
In this presentation we take a closer 

look at complexity classes in which the 

bound is on the amount of memory it 

takes to compute the problem.

In particular, we'll look at low 

complexity classes, such as 
LOGSPACE-

- and non-deterministic LOGSPACE. 

Among others, we prove three 

fundamental theorems regarding 

those classes.

Space Complexity

Savitch's Theorem

Immerman's Theorem

TQBF

Space Complexity Notes

   Space Page 1    

onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4674FE1C-AB75-404C-AC58-D9A311E0C841}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={BF70ECF0-480A-4C3A-A357-F1EA0DFD5525}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={BF70ECF0-480A-4C3A-A357-F1EA0DFD5525}&17&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={424542AC-EE8C-4D46-832C-E78AE8FDD34D}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote


Let us recall our definition of space 

complexity classes.

It is quite straightforward, however, 

we need to clarify what it mean for an 

algorithm to use sub linear space.

For that purpose, we change a little 

our model of computation to consist 

of

An input tape, which is read only,-

An output tape, which is write only, -

And a work tape, which is the only 

one counted for purposes of 

complexity bounds.

-

   Space Page 2    



Let us now figure out how many 

configurations such a machine has:

The location of the heads on the 

input tape and on the work tape are 

counted. 

-

Both the content of the output tape 

and the location of the head on it 

are not considered in counting the 

configurations. 

-

The content of only the work tape is 

counted.

-

Try to put the following computational 

problems in as small a class as you can.

Try also to come up with a problem 

that is in non-deterministic 

LOGSPACE, however is not known to 

be in LOGSPACE.

   Space Page 3    



 

SIP 250

log-space reducible

We can now define LOGSPACE 

reductions: they're the same as Karp 

reductions, with the added restriction 

that the reduction-function must be 

computed using only logarithmic 

memory.

Let us now see that these reductions 

can indeed be applied appropriately.

Think of the following scenario: you 

have a little chip that can play a DVD 

in a given format. You have a DVD 

encoded with a different format. 

You have another little chip that can 

convert the format the DVD is 

written in to the format the other 

chip can read.

Is it possible to combine the two and 

build a machine that can play the 

DVD?

The wrong solution would be to store 

the output of the first chip and apply 

the second chip to that -there is 

simply not enough memory for that 

solution to work.

The correct solution is to run the 

second chip and give it the appropriate 

bits of the output of the first chip; if 

necessary, restart the first chip, and 

let it read the DVD from start.

   Space Page 4    



Let us now formally define the 

connectivity problem:

Given a graph, a start vertex, and a 

target vertex, is there a path from 

start to target?

Q: Do you think the same problem, 

however on an undirected graph, is 

easier?

Let us first see that connectivity is in 

non-deterministic LOGSPACE. 

A non-deterministic algorithm for 

connectivity maintains a pointer to a 

vertex of the graph. 

Initially it points to the start vertex. 

At every stage, the algorithm chooses 

an edge going out of the vertex it 

points to, and direct its pointer to the 

vertex the edge leads to. 

If it reaches the target, it accepts.

If it went too many stages, it rejects.

   Space Page 5    



An alternative formulation of non-

deterministic space bounded machines 

is by introducing the witness tape. 

The machine can only read that tape 

and moreover must read it bit by bit 

and never go back. 

It is enough that there exists one 

possible assignment to the content of 

the tape that causes the machine to 

accept, for the input to be accepted.

Q: What complexity class do we get if 

we allow the machine to go back on the 

witness tape?

It turns out that connectivity is non-

deterministic LOGSPACE complete. 

We will show how to construct the 

connectivity instance given a machine 

M and input X, so that the machine 

accepts its input if and only if the 

instance is in CONN.

NL Completeness

   Space Page 6    

onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4262E0B3-6963-4247-AA76-F109BF30DB76}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote


For that purpose let us introduce 

the configurations' graph: 
vertexes correspond to 

configurations, 

-

edges to transitions, -

the start vertex correspond to the 

start configuration, 

-

and the target vertex corresponds 

to the accepting configuration. 

-

An accepting computation of the 

machine corresponds to a path from 

start to target, while such a path 

clearly corresponds to accepting 

computation.

Given a non-deterministic LOGSPACE 

machine, its configuration graph can 

be computed with logarithmic memory: 

The algorithm simply needs to 

compute, given two configurations, 

whether there is a transition from one 

to the other.

As a corollary we get that non-

deterministic LOGSPACE is contained 

in P.

   Space Page 7    



The fact that connectivity is NL-

complete is fundamental in analyzing 

space complexity classes: 

It is crucial in the proof of the 

following two fundamental theorems 

we prove.

The first is a theorem by Savitch 

concerning the overhead involved in 

converting a non-deterministic 

computation to a deterministic one.

It turns out that the overhead in 

terms of space is not that large, it is 

in fact quadratic. 

To prove that theorem, we will start 

with the special case of NL, and 

proceed to show a general technique 

of how to extend such statements for 

small classes to larger classes.

   Space Page 8    



Savitch’s deterministic simulation 

algorithm for connectivity is 

recursive:

To decide if there is a path of length 

d, it goes over all possible vertexes 

for the middle of the path, and call 

itself to decide whether the 

appropriate paths of half the lengths

exist: one from the start vertex to

the middle vertex, and another from 

the middle of vertex to the target

vertex. 

The recursion depth is logarithmic in 

the length of the path, and at each 

level the algorithm maintains a pointer 

to one vertex.

Here is a simulation of the algorithm 

on a simple example.

   Space Page 9    



To solve connectivity, one can simply 

apply the algorithm with the number 

of vertexes as the length of the path.

Now that we have proven the Theorem 

for NL, we need to extend it to 

general classes. Namely, show that for 

every space bound, the cost of 

translating a non-deterministic 

algorithm to a deterministic one is 

quadratic.

We show a more general principle, 

that any such relation between models 

and bounds can be scaled up with a 

super linear extension function. The 

extension function scales up both 

bounds. 

This technique is simple yet tricky and 

is referred to as the padding 

argument.

   Space Page 10    



The padding argument goes as follows:

Given a language L, accepted by a non-

deterministic TM, define the language 

Le that comprises all strings in L 

padded with the appropriate number 

of #.

That padding makes the language Le in 

the appropriate non-deterministic 

class.

Now, one can apply the containment of 

the premise and obtain a determined 

TM for Le. 
This deterministic TM verifies that 

the number of #’s is appropriate with 

respect to the size of the “real" input.

One can in turn, given only the real 

input, simulate this machine 

maintaining a counter of the number 

of #’s, and letting the TM work as if 

the appropriate number of #’s is 

appended to the real input.

Padding argument

   Space Page 11    

onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={88F4106F-3618-42DC-9E34-8127D6779E3B}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote


The padding argument goes as follows: 

given a language L, accepted by a non-

deterministic TM, define the language 

Le that comprises all strings in L 

padded with the appropriate number 

of #. That padding makes the 

language Le in the appropriate non-

deterministic class. Now, one can apply 

the containment of the premise and 

obtain a determined TM for Le. This 

deterministic TM verifies that the 

number of #’s is appropriate with 

respect to the size of the “real" input. 

One can in turn, given only the real 

input, simulate this machine 

maintaining a counter of the number 

of #’s, and letting the TM work as if 

the appropriate number of #’s is 

appended to the real input.

Here's an illustration of the 

construction:

We start with a TM M” for L, which 

can be converted into a TM for Le

(checking that the number of #’s is 

appropriate can be carried out in 

LOGSPACE), which by the assumption 

of the premise can be made 

deterministic --- that’s the TM M’.

M is a TM for L of appropriate space 

that simulates M’, and if M’ wonders 

off to the # section, it maintains a 

pointer (it has enough space to do so) 

to where it is and simulates it as if 

the #’s are there.

This completes the proof of Savitch’s theorem.

   Space Page 12    



We have just seen that enhancing 

space-bounded computation with non 

determinism does not make it so much 

stronger.

Next, we look at another aspect by 

which non determinism for space 

bounded computations has a limited 

effect.

Let us first define the non-

connectivity problem, which is simply 

the complement of the connectivity 

problem.

Non-connectivity is clearly coNL-

complete, therefore, it represents the 

entire coNL class.

It follows, that if we show non-

connectivity is in NL, we’ve proven 

NL=coNL.

   Space Page 13    



To show that non-connectivity is in NL, we can use the witness formulation of NL, where the TM for L 

reads a witness of membership from left to write and verifies it indeed proves the input is in L.

Given G let us define the set of 

reachable vertexes, namely those that 

can be reached by a directed path 

from the start vertex s.

To show there is no path from s to t, 

we can show that the size of the 

reachable set is the same for G and 

for G only where all edges going into t 

are removed.

Hence, it is enough to verify a proof 

showing what is the number of 

reachable vertexes of a given graph 

(first have a proof for G, store that 

number, then verify a proof for the 

altered graph, and compare the two 

numbers).

To verify that indeed the number of 

reachable vertexes is as claimed, the 

witness can be constructed inductively 

over the length of the path.

There is obviously exactly one vertex 

reachable within 0 steps.
We’ll next see how to extend a 

witness, proving the number of 
reachable vertexes after l steps is Rl,

into a witness for l+1, and so that if 

the prefix can be verified by a 

LOGSPACE TM then so is the entire 

witness.

   Space Page 14    



W is the witness, proving that the 

number of reachable vertexes after l 

steps is Rl.

Let us append to it an array of sub-

witnesses, one for each vertex of the 

graph: the ith segment would first 

specify whether the ith vertex is or is 

not reachable within l+1 steps. Next, 

depending on that bit (and separated 

by $ signs) are the corresponding 

witnesses. Assuming all sub-witnesses 

are true, the verifier can count to see 

how many vertexes are reachable 

within l+1 steps.

In case vertex i is reachable within l+1 

steps, the witness would simply be a 

path from start to vertex i of length 

at most l+1.

In case vertex i is not reachable 

within l+1 steps, the sub-witness 

dedicated for that ith vertex would 

itself be an array with every segment 

corresponding to a vertex of the 

graph. The bit for each vertex j 

corresponds to whether vertex j is 

reachable within l steps. Clearly, no 

vertex j reachable within l steps can 

have an edge to vertex i; the witness 

for vertex j reachable within l steps, 

would be simply a path from start to j 

of length at most l.

If vertex j is not reachable within l 

steps the jth sub-witness is left 

empty.

All sub-witnesses are clearly proving 

what they claim, and exist --- except 

for the witness that vertex j is not 

reachable within l steps.

How then can the verifier be sure 

that’s true?
The answer is the crux of the entire 

argument and is as follows: the NL TM 

verifies that the number of vertexes

listed as reachable within l steps is 

exactly R l, the number proven in W to 

be the number of reachable vertexes 

within l steps!

   Space Page 15    



   Space Page 16    



PSPACE Completeness

   Space Page 17    

onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={D45AC360-9B14-4CD2-B3B1-37DA786B0A39}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote


   Space Page 18    



   Space Page 19    



Space Complexity•

Savitch’s Theorem•

Log Space Reductions•

Immerman’s Theorem•

TQBF•

Complexity Classes•

L•

NL•

PSPACE•

   Space Page 20    

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Savitch's_theorem
http://en.wikipedia.org/wiki/Log-space_reduction
http://en.wikipedia.org/wiki/Immerman-Szelepcs%C3%A9nyi_Theorem
http://en.wikipedia.org/wiki/True_quantified_Boolean_formula
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/L_(complexity)
http://en.wikipedia.org/wiki/NL_(complexity)
http://en.wikipedia.org/wiki/PSPACE

