén N., Sörensson N. Temporal induction by incremental SAT solving, ENTCS

89(4), 2003.
10. van Eijk, C.A.J. Sequential equivalence checking without state space traversal,

DATE 1998.
11. Fraer, R., S. Ikram, G. Kamhi, T. Leonard, A. Mokkedem. Accelerated verification

of RTL assertions based on satisfiability solvers, HLDVT 2002.
12. Huang, S.-Y., K.-T., Cheng. Formal Equivalence Checking and Design Debugging,

Kluwer, 1998.
13. Khasidashvili, Z., A. Nadel, A. Palti, Z. Hanna. Simultaneous SAT based model

checking of safety properties, HVC 2005.
14. Kroening D., Strichman O. Decision Procedures, Springer EATCS, 2008.
15. Kuehlmann, A. Dynamic Transition Relation Simplification for Bounded Property

Checking, ICCAD 2004.
16. Kuehlmann A., F. Krohm. Equivalence checking using cuts and heaps, DAC 1997.
17. Kunz W., D. K. Pradhan. Recursive learning: An attractive alternative to the

decesion tree for test generation in digital circuits, ITC 1992.
18. McMillan, K. L. Interpolation and SAT-based model checking, CAV 2003.
19. Mishchenko A., S. Chatterjee, R. Brayton, N. Een. Improvements to combinational

equivalence checking, ICCAD 2006.
20. Mony H., J. Baumgartner, A. Mishchenko, R. Brayton. Speculative reduction-

based scalable redundancy identification, DTAE 2009.
21. Nadel A. Generating diverse solutions in SAT, SAT 2011.
22. Nordström J.. St̊almarck’s Method Versus Resolution: A Comparative Theoretical

Study, Stockholm University, 2001.
23. Sheeran, M. S. Singh, G. Stälmarck. Checking safety properties using induction

and a SAT solver FMCAD 2000.
24. Sheeran, M., G. Stälmarck. A tutorial on Stälmarck’s method of propositional

proof, Formal Methods In System Design, 16(1), 2000.
25. Silva P.M., Sakallah K., Robust search algorithms for test pattern generation,

FTCS, 1997.
26. Strichman, O., Accelerating bounded model checking of safety properties, Formal

Methods in System Design, vol, 24, 2004.
27. Whittemore, J., K. Kim, K. Sakallah, SATIRE: A new incremental satisfiability

engine, DAC, 2001.
28. Wieringa, S. On incremental satisfiability and bounded model checking, DIFTS,

2011.

