TM notes

- Complexity Theory classifies computational

problems according to the amount of resources
(say time) required

+ Revisit the computational model “Turing

Machine”, this time discuss bounds on its
resources and how robust they are

* Deterministic Turing machines
* Multi-tape Turing machines

* Non-deterministic Turing machines
* The Church-Turing hypothesis

* Complexity classes as bounded TMs. Y,

-
-

The purpose here is to classify
computational problems according to
their complexity.

For that purpose, we need first to
agree on a computational model.

We'll remind you what a Turing
Machine is --- you did study about it in
previous courses.

This time we will introduce some
bounds by which one can introduce
some complexity classes.

We'll go over different types of Turing
machines.

Turing Machines
Turing Machines (2)
Turing Machines (3)

Church-Turing Hypothesis

TM Page 1

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&12&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={10515429-66A9-4012-944F-FA3326A01C15}&1E&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4DE2353-669D-4683-93B6-F64B5F2D629B}&13&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Here is how a Turing machine works:

- It has an infinite tape with letters
from a given alphabet written on
every cell.

- It has a reading head and a finite
state machine.

- The read/write head, depending on
the state the machine isin, can
manipulate the cell it is looking at and
then go either left or right.

SIP 128-129 :
' TR Yy TM: Formally
the following objects:

k. 1 Pope 3 /4 .
@) finite set of states g?qkifi%{%iﬁ

. input alphabet: a finite set Excluding ‘-"’

. 4 tape alphabet sl and ¢!

!

5:QxI—-QxI'<{L,R} - the transition function
.

o start state 1%’
oee | €S accept state %

o) e reject state <tV rect?accept
CGre] €W e S Qreject g

\l

Jql

Formally, a Turing Machine's
description consists of the following:

- Aset of possible states the machine
can bein

- The alphabet of the input

- Its extension the tape alphabet,

- The transition function, which
determines which action to take in
the next step,

- The state the machine starts in,

- The accepting state,

- And the rejecting state (there could
be more than one such state).

TM Page 2

Transition

¢
;S(QB:b):(%'G'R) J

The transition function determines,
for a given state and the content of
the cell the read/write head is
looking at:

- which state to be at next,

- which |letter to write on that cell,

- and whether to go right or left.

Computations

Initial Configuration
* For input “abaabaab”

{ Head
* On leftmost cell

“State
* starting

The computation starts with:
- The input written on the left most
part of tape
- The head is on the left most cell.
- The state is starting state.

TM Page 3

" Computation Step

{
v X

'/—‘
| 8(90.0)=(9s.0.R) "

2

|

+ The head cannot move to the left of the
leftmost square

In computation steps, the transition
function is applied fo arrive at the new
configuration.

Weassume that the tape is infinite but
only to the right direction.

Configurations

How many die?

Turing machine that uses N ¢

iz

ITINXN > QY

ong may a
ells have?

Let us now count the number of

possible configurations a machine can
have.

Assuming the machine uses only N
cells of its infinite tape, we'd only
consider:

- The content of the tape,
- The position of the read/write head,
- And the machine's state.

TM Page 4

e TR0) My firstTi
mw—'w
= {90.91.92.93.94. accept reject})
= {a,b,c}
= {a,b,c,_.X.Y.Z}

specified next...

s
" - thestart state. &]
7| €Q - the accept state. Y&)

| €Q - the reject state.

Let us now consider a simple Turing
machine for a language you're familiar
with.

You have already seen that this
language cannot be accepted by a finite
automata, or by context free grammar.

The Transitions Function

-
/Y L (> transitions
~an 92 not specified
% \‘:_\ // here yield
N\ 93
@ .
94
)
Complex 10

Here is a description of the transition ‘
function for this machine.

TM Page 5

Demonstration

@5
y &
L®

And here is a demo.

Equivalence between Types of TM

+ Deterministic TMs are extremely powerful
+ Ignoring polynomial blow-up in time/space,
fhey are equnvalen*r to many other models

S/

+ Let us consider one such model in
particular: Multi-Tape TM.

The deterministic TM model captures
our notion of algorithm.

Next, we introduce a more general
computational model of a multi tape
deterministic TM,

and show it is equivalent o the
deterministic TM model.

TM Page 6

Ina multi tape TM we have more than
one tape, each with its own read/write
head.

There is, however, only one state the
machine is in at any given configuration!

Inthe starting configuration the input
iswritten on the first tape.

7 Syntactically, the only difference

’l' Ms between a regular TM and one with k
p— tapes is in the transition function:
S ‘: y 4E_<" 9 L o
) finite set of states é‘%’mf‘{im It takes as input k letters, and outputs

WS input alphabet: a finite set Excluding " !(replac.emen‘r letters, and k left/right

; = instructions (plus a change in the
Jiche opRobet 3l ond < machine's state) .

D 5: Qs (L R the *“fhe number of tapes-

. " is some constal
¢ start state 1%/ o
~ €4 accept state %
g Ctat | eject sfa'reé‘%, qrqeciﬂ‘_““‘"

TM Page 7

D The Church-Turing Hypothesis

* Multi-tape machines are polynomially
equivalent to single-tape machines. s

-

. Hypothesis:

* We can state a much stronger claim @
concerning the robustness of the Turing & d'

machine model:

One can easily prove that these two
models are equivalent.

The more general, obviously unproven
hypothesis, suggested by Church and

implicitin Turing's work, is that these
models capture our intuitive notion of
algorithm.

Some later models of computation may

we may discuss this late in the course.

Intuitive notion A — g aTne disagree with that hypothesis, in
of algorithun DE— particular randomized or quantum
¢ algorithms;

=

Church-Turing Hypothesis

* Let us now consider a non
realistic computational model:
NONDETERMIONISTIC

* can be simulated by DTMs
+ However, with an exponential
blowup in time.

:

We now consider another variation of
the TM model, however, one which does
not at all correspond to any realistic
notion of algorithm

Itis that of a non deterministic
algorithm.

Tt can be translated into a
deterministic one, however, with a huge
blow up in time!

No better translation is known!

TM Page 8

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4DE2353-669D-4683-93B6-F64B5F2D629B}&13&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

DNon-deterministic Turing Machines

‘: Il ‘D.< » 3 /‘ i,
@) finite let of stafué{%&&

. input alphabet: a finite set Excluding —

' tape a*zhabef sl and _el

3;_ 611 L (G x{L,R}) - ‘rransiﬁo-;w',,.. rost o
.—‘ . “\;\) ® | b

J start state '\%’
). acceptstate %
B

—

/9)

»i

‘) reject state qr,.’w*qaccew

Syntactically, the difference
between deterministic and non
deterministic TM is only the
transition function, which now
becomes a transition relation.
For every state and letter it returns:
- Aset of possible pairs of letter plus
move, each of which is a possible
computation step to take next.

Non-deterministic Turing Machines

A deterministic computation is a sequence of configurations each being the result of applying the

transition function to the previous configuration.

9 Deterministic vs. Nondeterministic

|

Ina non deterministic computation
there may be more than one transition
possible from each configuration, which
we can describe by a computation tree.

Time corresponds to the depths of the
tree, hence the size of the tree may
be exponential in the non deterministic
running time.

It suffices that one of the non
deterministic computations (one of the
paths in the non deterministic
computation tree) accepts for the
input to be accepted.

TM Page 9

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={E4424620-B2A9-4A9B-A06B-15B2D05A223F}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Witness Verification Program

Nondet. A
verifier

magically ,
guess
l
accept (f ‘, 2
_passible \ /

An alternative perspective of non
deterministic computation is to think
of it as a game between two players:
one is magically powerful but
untrustworthy: it tries to convince the
other player, who has limited
resources, that the input isin a given
language L.

The first player sends the second
player a witness that the input W is in
the language L, which the second player
has to verify efficiently.

Nodeterministic

Guess

Traverse from s
fot

Verify

Does 7 transform |
G into 6?

Here are a couple of examples of the
two perspective on non deterministic
algorithms.

TM Page 10

SIP 138-140

Nongde‘rerminis‘ric—)De‘rerminisﬁc

'. Simulate

(SR

LM

Our simulation of non deterministic
algorithms by deterministic ones uses
three tfapes:

- One for the input,

- one to guide us which computation
path to take,

- And the third fo simulate that
computation.

= Let number of transition
Nondeterministic time - i(n)

Write 0 on the guide tape

a Simulation

Copy the input to the simulation tape

Simulate M: choose each transition by the corresponding digit

on the guide tape (if valid)

Go to step 2

Accept if M accepts
Add 1 to the number on the guide tape (in base h)
If reached h'"+1 - reject

3

This simulation goes over all possible
computations:

- If even one accepts, it accepts.

- Ifall rejects, itrejects.

- If one accepts, it accepts.

- If all rejects, it rejects.

Note that the time this simulation
requires is exponential in the
nondeterministic-time the machine
runs in, ¥(n), and the space the
simulation requires is O(t(n)).

TM Page 11

9 Complexity Classes

define Complexity classes

With an agreed model of computation,
by introducing bounds on resources
required to compute the given problem,
we are ready to define complexity
classes.

Time-Complexity

+ Let t:IN-»IN be a complexity function

oeriniTion:

—— TOeTErmInISTIC Time:
TIME(t(n)|= {L | L decided by O(1(n))- time deterministic TM

NoRGETerminiSTic Time:
NTIME[t(n)|= {L | L decided by O(t(n))- time nondeterministic TM }

UeT . PoivRomial Time:
P=J, TIME[|
T T NonaeY Pelnomial Time:
NP=|J, NTIME|n'" |
T DeT exponential Yimer
Exp =\, TIME]e” |

We can define time and non
deferministic time complexity classes.

TM Page 12

Space-Complexity
+ Let 1:N—N be a complexity function

—— T UeTErRINISTIE Space:

SPACE[t(n)|= {L | L decided by O(¢(n))- space deterministic TM}

NSPACE[((n)]= {L| L decided by O{¢(n))-space nondeterministic TM}

L = SPACE[log(n)]
NL = NSPACE[log(n)]

PSPACE =| J, SPACE[' |

Aswell as space and non deterministic
space complexity classes.

How can we define sub linear space
classes where their input itself takes
linear space?

Space Complexity

Space vs, Time

*a TM that runs t(n) steps
uses at most t(n) space®

Claim:

- PSPACECEXPTIME

+a deterministic run that halts .
must avoid repeating a configuration =»
*its running time is bounded from above by the
number of configurations the machine has
‘which, for a PSPACE machine, is exponential®

Let us now prove very simple
containments between time and space

complexity.

Note that a deterministic machine that
repeats a configuration twice must in
fact be inan infinite loop.

The number of configurations is
essentially exponential inthe number
of cells the machine uses.

TM Page 13

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4674FE1C-AB75-404C-AC58-D9A311E0C841}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Name the Class

The picture presents a sequence of
containments between complexity
classes.

Areyou sure they are all true?

Which ones can you prove at this
point?

Areany of these containments strict?

Canyou name the smallest class
containing each of the problems?

Alternatively, can you name the
Gumby?

]Run on (the representation of) eontradietion

We would like to find out if some of
these classes differ - so far it is quite
possible all of the classes just defined
arein fact the same.

Separating between classes of
problems is not at all trivial -- there is,
however, one prime example you most
probably have studied before.

Let us now consider a simple proof that
the halting problem is undecidable:
Assume by a way of contradiction a
procedure A, that on inputs B and X,
decides whether the procedure B halts
on input X.

Construct procedure C that on input W,
calls on procedure A with W being both
Band X;

if A returns yes, C goes into an infinite
loop, otherwise it stops and returns
some answer.

Now run C with its input W being C
itself: both options end up ina
contradiction.

Halting Problem

TM Page 14

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={F763474C-AB0D-46C4-9455-864A0A0849A0}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

* We construct a language L € EXPTIME,
which, however, is not accepted by any
TM running in polynomial time:

L= x| x=(M#I°#1°#, M doesn't accept x within cfx]" time|

We now apply a similar technique
(known as Diagonalizing or self
references and introduced by Cantor
and Godel) to show the class P is
strictly smaller than the class
EXPTIME.

We construct a language in EXPTIME
which, however, is not in P.

Inputs in that language must consist of
a description of a TM and then two
numbers written in unary.

The input is accepted if the machine
described does not accept the input
itself within the fime specified by the
two numbers.

| —

D e

Diagonalization

P vs EXPTIME

L= E|x= (M)#1°#1°#, M doesn't

* L eEXPTIME

- in particular, L can be decided in time x| - x|

‘LeP

+ Assume a TM M that accepts xcL in time c|x|¢ =
run it on the string “<M>#1#1#" = contradiction

30

Their languages are in EXPTIME since
auniversal TM can simulate the
computation of the machine on the
input, and the running time is
exponential (the two numbers written
in unary).

Assume by way of contradiction a TM
with polynomial bounds on its running
time that accepts L. Runit on its own
description with the humbers
corresponding to the bound of its
running time.

Both possible outcomes result ina
contraction.

TM Page 15

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={FCA7AB60-B781-45E8-B4AA-0AD1455C7708}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Let us now introduce a new class, coNP, ‘
which comprises all languages whose
P, NP and co-NP complement language is in the class NP.

The class P is clearly contained in both
classes NP and coNP.

Canyou prove any other relationships
between these three classes?

Summary

{ presented two computational models:
1. deterministic Turing machines
2. non-deterministic Turing machines.

simulated NTM by DTM

with an exponential From now on: use
blowup in time. pseudo-code
instead of | ms

The Church-Turing hypothesis:
Deterministic 1 /s equivalent to our
intuitive notion of algorithms

5
a2

TM Page 16

: _
vﬁobmmdsom?%@

Polynomial time]

Nondeterministic Poly timg

Complement of NP,

Logarithmic space

Nondet. Log space

Polynomial Space

» Turing Machine

B urch- . e Church-Turing Hypothesis
luring C': Iik WWInde-x . q yp
Machine ﬂigv_wgcﬁ\esvs bty . CompleXITy Theor‘y
] Theory * Halting Problem
& - Cantor, Georg ..
Lattng Deterministic Cantor, Geor Non Deterministic TM
**** T e Complexity Classes
& Hilbert, David o P
Cogl\plexn) - L4 &
asses
NP co-NP [t’- Gaodel, Kurt * co-NP
L\) e EXPTIME
P oL
L NL = Turing, Alan « NL
EXPTIME — ||+ PSPACE
BSPACE (‘{ Church, Alonzo

-

J

TM Page 17

http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Church-Turing_thesis
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Co-NP-complete
http://en.wikipedia.org/wiki/EXPTIME
http://en.wikipedia.org/wiki/L_(complexity)
http://en.wikipedia.org/wiki/NL_(complexity)
http://en.wikipedia.org/wiki/PSPACE

