
The purpose here is to classify 

computational problems according to 

their complexity. 

For that purpose, we need first to 

agree on a computational model.

We'll remind you what a Turing 

Machine is --- you did study about it in 

previous courses. 

This time we will introduce some 

bounds by which one can introduce 

some complexity classes.

We'll go over different types of Turing 

machines.

Turing Machines

Turing Machines (2)

Turing Machines (3)

Church-Turing Hypothesis

TM notes
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Here is how a Turing machine works:

It has an infinite tape with letters 

from a given alphabet written on 

every cell. 

-

It has a reading head and a finite 

state machine.

-

The read/write head, depending on 

the state the machine is in, can 

manipulate the cell it is looking at and 

then go either left or right.

-

Formally, a Turing Machine's 

description consists of the following:

A set of possible states the machine 

can be in

-

The alphabet of the input-

Its extension the tape alphabet,-

The transition function, which 

determines which action to take in 

the next step,

-

The state the machine starts in,-

The accepting state,-

And the rejecting state (there could 

be more than one such state).

-
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The transition function determines, 

for a given state and the content of 

the cell the read/write head is 

looking at:

which state to be at next, -

which letter to write on that cell,-

and whether to go right or left.-

The computation starts with:

The input written on the left most 

part of tape

-

The head is on the left most cell.-

The state is starting state.-
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In computation steps, the transition 

function is applied to arrive at the new 

configuration. 

We assume that the tape is infinite but 

only to the right direction.

Let us now count the number of 

possible configurations a machine can 

have.

Assuming the machine uses only N 

cells of its infinite tape, we'd only 

consider:

The content of the tape,-

The position of the read/write head,-

And the machine's state.-
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Let us now consider a simple Turing 

machine for a language you're familiar 

with. 

You have already seen that this 

language cannot be accepted by a finite 

automata, or by context free grammar.

Here is a description of the transition 

function for this machine.
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And here is a demo.

The deterministic TM model captures 

our notion of algorithm.

Next, we introduce a more general 

computational model of a multi tape

deterministic TM,

and show it is equivalent to the 

deterministic TM model.
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In a multi tape TM we have more than 

one tape, each with its own read/write 

head. 

There is, however, only one state the 

machine is in at any given configuration!

In the starting configuration the input 

is written on the first tape.

Syntactically, the only difference 

between a regular TM and one with k 

tapes is in the transition function:

It takes as input k letters, and outputs 

k replacement letters, and k left/right 

instructions (plus a change in the 

machine's state) .

   TM Page 7    



One can easily prove that these two 

models are equivalent.

The more general, obviously unproven 

hypothesis, suggested by Church and 

implicit in Turing's work, is that these 

models capture our intuitive notion of 

algorithm. 

Some later models of computation may 

disagree with that hypothesis, in 

particular randomized or quantum 

algorithms;

we may discuss this late in the course.

Church-Turing Hypothesis

We now consider another variation of 

the TM model, however, one which does 

not at all correspond to any realistic 

notion of algorithm!

It is that of a non deterministic 

algorithm. 

It can be translated into a 

deterministic one, however, with a huge 

blow up in time!

No better translation is known!
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Syntactically, the difference 

between deterministic and non 

deterministic TM is only the 

transition function, which now 

becomes a transition relation.

For every state and letter it returns:

A set of possible pairs of letter plus 

move, each of which is a possible 

computation step to take next.

-

Non-deterministic Turing Machines

A deterministic computation is a sequence of configurations each being the result of applying the 

transition function to the previous configuration.

In a non deterministic computation 

there may be more than one transition 

possible from each configuration, which 

we can describe by a computation tree.

Time corresponds to the depths of the 

tree, hence the size of the tree may 

be exponential in the non deterministic 

running time. 

It suffices that one of the non 

deterministic computations (one of the 

paths in the non deterministic 

computation tree) accepts for the 

input to be accepted.
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An alternative perspective of non 

deterministic computation is to think 

of it as a game between two players: 

one is magically powerful but 

untrustworthy; it tries to convince the 

other player, who has limited 

resources, that the input is in a given 

language L. 

The first player sends the second 

player a witness that the input W is in 

the language L, which the second player 

has to verify efficiently.

Here are a couple of examples of the 

two perspective on non deterministic 

algorithms.
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Our simulation of non deterministic 

algorithms by deterministic ones uses 

three tapes: 

One for the input,-

one to guide us which computation 

path to take, 

-

And the third to simulate that 

computation.

-

This simulation goes over all possible 

computations:
If even one accepts, it accepts.-

If all rejects, it rejects.-

If one accepts, it accepts. -

If all rejects, it rejects.-

Note that the time this simulation 

requires is exponential in the 

nondeterministic-time the machine 

runs in, t(n), and the space the 

simulation requires is O(t(n)).
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With an agreed model of computation, 

by introducing bounds on resources 

required to compute the given problem, 

we are ready to define complexity 

classes.

We can define time and non 

deterministic time complexity classes.
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As well as space and non deterministic 

space complexity classes.

How can we define sub linear space 

classes where their input itself takes 

linear space?

Space Complexity

Let us now prove very simple 

containments between time and space 

complexity.

Note that a deterministic machine that 

repeats a configuration twice must in 

fact be in an infinite loop.

The number of configurations is 

essentially exponential in the number 

of cells the machine uses.
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The picture presents a sequence of 

containments between complexity 

classes. 

Are you sure they are all true? 

Which ones can you prove at this 

point? 
Are any of these containments strict?

Can you name the smallest class 

containing each of the problems?

Alternatively, can you name the 

Gumby?

We would like to find out if some of 

these classes differ – so far it is quite 

possible all of the classes just defined 

are in fact the same.

Separating between classes of 

problems is not at all trivial -- there is, 

however, one prime example you most 

probably have studied before.

Let us now consider a simple proof that 

the halting problem is undecidable:
Assume by a way of contradiction a 

procedure A, that on inputs B and X, 

decides whether the procedure B halts 

on input X. 

Construct procedure C that on input W, 

calls on procedure A with W being both 

B and X;

if A returns yes, C goes into an infinite 

loop, otherwise it stops and returns 

some answer. 

Now run C with its input W being C 

itself: both options end up in a 

contradiction.

Halting Problem
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We now apply a similar technique 

(known as Diagonalizing or self 

references and introduced by Cantor 

and Gödel) to show the class P is 

strictly smaller than the class 

EXPTIME. 

We construct a language in EXPTIME 

which, however, is not in P. 
Inputs in that language must consist of 

a description of a TM and then two 

numbers written in unary. 

The input is accepted if the machine 

described does not accept the input 

itself within the time specified by the 

two numbers.

Diagonalization

Their languages are in EXPTIME since 

a universal TM can simulate the 

computation of the machine on the 

input, and the running time is 

exponential (the two numbers written 

in unary). 

Assume by way of contradiction a TM 

with polynomial bounds on its running 

time that accepts L. Run it on its own 

description with the numbers 

corresponding to the bound of its 

running time. 
Both possible outcomes result in a 

contraction.
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Let us now introduce a new class, coNP, 

which comprises all languages whose 

complement language is in the class NP.

The class P is clearly contained in both 

classes NP and coNP.

Can you prove any other relationships 

between these three classes?
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Turing Machine•

Church-Turing Hypothesis•

Complexity Theory•

Halting Problem•

Non Deterministic TM•

Complexity Classes•

P•

NP•

co-NP•

EXPTIME•

L•

NL•

PSPACE•
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