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Abstract

We present a polynomial time algorithm for learning a large class of algebraic models of
computation. We show that any arithmetic circuit whose partial derivatives induce a low-
dimensional vector space is exactly learnable from membership and equivalence queries. As a
consequence, we obtain polynomial time algorithms for learning restricted algebraic branching
programs as well as noncommutative set-multilinear arithmetic formulae. In addition, we ob-
serve that the algorithms of [6, 4] can be used to learn depth-3 set-multilinear arithmetic circuits.
Previously only versions of depth-2 arithmetic circuits were known to be learnable in polyno-
mial time. Our learning algorithms can be viewed as solving a generalization of the well known
polynomial interpolation problem where the unknown polynomial has a succinct representation.
We can learn representations of polynomials encoding exponentially many monomials. Our tech-
niques combine a careful algebraic analysis of the partial derivatives of arithmetic circuits with
the “multiplicity automata” techniques due to [5, 4].

1 Introduction

Let p be an unknown multivariate polynomial over a fixed field. Given random input/output pairs
chosen from some distribution D, can a computationally bounded learner output a hypothesis
which will correctly approximate p with respect to future random examples chosen from D? This
problem, known as the multivariate polynomial learning problem, continues to be a fundamental
area of research in computational learning theory. If the learner is allowed to query the unknown
polynomial at points of his choosing (instead of receiving random examples) and is required to out-
put the exact polynomial p, then this problem is precisely the well-known polynomial interpolation
problem. Both the learning and the interpolation problem have received a great deal of attention
from the theoretical computer science community. In a learning context, multivariate polynomials
are expressive structures for encoding information (sometimes referred to as the “algebraic” ana-
logue of DNF formulae (see e.g. [4])) while polynomial interpolation has been studied in numerous
contexts and has important applications in complexity theory, among other fields [2, 34].

Previous research on this problem has focused on giving algorithms whose running time is
polynomial in the number of terms or monomials of the unknown polynomial. This is a natural way
to measure the complexity of learning and interpolating polynomials when the unknown polynomial
is viewed in the usual “sum of monomials” representation. That is to say, given that the polynomial
p =

∑t
i=1 mi is the sum of t monomials, we may wish to output a list of these monomials (and their

respective coefficients), hence using at least t time steps simply to write down the list of coefficients.
∗Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
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Several researchers have developed powerful interpolation and learning algorithms for a variety of
contexts which achieve time bounds polynomial in all the relevant parameters, including t (see for
example [4, 11, 16, 20, 23, 31]).

1.1 Arithmetic Circuits

In this paper we are concerned with learning succinct representations of polynomials via alternate
algebraic models of computation, most notably arithmetic circuits. An arithmetic circuit syntacti-
cally represents a multivariate polynomial in the obvious way: a multiplication (addition) gate out-
puts the product (sum) of the polynomials on its inputs. The input wires to the circuit correspond
to the input variables of the polynomial and thus the output of the circuit computes some polyno-
mial of the input variables. We measure the size of an arithmetic circuit as the number of gates. For
example, the standard “sum of monomials” representation of a polynomial p =

∑t
i=1 αixi1 · · ·xin

(αi is an arbitrary field element) corresponds precisely to a depth-2 arithmetic circuit with a single
sum gate at the root and t product gates feeding into the sum gate (each product gate multiplies
some subset of the input variables). To rephrase previous results on learning and interpolating
polynomials in terms of arithmetic circuits, we could say that depth-2 arithmetic circuits with a
sum gate at the root are learnable in time polynomial in the size of the circuit.

Moving beyond the standard “sum of products” representation, we consider the complexity
of learning higher depth arithmetic circuits. It is easy to see that there exist polynomial size
depth-3 (or even depth-2 with a product gate at the root) arithmetic circuits capable of computing
polynomials with exponentially many monomials. For example, let {Li,j}, 1 ≤ i, j ≤ n be a family
of n2 distinct linear forms over n variables. Then

∑n
i=1

∏n
i=1 Li,j is a polynomial size depth-3

arithmetic circuit but cannot be written as a sum of polynomially many monomials. Although
arithmetic circuits have received a great deal of attention in complexity theory and, more recently,
derandomization, the best known result for learning arithmetic circuits in a representation other
than the depth-2 sum of products representation is due to Beimel et al. [4] who show that depth-
2 arithmetic circuits with a product gate of fan in O(log n) at the root and addition gates1 of
unbounded fan-in in the bottom level are learnable in polynomial time, and that circuits that
compute polynomials of the form

∑
i

∏
j pi,j(xj) (pi,j is a univariate polynomial of polynomial

degree) can be learned in polynomial time2.

1.2 Our Results

We learn various models of algebraic computation capable of encoding exponentially many monomi-
als in their input size. Our algorithms work with respect to any distribution and require membership
query access to the concept being learned. More specifically we show that any class of polynomial
size arithmetic circuits whose partial derivatives induce a vector space of dimension polynomial
in the circuit size is learnable in polynomial time. This characterization generalizes the work of
Beimel et al. [4] and yields the following results:

• An algorithm for learning general depth-3 arithmetic circuits with m product gates each of
fan in at most d in time polynomial in m, 2d, and n, the number of variables.

1Beimel et al. actually allow addition gates to sum powers of the input variables, rather than just summing
variables.

2The latter class of circuit can be viewed as a restricted version of depth-3 circuits where the addition gates at
the bottom can only sum powers of a certain variable
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• The first polynomial time algorithm for learning polynomial size noncommutative formu-
lae computing polynomials over a fixed partition of the variables (note there are no depth
restrictions on the size of the formula).

• The first polynomial time algorithm for learning polynomial size read once, oblivious algebraic
branching programs.

As an easy consequence of our results we observe a polynomial time algorithm for learning the
class of depth-3 set-multilinear circuits: polynomials p =

∑m
i=1

∏n
j=1 Li,j(Xj) where each Li,j is a

linear form and the Xj ’s are a partition of the input variables. We note that this result also follows
as an easy corollary from the work of [4]. Finally we show that, with respect to known techniques,
it is hard to learn polynomial size depth-3 homogeneous arithmetic circuits in polynomial time3.
This indicates that our algebraic techniques give a fairly tight characterization of the learnability
of arithmetic circuits with respect to current algorithms.

1.3 Our Techniques

We use as a starting point the work on multiplicity automata due to Beimel et al. [4]. A multiplicity
automaton is a nondeterministic finite automaton where each transition edge has weight from the
underlying field (for a precise definition see Section 2). On input x, f(x) is equal to the sum,
over all accepting paths of the automaton on input x, of the product of the edge weights on that
accepting path. In [7, 4], the authors, building on work due to [27], show that multiplicity automata
can be learned in polynomial time and that these multiplicity automata can compute polynomials
in their standard sum of products representation (actually, as mentioned earlier, they can learn
any polynomial p of the form p =

∑n
i=1

∏m
j=1 pij(xj) where pij(xj) is a univariate polynomial of

polynomial degree). Their analysis centers on the Hankel matrix of a multiplicity automaton (see
section 2 for a definition).

We give a new characterization of learnability in terms of partial derivatives. In particular we
show that any polynomial whose partial derivatives induce a low dimensional vector space has a low
rank Hankel matrix. We conclude that any arithmetic circuit or branching program whose partial
derivatives form a low dimensional vector space can be computed by polynomial size multiplicity
automaton and are amenable to the learning algorithms developed in [7, 4]. As such, we output a
multiplicity automaton as our learner’s hypothesis.

Our next task is to show which circuit classes have partial derivatives that induce low dimen-
sional vector spaces. At this point we build on work due to Nisan [25] and Nisan and Wigderson
[26] (see also [33]) who analyzed the partial derivatives of certain arithmetic circuit classes in
the context of proving lower bounds and show that a large class of algebraic models have “well-
behaved” partial derivatives. For example we show that the dimension of the vector space of partial
derivatives induced by a set-multilinear depth-3 arithmetic circuit is polynomial in the size of the
circuit.

Our results suggest that partial derivatives are a powerful tool for learning multivariate poly-
nomials, as we are able to generalize all previous work in this area and give new results for learning
interesting algebraic models. Additionally, we can show there are depth-3 polynomial-size, ho-
mogeneous, arithmetic circuits whose partial derivatives induce a vector space of superpolynomial
dimension. We feel this motivates the problem of learning depth-3 homogeneous, polynomial-size
arithmetic circuits, as such a result would require significantly new techniques. We are hopeful

3A depth-3 circuit p =
Pm

i=1

Qdi
j=1 Li,j(x1, . . . , xn) is homogeneous if in each Li,j the free term is zero.
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that our characterizations involving partial derivatives will further inspire complexity theorists to
use their techniques for developing learning algorithms.

1.4 The Relationship to Lower Bounds

In the case of learning Boolean functions, the ability to prove lower bounds against a class of
Boolean circuits usually coincides with the ability to give strong learning algorithms for those
circuits. For example the well known lower bounds of H̊astad [19] against constant depth Boolean
circuits are used heavily in the learning algorithm due to Linial, Mansour, and Nisan [24]. Jackson
et al. [21] have shown that constant depth circuits with a majority gate, one of the strongest circuit
classes for which we can prove lower bounds (see [3]), also admit nontrivial learning algorithms.
Furthermore Jackson et al. [21] show that we will not be able to learn more complicated Boolean
circuits unless certain cryptographic assumptions are false.

Our work furthers this relationship in the algebraic setting. The models of algebraic com-
putation we can learn correspond to a large subset of the models of algebraic computation for
which strong lower bounds are known. For example Nisan [25] gives exponential lower bounds for
noncommutative formulae. Nisan and Wigderson [26] prove exponential lower bounds for depth-3
set-multilinear circuits. Moreover, in both papers the authors prove lower bounds by considering
the partial derivatives spanned by the circuit and the function computed by it, a method similar
to ours. Over finite fields there are exponential lower bounds for depth 3 circuits [15, 17], however
no exponential lower bounds are known for general depth-3 arithmetic circuits over infinite fields
(see [33]). As in the Boolean case, we exploit many of the insights from the lower bound literature
to prove the correctness of our learning algorithms.

A preliminary version of this paper appeared in COLT 2003 [22].

1.5 Organization

In Section 2 we review relevant learning results for multiplicity automata as well as state some
basic facts from algebraic complexity. In Section 3 we prove our main theorem, characterizing the
learnability of arithmetic circuits via their partial derivatives. In Sections 4, 5, and 6 we state our
main learning results for various arithmetic circuits and algebraic branching programs.

2 Preliminaries

We denote with F the underlying field, and with char(F) the characteristic of F. When studying a
polynomial f we either assume that char(F) = 0 or that the degree of each variable in f is smaller
than char(F).

2.1 The Learning Model

We will work in the model of exact learning from membership and equivalence queries, first in-
troduced by Angluin [1]. In this model a learner begins with some candidate hypothesis h for an
unknown concept f and is allowed access to both a membership query oracle and an equivalence
query oracle. The membership query oracle takes as input x and outputs f(x). The equivalence
query oracle takes as input the learner’s current hypothesis h and outputs a counterexample, namely
an input y such that h(y) 6= f(y). We assume that making a membership or an equivalence query
of length k takes time k. If no such counterexample exists then we say that the learner has exactly
learned f . We say that a concept f is exactly learnable in time t if there exists an exact learner
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for f whose running time is bounded by t. A concept class is considered to be exactly learnable in
polynomial time if for every f in the concept class there exists an exact learner for f running in
time polynomial in the size of the smallest description of f . Known transformations imply that if
a concept class is exactly learnable in polynomial time then it is also learnable in Valiant’s PAC
model in polynomial time with membership queries.

2.2 Multiplicity Automata

A multiplicity automaton is a nondeterministic automaton where each transition edge is assigned
a weight, and the output of the automaton for any input x is the sum over all accepting paths of
x of the products of the weights on each path.

Definition 1. Let Σ be an alphabet. A multiplicity automaton A of size r over Σ consists of a
vector γ̄ ∈ Fr (i.e. γ̄ = (γ1, . . . , γr)) and a set of matrices {µσ}σ∈Σ, where each µσ is an r × r
matrix over F. The output of A on input x = (x1, . . . , xn) ∈ Σn is defined to be the inner product
of (

∏n
i=1 µxi)1 and γ̄ where (

∏n
i=1 µxi)1 equals the first row of the matrix4

∏n
i=1 µxi. In other words

the output is the first coordinate of the vector (
∏n

i=1 µxi) · γ̄.

Intuitively each matrix µσ corresponds to the transition matrix of the automaton for symbol
σ ∈ Σ. Iterative matrix multiplication keeps track of the weighted sum of paths from state i to
state j for all i, j ≤ r. The first row of the iterated product corresponds to transition values starting
from the initial state and γ̄ determines the acceptance criteria.

Next we define the Hankel matix of a function:

Definition 2. Let Σ be an alphabet and f : |Σ|n → F. Fix an ordering of all strings in Σ≤n. We
construct a matrix H whose rows and columns are indexed by strings in Σ≤n in the following way.
For x ∈ Σd and y ∈ Σn−d, for some 0 ≤ d ≤ n, let the (x, y) entry of H be equal to f(x ◦ y). For
any other pair of strings (x, y) such that |x|+ |y| 6= n let Ha,b = 0. The resulting matrix H is called
the Hankel matrix of f for strings of length n. We define Hk to be the k-th “block” of H, i.e. Hk

is the submatrix defined by all rows of H indexed by strings of length exactly k and all columns of
H indexed by strings of length exactly n− k.

The following key fact relates the rank of the Hankel matrix of a function for strings of length
n with the size of multiplicity automaton computing f on inputs of length n:

Theorem 3. [13, 14, 4] Let f : Σn → F. Then the rank of the Hankel matrix of f (over F) is
equal to the size of the smallest multiplicity automaton computing f on inputs of length n.

Previous learning results have computed the rank of the Hankel matrices of particular poly-
nomials yielding a bound on the size of their multiplicity automata. In fact, Beimel et al. [4],
improving on [27], learn functions computed by multiplicity automata by iteratively learning their
corresponding Hankel matrices:

Theorem 4. [4] For f : Σn → F, let r be the rank of the Hankel matrix of f for strings of length
n. Then there exists an exact learning algorithm for f running in time polynomial in n, r, and
|Σ|. Furthermore the final hypothesis output by the learning algorithm is a multiplicity automaton
of size r over alphabet Σ. Moreover, if for every variable xi the degree of f as a polynomial in xi

(over F) is at most d, then the running time of the learning algorithm is polynomial in n, r and d.
4We denote µxn · µxn−1 · . . . · µx1 with

Qn
i=1 µxi .
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Our main technical contribution is to show that the rank of a function’s Hankel matrix is
bounded by (and in most cases equal to) the dimension of the vector space of a function’s partial
derivatives. Thus we reduce the problem of learning a polynomial to bounding the dimension of
the vector space of its partial derivatives.

2.3 Set-Multilinear Polynomials

In this paper we will work primarily with polynomials that respect a fixed partition of the input
variables:

Definition 5. Let X = ∪̇d
i=1Xi be a partition of the variables into d sets. A polynomial over the

variables X is called set-multilinear if every monomial m is of the form y1 · y2 · · · yd where each
yi is some variable from Xi. Thus, any set-multilinear f is also homogeneous and multilinear of
degree d.

We will sometime use the notation f(X1, . . . , Xd) to denote that f is set-multilinear w.r.t. the
partition X = ∪̇d

i=1Xi.

Example 6. Let X = (xi,j)1≤i,j≤d be a d×d matrix. Let Xi = {xi,1, . . . , xi,d} be the i-th row of X.
Clearly X = ∪̇d

i=1Xi. Note that both the determinant and the permanent of X are set-multilinear
polynomials with respect to this partition.

Another example is the class of depth-3 set-multilinear circuits, first defined5 by Nisan and
Wigderson [26], that computes only set-multilinear polynomials. To see this note that any polyno-
mial computed by a depth-3 set-multilinear circuits is of the form p =

∑n
i=1

∏m
j=1 Li,j(Xj) where

each Li,j is a linear form and the Xj ’s are a partition of the input variables. In later sections we
will show that certain algebraic branching programs also compute set-multilinear polynomials and
will therefore be amenable to our learning techniques.

Another notation that we use is the following:

Definition 7. Let X = ∪̇d
i=1Xi. For any 1 ≤ k ≤ d define

SM[X1, ..., Xk] = { M | M =
k∏

i=1

xi , xi ∈ Xi }.

Thus SM[X1, ..., Xk] is the set of all set-multilinear monomials of degree k.

2.4 Partial Derivatives

In this subsection we introduce some notation for computing partial derivatives.

Definition 8. Let M[x1, . . . , xn] be the set of monomials in the variables x1, . . . , xn. Let
Md[x1, . . . , xn] be the set of monomials of degree at most d in x1, . . . , xn.

Example 9. M2[x1, x2] = {1, x1, x2, x
2
1, x1 · x2, x

2
2}.

5In the original paper [26] these circuits are called multilinear circuits, but in recent works [28, 29, 30] they are
referred to as set-multilinear circuits.

6



Definition 10. Let d =
∑k

i=1 di. For a function f(x1, ..., xn) and a monomial M =
∏k

i=1 xi
di let

∂f

∂M
=

1
M !

· ∂df∏k
i=1 (∂xi)

di
,

where M ! =
∏k

i=1(di!).

Recall that in case that F is finite we only consider polynomials in which the degree of each
variable is smaller than the characteristic of F. In particular we will only consider partial derivatives
with respect to monomials in which each variable has degree smaller than char(F).

Example 11. Let f(x1, x2, x3) = x2
1x2 + x3 and M(x1, x2, x3) = x1x2. We have that

∂f

∂M
= 2x1, M ! = 1.

Definition 12. For a function f(x1, . . . , xn) and k ≤ n let

∂k(f) = { ∂f

∂M
| monomials M ∈ M[x1, ..., xk] }.

Also define
rankk(f) = dim (span (∂k(f))) .

Note that in ∂k(f) we only consider partial derivatives w.r.t. the first k variables.

Example 13. Let X = (xi,j)1≤i,j≤3 be a 3 × 3 matrix. Let f(X) = Det(X) (the determinant of
X). Consider the following order of the variables xi,j < xi′,j′ if i < i′ or i = i′ and j < j′. Then

∂6(X) = {x2,2x3,3 − x2,3x3,2, x2,1x3,3 − x2,3x3,1, x2,1x3,2 − x2,2x3,1, x3,1, x3,2, x3,3}.

Thus, rank6(f) = 6.

For set-multilinear polynomials we need a slightly different definition (although we use the same
notations).

Definition 14. Let X = ∪̇d
i=1Xi. For a set-multilinear polynomial f(X1, . . . , Xd) and k ≤ d let

∂k(f) = { ∂f

∂M
| monomials M ∈ SM[X1, ..., Xi] for 1 ≤ i ≤ k }.

We define s-rankk(f) = dim (span (∂k(f))).

Note that in particular we only consider partial derivatives with respect to monomials of the
form

∏k′

i=1 xi where xi ∈ Xi and k′ ≤ k. We will never consider partial derivative with respect to
the monomial x1 · x3 (again, xi ∈ Xi).

Example 15. Let X be a 3 × 3 matrix (as in Example 6 with d = 3). Let f =
Det(X) = Det(X1, X2, X3) be the determinant of X where where X1 = {x1,1, x1,2, x1,3}, X2 =
{x2,1, x2,2, x2,3}, andX3 = {x3,1, x3,2, x3,3}. Then ∂2(f) = {x3,1, x3,2, x3,3}. Thus, s-rank2(f) = 3 .

Note the difference from Example 13 where we ignored the fact that the determinant is a
set-multilinear polynomial.
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3 Characterizing Learnability via Partial Derivatives

In this section, we present our main criterion for establishing the learnability of both arithmetic
circuits and algebraic branching programs. We prove that any polynomial whose partial derivatives
form a low degree vector space induce low rank Hankel matrices. To relate the rank of the Hankel
matrix of C to its partial derivatives we will need the following multivariate version of Taylor’s
theorem:

Fact 16. Let X = {x1, . . . , xn} and let f(X) be a degree d polynomial. Let ρ = (ρ1 ◦ ρ2) be an
assignment to the variables, where ρ1 is an assignment to the first k variables and ρ2 as assignment
to the last n− k variables. For a monomial M define M(ρ) be value of M on assignment ρ. Then

f(ρ) = f(ρ1 ◦ ρ2) =
∑

M∈Md[x1,...,xk]

M(ρ1) ·
∂f

∂M
(~0 ◦ ρ2).

Proof. Because of the linearity of the partial derivative operator it is enough to prove the claim
for the case that f is a monomial. Let f(x1, . . . , xn) =

∏n
i=1 xi

di , where
∑

di ≤ d. Consider a
monomial M ∈ Md[x1, . . . , xk] given by M =

∏k
i=1 xi

ei , where
∑

ei ≤ d. Notice that if there is
some 1 ≤ i ≤ k with ei > di then ∂f

∂M = 0. Also notice that if for some 1 ≤ i ≤ k we have
that ei < di then ∂f

∂M (~0 ◦ ρ2) = 0 because the assignment to xi is zero. In particular the only
contribution to the sum will come from the partial derivative w.r.t. M0 =

∏k
i=1 xi

di that gives
∂f

∂M0
=

∏n
i=k+1 xi

di . In particular

∑
M∈Md[x1,...,xk]

M(ρ1) ·
∂f

∂M
(~0 ◦ ρ2) = M0(ρ1) ·

∂f

∂M0
(~0 ◦ ρ2) =

k∏
i=1

xi
di(ρ1) ·

n∏
i=k+1

xi
di(ρ2) = f(ρ).

Now we can state the main technical theorem of the paper:

Theorem 17. Let f(x1, . . . , xn) be a degree d polynomial. Then for every k ≤ n,

dim(Hk(f)) ≤ rankk(f).

If f is multilinear then equality holds.

Proof. We will define two matrices Vd,k and Ek such that rank(Ek) ≤ rankk(f) and Hk = Vd,k ·Ek.

Construction of Ek (Evaluation Matrix): We index the rows of Ek by the set of monomials
Md[x1, ..., xk] (in lexicographical order) and the columns by elements of Fn−k (in lexicographical
order). The (M,ρ) entry of Ek is equal to

(Ek)M,ρ =
∂f

∂M
(~0 ◦ ρ),

where ~0 is a length k vector and ρ is in Fn−k. This is equal to the value of the partial derivative
of f with respect to M at the point ~0 ◦ ρ. When k = 0, the matrix has only one row (the partial
derivative of order zero is the polynomial itself), in which the ρth position is equal to f(ρ). The
following is a standard fact from linear algebra:

Claim 18. rank(Ek) ≤ rankk(f), and equality holds if f is multilinear.
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Proof. Row M of Ek is the evaluation of ∂f
∂M on all inputs of the form ~0 ◦ ρ, where ~0 is a length

k vector and ρ is of length n − k. Hence each vector corresponds to part of the “truth table”
of a particular partial derivative of f in which the assignment to the first k variables is zero.
Clearly if a set of partial derivatives is linearly dependent then so are the corresponding rows.
Thus rank(Ek) ≤ rankk(f). When f ismultilinear, all of the variables in M disappear from the
resulting polynomial, and we actually get that the rows of Ek represent the entire truth table of
the corresponding partial derivative of f and hence rank(Ek) = rankk(f).

Construction of Vd,k (Generalized Vandermonde Matrix): The rows of Vd,k are indexed by el-
ements of Fk (in lexicographical order) and the columns are indexed by the set of monomials
Md[x1, ..., xk] (again in lexicographical order). The (ρ,M) entry of Vd,k is equal to M(ρ). When
k = 0 the matrix contains only one column, whose entries are equal to 1. We note that the column
rank of Vk is full (similarly to the usual Vandermonde matrix).

Consider the matrix product Vd,k · Ek. Notice that its (ρ1 ◦ ρ2) entry is equal to

(Vd,k · Ek)ρ1◦ρ2 =
∑

M∈Md[x1,...,xk]

M(ρ1)
∂f

∂M
(~0 ◦ ρ2)

which by Fact 16 equals f(ρ1 ◦ ρ2). Thus Vd,k · Ek = Hk. In particular rank(Hk) ≤ rank(Ek) ≤
rankk(f). When f is multilinear we have that, as before, rank(Ek) = rankk(f), and as the column
rank of Vk is full it follows that rank(Hk) = rank(Ek) = rankk(f).

By summing over all values of k we obtain

Corollary 19. Let f(x1, . . . , xn) be a polynomial. Then

dim(H(f)) ≤
n∑

k=0

rankk(f).

If f is multilinear then

dim(H(f)) =
n∑

k=0

rankk(f).

Now we consider set-multilinear polynomials. We must be careful here to take into account
partial derivatives with respect to monomials M that are not in SM[X1, . . . , Xi] for any i. Below,
we show that rows in Ek corresponding to such M ’s are zero.

Let f(X1, . . . , Xd) be a set-multilinear polynomial w.r.t. X = ∪̇Xi. We order the variables
of X as follows: first we set X1 < X2 < . . . < Xd, then we order the variables in each Xi in
some linear order. Consider the (M,ρ) entry in Ek. Notice that if M 6∈ ∪d

i=1SM[X1, . . . , Xi] then
∂f
∂M (~0 ◦ ρ) = 0. Indeed, assume that the first k variables cover the sets X1, . . . , Xi, as well as some
of the variables in the set Xi+1. Since we substitute 0 to the first k variables we see that M must
contain a variable from each X1, . . . , Xi (as otherwise, because f is set-multilinear, the entire M -th
row of Ek is zero). We also note that M can’t contain two variables from the set Xj (as again this
would imply that the M -th row is zero). In particular, in order for the M -th row to be non zero
we must have that M ∈ SM[X1, . . . , Xi] for that i. As a corollary we get

Corollary 20. Let f be a set-multilinear polynomial with an ordering of the variables as above.
For each 1 ≤ k ≤ n let ik be defined by∣∣∣∪ik

i=1Xi

∣∣∣ ≤ k <
∣∣∣∪ik+1

i=1 Xi

∣∣∣ .
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Then rank(Ek) ≤ s-rankik(f).

This corollary implies the following version of Corollary 19 for set-multilinear polynomials.

Theorem 21. Let X = ∪̇d
i=1Xi, with |X| = n. Let f(X1, . . . , Xd) be a set-multilinear polynomial.

Then

dim(H(f)) ≤ n
d∑

k=0

s-rankk(f).

Proof. According to Theorem 17 we have that dim(H(f)) =
∑n

k=0 rank(Ek). By corollary 20 we

get that rank(Ek) ≤ s-rankik(f), where ik is such that
∣∣∣∪ik

i=1Xi

∣∣∣ ≤ k <
∣∣∣∪ik+1

i=1 Xi

∣∣∣. In particular we
get that

dim(H(f)) =
n∑

k=0

rank(Ek) ≤(∗)
d∑

i=0

|Xi+1| · s-ranki(f) ≤ n
d∑

i=0

s-ranki(f),

where inequality (∗) follows from the observation that for every k, such that
∣∣∣∪i

j=1Xj

∣∣∣ ≤ k <∣∣∣∪i+1
j=1Xj

∣∣∣, it holds that ik = i, and so there are |Xi+1| such k’s.

4 Learning Depth-3 Arithmetic Circuits

In this section we learn depth-3 arithmetic circuits. The results that we obtain also follow from the
works of [6, 4], however we reprove them in order to demonstrate the usefulness of our techniques.
We begin by defining the model:

Definition 22. A depth 3 arithmetic circuit is a layered graph with 3 levels and unbounded fan-in.
At the top we have either a sum gate or a product gate. A depth 3 arithmetic circuit C with a sum
(product) gate at the top is called a ΣΠΣ (ΠΣΠ) circuit and has the following structure:

C =
m∑

i=1

d∏
j=1

Li,j(X)

where each Li,j is a linear function in the input variables X = x1, . . . , xn and m is the number of
multiplication gates. The size of the circuit is the number of gates, in this case O(md).

A ΣΠΣ circuit is a homogeneous circuit if all the linear forms are homogeneous linear forms
(i.e. the free term is zero) and all the product gates have the same fan in (or degree). In other
words every gate of the circuit computes a homogeneous polynomial. We will also be interested
in set-multilinear depth 3 circuits. To define this sub-model we need to impose a partition on the
variables:

Definition 23. A ΣΠΣ circuit is called set-multilinear with respect to X = ∪̇d
i=1Xi if every linear

function computed at the bottom is a homogeneous linear form in one of the sets Xi, and each
multiplication gate multiplies d homogeneous linear forms L1, . . . , Ld where every Li is over a
distinct set of variables Xi. That is to say a depth-3 set-multilinear circuit C has the following
structure:

C =
m∑

i=1

d∏
j=1

Li,j(Xj)

where Li,j is an homogeneous linear form.
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We now give an algorithm for learning set-multilinear depth-3 circuits. The algorithm is based
on the following lemma that characterizes the dimension of a set-multilinear circuit’s partial deriva-
tives:

Lemma 24. If a polynomial f is computed by a set-multilinear depth 3 circuit with m product
gates then for every 1 ≤ k ≤ d,

s-rankk(f) ≤ km.

Proof. First notice that for every product gate

P =
d∏

i=1

Li(Xi)

we have s-rankk(P ) ≤ k. Indeed, let 1 ≤ r ≤ k. then for any monomial M ∈ SM[X1, ..., Xr] we
have that

∂P

∂M
= αM ·

d∏
i=r+1

Li(Xi)

for some constant αM depending on M and P . Thus, as we vary over all r between 1 and k we
obtain only k distinct partial derivatives. The proof of the lemma now follows from the linearity
of the partial derivative operator.

Applying Lemma 24, Theorem 21, and Theorem 4 we obtain the following learning result:

Theorem 25. Let C be a set-multilinear depth-3 circuit with m product gates over n variables with
coefficients from a field F. Then C is learnable in time polynomial in m and n.

We note that this result also follows immediately from the results of [6, 4].

4.1 Learning General Depth 3 Circuits

We now give our learning algorithm for general depth-3 arithmetic circuits. Unlike the algorithm
in the set-multilinear case, this algorithm runs in time exponential in the degree of the circuit (and
polynomial in the other parameters). Thus we can learn in subexponential time any depth-3 circuit
of sublinear degree. The running time of the algorithm is determined by the following lemma:

Lemma 26. Let f : Fn → F be a polynomial over a variable set X of size n computed by a depth-3
circuit with m product gates each of degree at most d. Then for every 1 ≤ k ≤ d,

rankk(f) ≤ m ·
k∑

i=1

(
d

i

)
.

Proof. The proof is similar to the case of set-multilinear depth-3 circuits. Notice that for every
product gate

P =
d∏

i=1

Li(X)

we have rankk(P ) ≤
∑k

i=1

(
d
i

)
. Indeed, for any monomial M of degree r we have that

∂P

∂M
∈ span

{ ∏
i∈T

Li(X) | T ⊂ [d], |T | = d− r

}
.

Since there are at most m product gates we obtain the claimed bound.
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Applying the above lemma with Theorem 17 and Theorem 4 we get the following learning result
(that was also obtained in [6]):

Theorem 27. Let f : Fn → F be computed by a depth-3 arithmetic circuit with m product gates
each of fan in at most d. Then f is learnable in time polynomial in n, 2d, and m.

4.2 Discussion

The fact that the rank of f was bounded by the number of product gates is unique to set-multilinear
depth-3 circuits. For example consider the following depth-2 ΠΣ circuit:

f(z, x1, ..., xn) =
n∏

i=1

(z + xi).

For every ordering of the variables, the dimension of the span of the partial derivatives of f (and
hence the rank of the Hankel matrix of f) is exponential in n; this follows from the observation that
the coefficient of zd is the n − d symmetric polynomial whose partial derivatives have dimension
2Ω(n−d) (see [33]). Thus it is no surprise that Beimel et al. [4] only considered depth-2 ΠΣ circuits
where the product gate at the root has fan in at most O(log n); fan in larger than O(log n) would
correspond to Hankel matrices of superpolynomial dimension and thus would not be learnable by
multiplicity automata techniques.

To show the limits of current learning techniques we point out that the following homogeneous
depth-3 arithmetic circuit

C ′ =
n∏

i=1

(z + xi) +
n∏

i=1

(v + ui)

is both irreducible and has exponentially many linearly independent partial derivatives. As its
degree is n we can only learn it in time exponential in n. We leave open the problem of learning
homogeneous depth-3 arithmetic circuits (as well as the more difficult problem of learning general
depth-3 arithmetic circuits) of super logarithmic degree.

5 Learning Classes of Algebraic Branching Programs

Algebraic and Boolean branching programs have been intensely studied by complexity theorists
and have been particularly fruitful for proving lower bounds. Considerably less is known in the
learning scenario — Bshouty et al. [12] and Bergadano et al. [5] have shown some partial progress
for learning restricted width Boolean branching programs. In this section we will show how to learn
any polynomial size algebraic branching program that is both read once and oblivious. As such we
will be able to show that multiplicity automata are essentially equivalent to read once, oblivious
algebraic branching programs, a characterization that may be of independent interest. We begin
with a general definition of algebraic branching programs:

Definition 28. An algebraic branching program (ABP), first defined by Nisan [25], is a directed
acyclic graph with one vertex of in-degree zero, which is called source, and one vertex of out-degree
zero, which is called the sink. The vertices of the graph are partitioned into levels numbered 0, ..., d.
Edges are labeled with a homogeneous linear form in the input variables and may only connect
vertices from level i to vertices from level i+1. The source is the only vertex at level 0 and the sink
is the only vertex at the level d. Finally the size of the ABP is the number of vertices in the graph.
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The polynomial that is computed by an ABP is the sum over all directed paths from the source
to the sink of the product of linear functions that labeled the edges of the path. It is clear that an
ABP with d + 1 levels computes a homogeneous polynomial of degree d.

In this section we will show how to learn a natural restriction of an algebraic branching program
as mentioned above: the read once, oblivious algebraic branching program or ROAB.

Definition 29. Let X = ∪̇d
i=1Xi be a partition of the input variables into d disjoint sets. An ABP

is oblivious if for every level i only one set of variables Xj appears. A function is a ROAB, a read
once, oblivious algebraic branching program, if it is an oblivious ABP and every set of variables Xj

appears in at most one level.

We are interested in learning ROABs with respect to the partition X = ∪̇d
i=1Xi in which the

variables in Xi appear on edges from level i to level i+1. In this section we measure the complexity
of a polynomial in terms of its smallest ROAB:

Definition 30. For a polynomial f we define B(f) to be the size of the smallest ABP for f . For
a set-multilinear polynomial f we denote OB(f) to be the size of the smallest ROAB for f .

The main theorem of this section shows that for set-multilinear polynomials, the size of its
smallest ROAB is equal to the dimension of the vector space induced by its partial derivatives:

Theorem 31. For a set-multilinear polynomial f(X1, ..., Xd) we have that

d∑
k=1

s-rankk(f) = OB(f).

To prove Theorem 31 we will need the following theorem which is implicit in Nisan [25]:

Theorem 32. [25] Let f(X1, . . . , Xd) be a set-multilinear polynomial. For each 0 ≤ k ≤ d define
a matrix Mk(f) as follows:

• Each row is labeled with a monomial M1 ∈ SM[X1, . . . , Xk].

• Each column is labeled with a monomial M2 ∈ SM[Xk+1, . . . , Xd].

If k = 0 then M1 = 1 and if k = d then M2 = 1. The (M1,M2) entry of Mk(f) is equal to the
coefficient of the monomial M1 ·M2 in f . We have that

OB(f) =
d∑

k=0

rank(Mk(f)).

Proof of Theorem 31: We will show that rank(Mk(f)) = s-rankk(f) which, combined with The-
orem 32, completes the proof. Consider a row of Mk(f) corresponding to some monomial M ∈
SM[X1, . . . , Xk]. Since f is a set-multilinear polynomial it follows that ∂f

∂M is equal to
∑

t αtMt

where each αt is an element of the field and Mt ∈ SM[Xk+1, . . . , Xd], for all t. Notice, however
that row M of Mk(f) is precisely equal to the row vector (α1, . . . , αt). Hence row M of Mk(f)
is equal to the coefficients of the partial derivative of f viewed as a set-multilinear polynomial in
Xk+1, . . . , Xd. It is a standard fact from linear algebra that the dimension of a vector space spanned
by a set of polynomials is equal to the rank of the matrix of their coefficients.

Combining Theorem 31 and Theorem 21 we see that any polynomial-size ROAB obeying the above
partition is computed by a polynomial-size multiplicity automata. Applying the learning algorithm
of Beimel et al. [4] we obtain
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Theorem 33. Let X = ∪̇d
i=1Xi. Let f(X1, . . . , Xd) be a set-multilinear polynomial that is computed

by a ROAB of size m. Then f is learnable in time polynomial in m, and |X|.

Notice that ROABs can be thought of as the arithmetic generalization of OBDDs (Ordered
Binary Decision Diagrams, which are also known as oblivious read once branching programs), a
model for which Bergadano et al. [5] gave a learning algorithm based on multiplicity automata.

5.1 Equivalence of ROABs and Multiplicity Automata

We can now prove that ROABs are essentially equivalent to multiplicity automata. Since our
learning algorithm outputs as a hypothesis a multiplicity automaton, Theorem 33 implies that
every ROAB of size m in n variables is computed by a multiplicity automaton of size polynomial in
m and n. We cannot show that every multiplicity automaton is computed by a ROAB, but we can
show that every multiplicity automaton is computed by a ROAB which computes higher degree
polynomials at each edge.

Definition 34. Define a ROAB of degree d to be a ROAB where every edge is labelled with a
polynomial of degree d.

Lemma 35. Let f be any polynomial over n variables computed by an algebraic multiplicity au-
tomaton of size r. Assume also the the degree of each variable in f is bounded by d. Then f can
be computed by a ROAB with n + 2 levels of size nr + 2 and degree d.

Proof. Let S ⊆ Σ be a subset of the alphabet of size d + 1. Let f be computed by a multiplicity
automaton A of size r consisting of the set of matrices {µσ}σ∈Σ and the vector ~γ ∈ Σr. Construct
a matrix T where the i, j entry of T is a degree d univariate polynomial, Ti,j , interpolating the
(i, j) entry of µσ for every σ ∈ S. That is, Ti,j(σ) is the (i, j) entry of µσ (for σ ∈ S). Consider
a ROAB with n + 2 levels each of size r where every level 1 ≤ i ≤ n has a copy of the r states of
A (in particular we enumerate the vertices in each level with {1, . . . , r}). Connect every vertex at
level k, for 1 ≤ k ≤ n− 1, to every vertex at level k + 1. For the j-th vertex in level k and the i-th
vertex in level k + 1 we label edge (j, i) with the polynomial in the (i, j) entry of T , having xk as
its variable (i.e. the label is Ti,j(xk)). Connect every vertex in level n to the sink and label edge
(i, sink) with the polynomial in the T1,i(xn) (recall the output of a multiplicity automata is the
inner product of ~γ with the first row of the product of the µσ’s). Also connect the source to every
one of the r vertices in the first level and label the edge to vertex i with γi. It is clear that this
ROAB computes a polynomial of degree at most d in each variable, and that for every input from
Sn the output of the ROAB agrees with f . Therefore, by the following version of the Schwartz
Zippel Lemma [32, 36] we get that this ROAB computes f as required.

Lemma 36 ([32, 36]). Let f, g : Fn → F be two n-variate polynomials over F. Assume that the
degree of each variable in f and g is at most d. Let S ⊆ F be a set of size d+1. If for every x ∈ Sn

we have that f(x) = g(x) then f = g.

6 Learning Noncommutative Formulae

In this section we show how to learn another type of arithmetic circuits: polynomial size non-
commutative formulae. A noncommutative formula is an arithmetic formula where multiplication
does not necessarily commute; i.e. different orderings of inputs to a product gate result in different
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outputs. Intuitively this restriction makes it difficult for a formula to use the power of cancellation.
This may seem to be a strange restriction, but it is very natural in the context of function compu-
tation where an ordering is enforced on groups of variables. For example, the product of k matrices
M1, . . . ,Mk where matrix Mi uses variables from a set Xi can be viewed as a set-multilinear non-
commutative polynomial over an ordering of the variables X = ∪̇Xi (changing the order of the
matrices will result in a different output). In addition, many of the known algorithms for comput-
ing polynomials are non-commutative by nature. For example, the well known algorithm for the
above mentioned iterated matrix multiplication can be viewed as a non-commutative set-multilinear
circuit. Similarly, Ryser’s algorithm for computing the permanent (see, e.g. [35]) can be viewed as
a non-commutative set-multilinear formula.

Nisan proved the first lower bounds for noncommutative formulae in [25]; here we will give the
first learning algorithm for set-multilinear polynomials computed by noncommutative formulae.
Previously only algorithms for learning read-once arithmetic formulae were known (see e.g. [18, 10,
9, 8]). We begin with a general definition for arithmetic formulae:

Definition 37. An arithmetic formula is a tree whose edges are directed towards the root. The
leaves of the tree are labeled with input variables. Every inner vertex is labeled with one of the
arithmetic operations {+,×}. Every edge is labeled with a constant from the field in which we are
working. The size of the formula is defined to be the number of vertices.

An arithmetic formula computes a polynomial in the obvious manner. We now define non-
commutative formulas. Roughly, a formula is noncommutative if for any two input variables xi and
xj , xixj − xjxi 6= 0. More formally, let F{x1, ..., xn} be the polynomial ring over the field F in the
non-commuting variables x1, . . . , xn. That is, in F{x1, ..., xn} the formal expressions xi1 ·xi2 · . . . ·xik

and xj1 · xj2 · . . . · xjl
are equal if and only if k = l and ∀m im = jm (whereas in the commutative

ring of polynomials we have that any monomial remains the same even if we permute its variables,
e.g. x1 · x2 = x2 · x1). A non-commutative arithmetic formula is an arithmetic formula where
multiplications are done in the ring F{x1, ..., xn}. As two polynomials in this ring do not necessarily
commute, we have to distinguish in every multiplication gate between the left son and the right
son. For a polynomial f let F (f) be the size of the smallest noncommutative formula computing
f . When considering non-commutative formulas we are interested in syntactic computations, e.g.
given the polynomial x1 · x2 we want the formula to output this exact polynomial and not the
polynomial x2 · x1, even though they are semantically equal when considering assignments from a
field. In particular the formula (x1 − x2) · (x1 + x2) does not compute the polynomial x2

1 − x2
2.

Note that every polynomial can be computed by a non-commutative formula, and that given a
non-commutative formula we can evaluate it over a commutative domain.

In [25] Nisan proved exponential lower bounds on the size of noncommutative formula computing
the permanent and the determinant. An important ingredient of Nisan’s result is the following
lemma relating noncommutative formula size to algebraic branching program size:

Lemma 38. [25] Let f(X1, . . . , Xd) be a set-multilinear polynomial. Then

B(f) ≤ d(F (f) + 1)

Using this we can give the following relationship between noncommutative formulae and
ROABs:

Theorem 39. Let f(X1, . . . , Xd) be a set-multilinear polynomial computed by a noncommutative
formula of size m, then f is computed by a ROAB of size d(m + 1).
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Proof. Applying Lemma 38 we see that f is computed by an algebraic branching program B of size
d(m + 1). We will show that B is also computed by a ROAB of size d(m + 1), by constructing a
ROAB with d + 1 levels, in which the variables in Xk label the edges that go from level k − 1 to
level k.

Consider the set of edges in B from level i− 1 to i. Assume that two different sets of variables
appear from level i − 1 to level i say Xi and Xj . Then the output of B will contain a monomial
of the form and Y xjZ where xj ∈ Xj , Y is a set of variables appearing in levels less than i− 1 in
B, and Z is the set of variables appearing in levels greater than i in B. Note however that f is a
set-multilinear polynomial, in particular in each monomial of f the variables from Xj appear as the
j-th multiplicand. In particular no monomial of the form Y xjZ appear in f . Thus, the coefficient
of any monomial Y xjZ must be zero. As such, we can substitute the constant 0 for all of the
variables Xj appearing on these edges and obtain an oblivious branching program B′ computing
the same polynomial as B. B′ can be made read-once in a similar fashion. At the end we get a
ROAB with d + 1 levels in which the variables from Xi label the edges from level i − 1 to level
i.

Combining Theorem 39 with Theorem 33 we obtain

Theorem 40. Let f(X1, . . . , Xd) be a set-multilinear polynomial, over X = ∪̇d
i=1Xi, that is com-

putable by a noncommutative formula of size m with coefficients from a field F. Then f is learnable
in time polynomial in |X| and m.
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