
The purpose here is to classify

computational problems according to

their complexity.

For that purpose, we need first to

agree on a computational model.

We'll remind you what a Turing

Machine is --- you did study about it in

previous courses.

This time we will introduce some

bounds by which one can introduce

some complexity classes.

We'll go over different types of Turing

machines.

Turing Machines

Turing Machines (2)

Turing Machines (3)

Church-Turing Hypothesis

TM notes

 TM Page 1

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&12&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&1E&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4DE2353-669D-4683-93B6-F64B5F2D629B}&13&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Here is how a Turing machine works:

It has an infinite tape with letters

from a given alphabet written on

every cell.

-

It has a reading head and a finite

state machine.

-

The read/write head, depending on

the state the machine is in, can

manipulate the cell it is looking at and

then go either left or right.

-

Formally, a Turing Machine's

description consists of the following:

A set of possible states the machine

can be in

-

The alphabet of the input-

Its extension the tape alphabet,-

The transition function, which

determines which action to take in

the next step,

-

The state the machine starts in,-

The accepting state,-

And the rejecting state (there could

be more than one such state).

-

 TM Page 2

The transition function determines,

for a given state and the content of

the cell the read/write head is

looking at:

which state to be at next, -

which letter to write on that cell,-

and whether to go right or left.-

The computation starts with:

The input written on the left most

part of tape

-

The head is on the left most cell.-

The state is starting state.-

 TM Page 3

In computation steps, the transition

function is applied to arrive at the new

configuration.

We assume that the tape is infinite but

only to the right direction.

Let us now count the number of

possible configurations a machine can

have.

Assuming the machine uses only N

cells of its infinite tape, we'd only

consider:

The content of the tape,-

The position of the read/write head,-

And the machine's state.-

 TM Page 4

Let us now consider a simple Turing

machine for a language you're familiar

with.

You have already seen that this

language cannot be accepted by a finite

automata, or by context free grammar.

Here is a description of the transition

function for this machine.

 TM Page 5

And here is a demo.

The deterministic TM model captures

our notion of algorithm.

Next, we introduce a more general

computational model of a multi tape

deterministic TM,

and show it is equivalent to the

deterministic TM model.

 TM Page 6

In a multi tape TM we have more than

one tape, each with its own read/write

head.

There is, however, only one state the

machine is in at any given configuration!

In the starting configuration the input

is written on the first tape.

Syntactically, the only difference

between a regular TM and one with k

tapes is in the transition function:

It takes as input k letters, and outputs

k replacement letters, and k left/right

instructions (plus a change in the

machine's state) .

 TM Page 7

One can easily prove that these two

models are equivalent.

The more general, obviously unproven

hypothesis, suggested by Church and

implicit in Turing's work, is that these

models capture our intuitive notion of

algorithm.

Some later models of computation may

disagree with that hypothesis, in

particular randomized or quantum

algorithms;

we may discuss this late in the course.

Church-Turing Hypothesis

We now consider another variation of

the TM model, however, one which does

not at all correspond to any realistic

notion of algorithm!

It is that of a non deterministic

algorithm.

It can be translated into a

deterministic one, however, with a huge

blow up in time!

No better translation is known!

 TM Page 8

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4DE2353-669D-4683-93B6-F64B5F2D629B}&13&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Syntactically, the difference

between deterministic and non

deterministic TM is only the

transition function, which now

becomes a transition relation.

For every state and letter it returns:

A set of possible pairs of letter plus

move, each of which is a possible

computation step to take next.

-

Non-deterministic Turing Machines

A deterministic computation is a sequence of configurations each being the result of applying the

transition function to the previous configuration.

In a non deterministic computation

there may be more than one transition

possible from each configuration, which

we can describe by a computation tree.

Time corresponds to the depths of the

tree, hence the size of the tree may

be exponential in the non deterministic

running time.

It suffices that one of the non

deterministic computations (one of the

paths in the non deterministic

computation tree) accepts for the

input to be accepted.

 TM Page 9

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4424620-B2A9-4A9B-A06B-15B2D05A223F}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

An alternative perspective of non

deterministic computation is to think

of it as a game between two players:

one is magically powerful but

untrustworthy; it tries to convince the

other player, who has limited

resources, that the input is in a given

language L.

The first player sends the second

player a witness that the input W is in

the language L, which the second player

has to verify efficiently.

Here are a couple of examples of the

two perspective on non deterministic

algorithms.

 TM Page 10

Our simulation of non deterministic

algorithms by deterministic ones uses

three tapes:

One for the input,-

one to guide us which computation

path to take,

-

And the third to simulate that

computation.

-

This simulation goes over all possible

computations:
If even one accepts, it accepts.-

If all rejects, it rejects.-

If one accepts, it accepts. -

If all rejects, it rejects.-

Note that the time this simulation

requires is exponential in the

nondeterministic-time the machine

runs in, t(n), and the space the

simulation requires is O(t(n)).

 TM Page 11

With an agreed model of computation,

by introducing bounds on resources

required to compute the given problem,

we are ready to define complexity

classes.

We can define time and non

deterministic time complexity classes.

 TM Page 12

As well as space and non deterministic

space complexity classes.

How can we define sub linear space

classes where their input itself takes

linear space?

Space Complexity

Let us now prove very simple

containments between time and space

complexity.

Note that a deterministic machine that

repeats a configuration twice must in

fact be in an infinite loop.

The number of configurations is

essentially exponential in the number

of cells the machine uses.

 TM Page 13

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4674FE1C-AB75-404C-AC58-D9A311E0C841}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

The picture presents a sequence of

containments between complexity

classes.

Are you sure they are all true?

Which ones can you prove at this

point?
Are any of these containments strict?

Can you name the smallest class

containing each of the problems?

Alternatively, can you name the

Gumby?

We would like to find out if some of

these classes differ – so far it is quite

possible all of the classes just defined

are in fact the same.

Separating between classes of

problems is not at all trivial -- there is,

however, one prime example you most

probably have studied before.

Let us now consider a simple proof that

the halting problem is undecidable:
Assume by a way of contradiction a

procedure A, that on inputs B and X,

decides whether the procedure B halts

on input X.

Construct procedure C that on input W,

calls on procedure A with W being both

B and X;

if A returns yes, C goes into an infinite

loop, otherwise it stops and returns

some answer.

Now run C with its input W being C

itself: both options end up in a

contradiction.

Halting Problem

 TM Page 14

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={F763474C-AB0D-46C4-9455-864A0A0849A0}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

We now apply a similar technique

(known as Diagonalizing or self

references and introduced by Cantor

and Gödel) to show the class P is

strictly smaller than the class

EXPTIME.

We construct a language in EXPTIME

which, however, is not in P.
Inputs in that language must consist of

a description of a TM and then two

numbers written in unary.

The input is accepted if the machine

described does not accept the input

itself within the time specified by the

two numbers.

Diagonalization

Their languages are in EXPTIME since

a universal TM can simulate the

computation of the machine on the

input, and the running time is

exponential (the two numbers written

in unary).

Assume by way of contradiction a TM

with polynomial bounds on its running

time that accepts L. Run it on its own

description with the numbers

corresponding to the bound of its

running time.
Both possible outcomes result in a

contraction.

 TM Page 15

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={FCA7AB60-B781-45E8-B4AA-0AD1455C7708}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Let us now introduce a new class, coNP,

which comprises all languages whose

complement language is in the class NP.

The class P is clearly contained in both

classes NP and coNP.

Can you prove any other relationships

between these three classes?

 TM Page 16

Turing Machine•

Church-Turing Hypothesis•

Complexity Theory•

Halting Problem•

Non Deterministic TM•

Complexity Classes•

P•

NP•

co-NP•

EXPTIME•

L•

NL•

PSPACE•

 TM Page 17

http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Church-Turing_thesis
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Co-NP-complete
http://en.wikipedia.org/wiki/EXPTIME
http://en.wikipedia.org/wiki/L_(complexity)
http://en.wikipedia.org/wiki/NL_(complexity)
http://en.wikipedia.org/wiki/PSPACE

