
Possibilities and Impossibilities for Distributed Subgraph
Detection

Orr Fischer

Tel-Aviv University

Tel-Aviv, Israel

orrfischer@mail.tau.ac.il

Tzlil Gonen

Tel-Aviv University

Tel-Aviv, Israel

tzlilgon@mail.tau.ac.il

Fabian Kuhn

University of Freiburg

Freiburg, Germany

kuhn@cs.uni-freiburg.de

Rotem Oshman

Tel-Aviv University

Tel-Aviv, Israel

roshman@tau.ac.il

ABSTRACT
In the distributed subgraph detection problem, we are given a fixed

subgraph 𝐻 , and the network must decide whether the network

graph contains a copy of𝐻 or not. Subgraph detection can be solved

in a constant number of rounds if message size is unbounded, but in

the CONGESTmodel, where each message has bounded size, it can

have high round complexity. Distributed subgraph detection has

received significant attention recently, with new upper and lower

bounds, but several fundamental questions remain open.

In this paper we prove new possibility and impossibility results

for subgraph detection in the CONGEST model. We show for the

first time that some subgraphs require superlinear — in fact, nearly

quadratic — running time, even in small-diameter networks. We

also study cycle-detection, and show that any even cycle can be

detected in sublinear time (in contrast to odd cycles, which require

linear time). For the special case of triangle-detection, we show

that deterministic algorithms require Ω(log𝑛) total communica-

tion even in graphs of degree 2, and that one-round randomized

algorithms must send Ω(Δ) bits in graphs of degree Δ, improving

on the recent results of [Abboud et. al.]. Finally, we extend a recent

lower bound of [Izumi, Le Gall] on listing all triangles to cliques of

any size.

CCS CONCEPTS
• Networks � Network algorithms; • Theory of computa-
tion� Distributed algorithms; Lower bounds and information
complexity;

ACM Reference Format:
Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. 2018. Possi-

bilities and Impossibilities for Distributed Subgraph Detection. In SPAA

Research supported in part by the I-CORE Program of the Planning and Budgeting

Committee and the Israel Science Foundation, Grant No. 4/11.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00

https://doi.org/10.1145/3210377.3210401

’18: 30th ACM Symposium on Parallelism in Algorithms and Architectures,
July 16–18, 2018, Vienna, Austria. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3210377.3210401

1 INTRODUCTION
In the subgraph detection problem (also called subgraph freeness),
we are given a constant-size graph 𝐻 , and the goal is to deter-

mine whether the network graph contains a copy of 𝐻 as a sub-

graph, or not. Subgraph-detection is an extremely local problem:

in the LOCAL model of distributed computing, where network

nodes can send messages of unrestricted size in each round, the

𝐻 -detection problem for any graph 𝐻 of size 𝑘 can be solved in at

most 𝑂 (𝑘) rounds — we simply have each node collect its entire 𝑘-

neighborhood and check if it contains a copy of 𝐻 . However, in the

CONGEST model, where the bandwidth on each edge is restricted,
subgraph detection can be much harder.

Subgraph-freeness in theCONGEST network model has recently

received significant attention from the distributed computing com-

munity [1, 6, 10, 12–15, 18]. Several linear and sublinear upper and

lower bounds have been shown for special cases, including triangles

and larger cycles [1, 6, 10, 13]; trees, which can be detected in𝑂 (1)
rounds [12]; cliques and complete bipartite subgraphs, which can

be detected in 𝑂 (𝑛) rounds [10]; and more complicated classes of

graphs, for which in some cases we can prove a lower bound of the

form Ω(𝑛𝛿), where 𝛿 < 1 [15].

In this work we aim to better understand several fundamental

questions regarding the subgraph-freeness problem.

1.1 Our Results
Solving𝐶

2𝑘 -detection in sublinear time. In [10] it was shown that

for any odd cycle 𝐶𝑘 for 𝑘 ≥ 5, the 𝐶𝑘 -detection problem takes

Ω̃(𝑛) rounds. It is easy to see that𝑂 (𝑛) rounds suffice, so this bound

is nearly tight. For even cycles, on the other hand, the best known

lower bound is Ω(
√
𝑛) [10, 18], but no sublinear upper bounds were

known for 𝑘 ≥ 6, so it was unclear whether even cycles require

nearly-linear time, or whether they can be detected faster. We show

that in fact any even cycle can be detected in sublinear time:

Theorem 1.1. For any fixed 𝑘 ≥ 2, 𝐶
2𝑘 -detection can be solved in

𝑂 (𝑛1−1/(𝑘 (𝑘−1))) rounds.

https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/3210377.3210401

(Our algorithm is randomized, but it is easily de-randomized

using standard techniques, at the cost of an additional 𝑂 (log𝑛)
factor in the running time. (See, e.g, [15] for a similar argument.)

Near-quadratic lower bounds on subgraph-freeness. A wide vari-

ety of subgraphs, such as cycles and cliques, can be detected in a

linear number of rounds. A natural question that arises is whether

any constant-sized subgraph 𝐻 be detected in 𝑂 (𝑛) rounds. We

show that the answer is negative:

Theorem 1.2. For any 𝑘, 𝑛 ≥ 2, there is a graph𝐻𝑘 of size𝑂 (𝑘) and
diameter 3, such that 𝐻𝑘 -freeness requires Ω(𝑛2−1/𝑘/(𝐵𝑘)) rounds
in the CONGEST model, even when the network diameter is 3.

Our lower bound provides another “natural” problemwhich has a

superlinear lower bound in theCONGESTmodel; to our knowledge,

previously the only examples of such problems were found in [8].

Since the subgraph-freeness problem is also extremely local, we get

a separation between the CONGEST and LOCAL models, nearly

the largest possible: by Theorem 1.2, if we take 𝑘 = Θ(log𝑛), we
get a graph that requires Ω̃(𝑛2) rounds to detect, but only𝑂 (log𝑛)
rounds in the LOCAL model.

We also show a variant of this theorem for a bipartite subgraph.
We note that any bipartite graph 𝐻 has Túran number ex(𝑛, 𝐻) ≤
𝑂 (𝑛2−Ω (1)): any graph on 𝑛 vertices that does not contain a copy of

𝐻 cannot have more than 𝑂 (𝑛2−Ω (1)) edges. Therefore, any such

graph can be detected in sub-quadratic time, by simply collecting

all edges of the network graph. Thus, the 𝐻 -detection problem

for bipartite 𝐻 is a somewhat natural intermediate problem in

CONGEST: it is strongly sub-quadratic, yet super-linear.

Improved lower bounds on triangle-detection. Recently, [1] showed
that for deterministic algorithms, if the bandwidth is 𝐵 = 1 (i.e.,

one bit per round), then Ω(log∗ 𝑛) rounds are required, even in

constant-degree graphs; and if the algorithm only has one round,

and each triangle node must announce that it is in a triangle, then

the bandwidth must be Ω(Δ log𝑛), where Δ is the maximum degree

of the graph.

Here we show:

(a) In any deterministic triangle-detection algorithm, even when

the maximum degree is constant, Ω(log𝑛) bits must be sent on

some edge, if the namespace is of size Θ(𝑛); and
(b) Randomized one-round triangle-detection requires bandwidth

Ω(Δ) in graphs of maximum degree Δ.

The first result is shown using a technique similar to [1], but we

strengthen the lower bound from Ω(log∗ 𝑛) to Ω(log𝑛), which is

tight for the lower bound graph. The second result, for randomized

algorithms, uses standard information theory instead of the fooling

views technique introduced in [1] for their deterministic lower

bound. This allows us to both generalize from deterministic to

randomized algorithms, and lift the restriction that all three triangle

nodes must detect that they are in a triangle (instead, we use the

usual definition, where it suffices if one node detects the triangle).

One might wonder what happened to the log𝑛 factor that is

present in the deterministic Ω(Δ log𝑛) lower bound from [1] but

missing in ourΩ(Δ) randomized lower bound. It is not clearwhether

randomized algorithms need to pay this logarithmic factor or not;

we leave this question for future work.

Lower bound on listing 𝑠-cliques in the Congested Clique. Finally,
we extend a recent lower bound of Ω̃(𝑛1/3) rounds on listing all

triangles in the graph [16, 20], to a lower bound of Ω̃(𝑛1−2/𝑠) for
listing all 𝑠-cliques, for any 𝑠 ≥ 3. This lower bound holds even

when each node can send𝑂 (log𝑛) bits to each other node in every

round. For lack of space, the details of this lower bound are relegated

to the full paper. The proof is similar to the one in [16], and the

main difference is that we need to prove the following lemma:

Lemma 1.3. For 𝑠 ≥ 2, any graph on𝑚 edges has at most 𝑂 (𝑚𝑠/2)
copies of 𝐾𝑠 .

This lemma generalizes a corresponding lemma for triangles

from [23], which was used in the lower bound of [16].

For lack of space, many technical details and full proofs are

omitted in the body of the paper; they appear in the full paper.

1.2 Related Work
The problem of subgraph-freeness (also called excluded or forbidden
subgraphs) has been extensively studied in both the centralized

and the distributed worlds. For the general problem of detecting

whether a graph𝐻 is a subgraph of𝐺 , where both𝐻 and𝐺 are part

of the input, the best known sequential algorithm is exponential

[24]. When𝐻 is fixed and only𝐺 is the input, the problem becomes

solvable in polynomial time.

In the distributed setting, [12] very recently provided a constant-

round deterministic algorithm for detecting a fixed tree in the

CONGEST model. This paper, as well as several others [4, 6, 14]

, also considered more general graphs, but with the exception of

trees, they studied the property testing relaxation of the problem,

where we only need to distinguish a graph that is 𝐻 -free from a

graph that is far from 𝐻 -free. Here we consider the exact version.
Another recent work [16] gave randomized algorithms in the

CONGEST model for triangle detection and triangle listing, with

round complexity 𝑂 (𝑛2/3) and 𝑂 (𝑛3/4), respectively. In [16, 20] a

lower bound of Ω̃(𝑛1/3) on the round complexity of triangle listing

in the congested clique is shown. There is also work on testing

triangle-freeness in the congested clique model [7, 9] and in other,

less directly related distributed models.

As for lower bounds on 𝐻 -freeness in the CONGEST model, the

only ones in the literature (to our knowledge) are for cycles [10]

and restricted lower bounds for triangles [1], and the reductions

from [15], which construct hard graphs from other hard graphs by

replacing their vertices or their edges with other graphs. (In [10]

there are lower bounds for other graphs, in a broadcast variant of the

CONGEST model where nodes are required to send the same mes-

sage on all their edges.) For any fixed 𝑘 > 3, there is a polynomial

lower bound for detecting the 𝑘-cycle 𝐶𝑘 in the CONGEST model:

it was first presented by [10], which showed that Ω(ex(𝑛,𝐶𝑘)/𝐵)
rounds are required, where ex(𝑛,𝐶𝑘) is the largest possible num-

ber of edges in a 𝐶𝑘 -free graph over 𝑛 vertices. In particular, for

odd-length cycles, the lower bound of [10] is nearly linear. Very

recently, [18] improved the lower bound for even-length cycles to

Ω(
√
𝑛/𝐵). All lower bounds mentioned above are linear or sublin-

ear.

In a recent work [8], the first near-quadratic lower bounds

(and indeed the first superlinear lower bounds) in CONGEST were

shown. The problems addressed in [8] include some NP-hard prob-

lems such as minimum vertex cover and graph coloring, as well as

a weighted variant of 𝐶8-freeness, called weighted cycle detection:
given a weight𝑊 ∈ [0, poly(𝑛)], the goal is to determine whether

the graph has a cycle of length 8 and weight exactly𝑊 .

2 PRELIMINARIES
Notation. We let 𝑉 (𝐺), 𝐸 (𝐺) denote the vertex and edge set of

graph 𝐺 , respectively. In Section 5, which uses information the-

ory, we use the convention that bold-face letters denote random

variables, while normal letters denote concrete (scalar) values.

The CONGEST model. The CONGEST model is a synchronous

network model, where computation proceeds in rounds. In each

round, each node of the network may send 𝐵 bits on each of its

edges, and these messages are received by neighbors in the current

round. Typically, 𝐵 is taken to be logarithmic in the size 𝑛 of the

network graph.

Subgraph detection. We are interested in the subgraph-detection
problem (also called subgraph-freeness), defined as follows:

Definition 1 (Subgraph detection). Fix a graph𝐻 . In the𝐻 -detection

problem, the goal is to determine whether the input graph𝐺 = (𝑉 , 𝐸)
contains a copy of 𝐻 as a subgraph or not; that is, whether there are
subsets 𝑈 ⊆ 𝑉 , 𝐹 ⊆ 𝐸 of vertices and edges, respectively, such that
(𝑈 , 𝐹) is isomorphic to 𝐻 .

We say that a distributed algorithm 𝐴 solves 𝐻 -detection with
success probability 𝑝 if whenever 𝐴 is executed in a graph that

contains a copy of 𝐻 , with probability at least 𝑝 some node rejects;

and on the other hand, when𝐴 is executed in a graph that is𝐻 -free,

with probability at least 𝑝 all nodes accept. We typically assume

constant 𝑝 , e.g., 𝑝 = 2/3.

Túran numbers. For a fixed graph 𝐻 , the Túran number of 𝐻 ,
denoted ex(𝑛, 𝐻), is the maximum number of edges in any 𝐻 -free

graph on 𝑛 vertices.

Two-party communication complexity. Our superlinear lower

bound is shown by reduction from two-party communication com-
plexity: we have two players, Alice and Bob, with private inputs

𝑋,𝑌 , respectively. The players wish to compute a joint function

𝑓 (𝑋,𝑌) of their inputs, and we are interested in the total number

of bits they must exchange to do so (see the textbook [19] for more

background on communication complexity).

In particular, we are interested in the set disjointness function,
where the inputs 𝑋,𝑌 are interpreted as subsets 𝑋,𝑌 ⊆ [𝑛], and
the goal of the players is to determine whether 𝑋 ∩ 𝑌 = ∅. The
celebrated lower bound of [17, 22] shows that even for randomized

communication protocols, the players must exchange Ω(𝑛) bits to
solve set disjointness with constant success probability.

Information theory. In Section 5 we use information theory to

prove a randomized lower bound on 1-round triangle-detection.

The basic concept we need is the mutual information between

two variables: if 𝑿 , 𝒀 are two possibly-dependent random vari-

ables, then their mutual information is defined to be I(𝑿 ; 𝒀) =

H(𝑿) − H(𝑿 |𝒀). Here, H(𝑿) is the Shannon entropy of 𝑿 , and

H(𝑿 |𝒀) = E𝑦 [H(𝑿 |𝒀 = 𝑦)] is the conditional Shannon entropy —

the average entropy remaining in 𝑿 , after the value of 𝒀 = 𝑦 is

revealed. Intuitively, the mutual information I(𝑿 ; 𝒀) measures the

uncertainly loss of 𝑿 when we learn 𝒀 . (It is symmetric in 𝑿 , 𝒀 .)
The conditional mutual information of 𝑿 and 𝒀 given a third

random variable 𝒁 is defined as the loss of conditional entropy:

I(𝑿 ; 𝒀 |𝒁) = H(𝑿 |𝒁) − H(𝑿 |𝒀 ,𝒁). We sometimes abuse notation

by writing events on the right-hand side instead of random vari-

ables, e.g., I(𝑿 ; 𝒀 |𝒁 = 𝑧). When we do this, we are referring to the

mutual information between 𝑿 and 𝒀 when their joint distribution

is conditioned on 𝒁 = 𝑧.

3 SUPERLINEAR LOWER BOUNDS ON
SUBGRAPH DETECTION

We begin by proving Theorem 1.2, namely, that some graphs require

nearly-quadratic running time to detect.

We give here informal descriptions of the subgraph 𝐻𝑘 and the

lower bound graph family G in which we show that 𝐻𝑘 -detection

is hard. The formal constructions can be found in the full paper.

3.1 Informal Description of 𝐻𝑘

The graph 𝐻𝑘 is composed of several “parts” (see Figure 1):

Cliques. We put in five cliques, one of each size 𝑠 = 6, . . . , 10. We

pick one special vertex 𝑣𝑠 from each clique, and connect {𝑠6, . . . , 𝑠10}
in a 5-clique. Each remaining (non-clique) vertex of𝐻𝑘 is connected

to exactly one special clique vertex 𝑣𝑠 , and no other clique vertices.

The cliques serve two purposes. First, they reduce the diameter of

𝐻𝑘 to 3: each vertex in𝐻𝑘 is connected to some special clique vertex

𝑣𝑠 , and all special clique vertices are connected to each other. Second,

the cliques serve to “mark” the different parts of 𝐻𝑘 : each “part”

of 𝐻𝑘 (except for the cliques themselves) is connected to exactly

one 𝑠-clique for 𝑠 ∈ {6, . . . , 10}. When we construct the network

graph 𝐺 in which we show the lower bound on 𝐻𝑘 -freeness, we

will make sure 𝐺 also contains exactly one copy of each 𝑠-clique

for 𝑠 = 6, . . . , 10, so that any isomorphism mapping 𝐻𝑘 into𝐺 must

map the 𝑠-clique of 𝐻𝑘 onto the 𝑠-clique in𝐺 . The “parts” of𝐺 will

echo the “parts” of 𝐻𝑘 , and the connections between the cliques

and the other vertices will force any isomorphism from 𝐻𝑘 into 𝐺

to respect this logical partition.

Top and bottom. The remainder of 𝐻𝑘 consists of two identical

copies of a graph 𝐻 . We call the two copies “top” and “bottom”,

respectively. The subgraph 𝐻 consists of 𝑘 triangles Tri1, . . . , Tri𝑘 ,
and two additional “endpoint nodes”, which we call A and B. In each
triangle Tri𝑖 , we have three vertices denoted (𝑖,A), (𝑖,B), (𝑖,Mid).
Endpoint A is connected to all triangle vertices in {(𝑖,A) | 𝑖 ∈ [𝑘]},
endpoint B is connected to all triangle vertices in {(𝑖,B) | 𝑖 ∈ [𝑘]},
and the “middle vertices” of the triangles are not connected to

either endpoint. (The triangles ensure that a copy of 𝐻 cannot be

embedded in any bipartite graph; we will need this for the lower

bound.)

We refer to the triangles as the body of 𝐻𝑘 , and the top and

bottom endpoint nodes on both sides (A and B) as endpoints. There
are no edges between the top and the bottom copy of 𝐻 , except for

exactly two edges: the top and bottom A-endpoints are connected
by an edge, and the top and bottom B-endpoints are connected by

an edge.

Figure 1: The graph 𝐻𝑘 for 𝑘 = 2. In addition to the edges
shown here, the five clique nodes

{
(Clique𝑠 , 0) | 6 ≤ 𝑠 ≤ 10

}
are connected to each other; we omit these edges from the
figure for clarity.

3.2 The Lower Bound Family G𝑘,𝑛

Figure 2: The graph 𝐺𝑋,𝑌 ∈ G𝑘,𝑛 for 𝑛 = 3, 𝑘 = 2, so that
𝑚 = 𝑘 ⌈𝑛1/𝑘 ⌉ = 2 · ⌈31/2⌉ = 4. For clarity, the figure omits the
five cliques

{
Clique′𝑠 | 6 ≤ 𝑠 ≤ 10

}
and their edges. The inputs

𝑋,𝑌 whose graph 𝐺𝑋,𝑌 is depicted here both include (2, 1)
(that is (2, 1) ∈ 𝑋 ∩ 𝑌). As a result, a copy of 𝐻𝑘 appears in
𝐺𝑋,𝑌 , highlighted in red.

Let us now describe the graph family G𝑘,𝑛 , in which we show that

𝐻𝑘 -detection requires Ω(𝑛2−1/𝑘/(𝐵𝑘)) rounds. (Here, Θ(𝑛) is the
number of vertices in each graph 𝐺 ∈ G𝑘,𝑛 .)

Our lower bound graph family G𝑘,𝑛 echoes the graph𝐻𝑘 : it com-

prises many “potential copies” of the subgraph 𝐻𝑘 , each containing

all parts of 𝐻𝑘 except the edges between the top and bottom end-

points. When we reduce from set disjointness, Alice and Bob will

use their inputs to decide which endpoints to connect to which

other endpoints: Alice will put in top-to-bottom edges between the

A-endpoints, and Bob will do the same for the B-endpoints, in such

a way that a complete copy of 𝐻𝑘 appears iff the players’ inputs

are not disjoint. The players will then simulate the execution of an

𝐻𝑘 -detection algorithm on the graph they constructed, with Alice

simulating all the A-vertices, Bob simulating all the B-vertices, and
both players simulating the “middle” vertices of the triangles.

The naïve way to construct G𝑘,𝑛 would be to take 𝑛 disjoint

copies of 𝐻𝑘 , each missing the top-bottom endpoint edges, and

have the players add the endpoint edges as we described above.

This gives us 𝑛2 pairs of endpoints on each side (A and B), so we

can reduce from a disjointness instance of size 𝑛2, and achieve our

goal of having a copy of 𝐻𝑘 appear iff the inputs are not disjoint.

However, taking 𝑛 disjoint copies of 𝐻𝑘 would result in a large cut,
of linear size, between the A-part of the graph and the B-part of the
graph. This would make simulating the distributed algorithm too

expensive: simulating one round would cost us𝑂 (𝑛 · 𝐵) bits, so the
best round lower bound we could hope for would be Ω(𝑛2/(𝑛𝐵)) =
Ω(𝑛/𝐵).

To reduce the cut size, we do not take 𝑛 fully disjoint copies of

𝐻𝑘 . Instead, for top and bottom respectively, we take onlyΘ(𝑘𝑛1/𝑘)
disjoint triangles. Now we can mix-and-match among theΘ(𝑘𝑛1/𝑘)
triangles to form a copy of the body of 𝐻 (which has 𝑘 triangles).

However, we still take 𝑛 copies of the two endpoints of 𝐻 (A/B),
because we want to work with a disjointness universe of size 𝑛2.

Now we must connect the 𝑛 endpoint-copies to the Θ(𝑘𝑛1/𝑘) ≪ 𝑛

triangles, in such a way that a complete copy of𝐻𝑘 appears iff Alice

and Bob connected the same pair (𝑖, 𝑗) of endpoint-copies on their

respective sides (A and B).
Recall that in 𝐻 we have 𝑘 triangles, and the A- and B-endpoints

are connected to opposite ends of each triangle, so the degree of

each endpoint is 𝑘 . Let us encode each index 𝑖 ∈ [𝑛] as a subset 𝑃𝑖
of 𝑘 elements from the universe ⌈𝑘𝑛1/𝑘 ⌉, in such a way that no two

indices in [𝑛] have the same encoding. (This is possible, because(⌈𝑘𝑛1/𝑘 ⌉
𝑘

)
≥ 𝑛.) Now, we connect the 𝑖-th endpoint to the 𝑘 copies of

𝐻 in its encoding: the 𝑖-th endpoint on side A (resp. B) is connected
to the A-vertex (resp. B-vertex) of triangle 𝑗 iff 𝑗 ∈ 𝑃𝑖 . Since the
encoding is unique, and in 𝐻𝑘 each of the top/bottom endpoints is

connected to 𝑘 top/bottom triangles (resp.), a complete copy of 𝐻𝑘

can appear iff there is a pair (𝑖, 𝑗) ∈ [𝑛]2, such that Alice connected

the 𝑖-th copy of the top-A endpoint to the 𝑗-th copy of the bottom-A
endpoint, and Bob did the same on his side (B).

The advantage of working with only Θ(𝑘𝑛1/𝑘) triangles is that
now the cut size is alsoΘ(𝑘𝑛1/𝑘): the cut between the players’ sides

“cuts through” each triangle.

We now describe the construction formally. Let 𝑚 = 𝑘 ⌈𝑛1/𝑘 ⌉.
Fix an ordering 𝑄1, . . . , 𝑄𝑁 of the subsets of size 𝑘 of [𝑚], where
𝑁 =

(𝑚
𝑘

)
=

(𝑘 ⌈𝑛1/𝑘 ⌉
𝑘

)
. Note that

𝑁 =

(
𝑘 ⌈𝑛1/𝑘 ⌉

𝑘

)
≥

(
𝑘𝑛1/𝑘

𝑘

)𝑘
=
𝑘𝑘𝑛

𝑘𝑘
= 𝑛.

For each 𝑖 ∈ [𝑁], let us denote𝑄𝑖 =

{
𝑞1
𝑖
, . . . , 𝑞𝑘

𝑖

}
. (We will only use

the first 𝑛 subsets, 𝑄1, . . . , 𝑄𝑛 .)

Definition 2 (The graph family G𝑘,𝑛). Fix integers 𝑘, 𝑛. A graph 𝐺
is in the family G𝑘,𝑛 if it has the following structure.

First, the graph contains the following “components”:

• 𝑛 “potential top endpoints” and “potential bottom endpoints”
of 𝐻𝑘 , denoted End

′ × [𝑛]. For 𝑆 ∈ {⊤,⊥} and 𝑃 ∈ {A,B}, we
denote

End′𝑆,𝑃 =
{
(End′, 𝑆, 𝑃, 𝑖) | 𝑖 ∈ [𝑛]

}
.

• 2𝑚 triangles, indexed by {⊤,⊥}×[𝑚]. Triangle (𝑆, 𝑖) comprises
vertices (Tri, 𝑆, 𝑖, 𝑃) for each 𝑃 ∈ {A,B,Mid}.

• Copies of each of the cliques in 𝐻𝑘 .

The graph contains the following edges between the components, and
no other edges:

• For each “direction” (𝑆, 𝑃) ∈ {⊤,⊥} × {A,B}, all vertices in
End′

𝑆,𝑃
are connected to one fixed vertex of the 𝑐𝑆,𝑃 -clique.

• For each “direction” (𝑆, 𝑋) ∈ {⊤,⊥}× {A,B,Mid}, all vertices
in Tri′

𝑆,𝑋
are connected to one fixed vertex of the 𝑐𝑆,𝑃 -clique.

• The fixed vertices of the five cliques are connected to each other.
• For each 𝑆 ∈ {⊤,⊥} , 𝑃 ∈ {A,B}, and 𝑖 ∈ [𝑛], the endpoint-
copy (End′, 𝑆, 𝑃, 𝑖) is connected to each of the 𝑘 triangle nodes
(Tri, 𝑆, 𝑗, 𝑃) where 𝑗 ∈ 𝑄𝑖 .

• Finally, for each 𝑃 ∈ {A,B}, the graph may contain an arbi-
trary subset of the edges in End′⊤,𝑃 × End′⊥,𝑃 , depending on
Alice and Bob’s inputs..

Property 1. Any graph in G𝑘,𝑛 has diameter 3 and size 𝑂 (𝑛).

Crucially, the only copies of 𝐻𝑘 that can appear in G𝑘,𝑛 have

very specific structure: the endpoints of 𝐻𝑘 must be mapped onto

endpoints in G𝑘,𝑛 , respecting the “top/down” partition and also the

“directions” A,B. Consequently, we get:

Lemma 3.1. A graph 𝐺 ∈ G𝑘,𝑛 contains 𝐻𝑘 as a subgraph iff there
exist 𝑖⊤, 𝑖⊥ ∈ [𝑛] such that (End′,⊤,A, 𝑖⊤), (End′,⊥,A, 𝑖⊥) ∈ 𝐸 (𝐺)
and (End′,⊤,B, 𝑖⊤), (End′,⊥,B, 𝑖⊥) ∈ 𝐸 (𝐺).

3.3 The Lower Bound
To prove that 𝐻𝑘 -detection requires Ω(𝑛2−1/𝑘/(𝐵𝑘)) rounds, we
give a reduction from 2-party set disjointness on the universe [𝑛]2.

Proof of Theorem 1.2. Fix an algorithm𝐴 for which solves𝐻𝑘 -

freeness in the class G𝑘,𝑛 , and let us construct from 𝐴 a protocol

for disjointness. Given inputs 𝑋,𝑌 ⊆ [𝑛]2, Alice and Bob construct

a graph𝐺𝑋,𝑌 ∈ G𝑘,𝑛 . The only freedom when constructing a graph

in G𝑘,𝑛 is the choice of the edges we take from End′⊤,A × End′⊥,A
and from End′⊤,B × End′⊥,B. For this choice the players use their
inputs:

• Edge {(End′,⊤,A, 𝑖), (End′,⊥,A, 𝑗)} is included in 𝐺𝑋,𝑌 iff

(𝑖, 𝑗) ∈ 𝑋 , and
• Edge {(End′,⊤,B, 𝑖), (End′,⊥,B, 𝑗)} is included in 𝐺𝑋,𝑌 iff

(𝑖, 𝑗) ∈ 𝑌 .
By Lemma 3.1, the graph𝐺𝑋,𝑌 includes a copy of 𝐻𝑘 as a subgraph

iff 𝑋 ∩ 𝑌 ≠ ∅. Thus, to solve their disjointness instance, Alice and

Bob simulate the execution of 𝐴 in 𝐺𝑋,𝑌 , and output “𝑋 ∩ 𝑌 = ∅”
iff 𝐴 rejects.

Let us describe the simulation. We partition 𝑉 (𝐺𝑋,𝑌) into three

parts: Alice’s part,

𝑉𝐴 =
⋃

𝑆 ∈{⊤,⊥}

(
End′𝑆,A × [𝑛] ∪ Tri′𝑆,A

)
∪ Clique′

6
∪ Clique′

8
,

Bob’s part,

𝑉𝐵 =
⋃

𝑆 ∈{⊤,⊥}

(
End′𝑆,B × [𝑛] ∪ Tri′𝑆,B

)
∪ Clique′

7
∪ Clique′

9
,

, and a shared part, 𝑈 , comprising the remaining vertices, 𝑈 =

Tri′⊤,Mid∪Tri
′
⊥,Mid∪Clique

′
10
. Note that each player knows all edges

of𝐺𝑋,𝑌 , except those edges that are internal to the other player’s

part — those are the only edges that depend on the other player’s in-

put. For example, Alice knows all edges in (𝑉𝐴 ∪𝑉𝐵 ∪𝑈)×(𝑉𝐴 ∪𝑈).
Thus, the players only need to tell each other about messages cross-

ing the cut between the part only they simulate, and the rest of

the graph. By construction of the family G𝑘,𝑛 , the cut is of size

𝑂 (𝑘𝑛1/𝑘), so the cost of the simulation is 𝑂 (𝑘𝑛1/𝑘 · 𝐵) bits per
round. (We omit the details of the simulation here, as they are fairly

standard.)

If𝐴 runs for𝑅 rounds, then the total cost of the simulation is𝑂 (𝑅·
𝑘𝑛1/𝑘 · 𝐵). Solving disjointness on [𝑛]2 requires Ω(𝑛2) bits. Thus,
we must have 𝑅 = Ω

(
𝑛2/

(
𝑘𝑛1/𝑘 · 𝐵

))
= Ω(𝑛2−1/𝑘/(𝐵𝑘)). □

3.4 A Superlinear Lower Bound for Bipartite
Subgraphs

The superlinear lower bound described above is for a specific graph

𝐻𝑘 which is not bipartite: we relied on the fact that the body of 𝐻𝑘

contained triangles, while the subgraph connecting the top/bottom

endpoints on each side is bipartite. This ensured that any embedding

of 𝐻𝑘 into the larger graph𝐺 had to “use” the triangles in𝐺 “in the

role of” the triangles of 𝐻𝑘 . We also used cliques (also not bipartite,

of course) to “mark” the various parts of 𝐻𝑘 .

Could it be that all bipartite subgraphs can be detected in linear

time? It turns out that the answer is no: we show that for any

𝑠, 𝑘 > 1, there is a bipartite graph 𝐻𝑠,𝑘 of size Θ((𝑠!)2 · 𝑘), such
that 𝐵-freeness requires Ω(𝑛2−1/𝑘−1/𝑠/(𝐵𝑘)) rounds in graphs of

size Θ(𝑛). This construction follows the same approach as the non-

bipartite one, but it is much more involved, because we cannot

use non-bipartite “components” (e.g., triangles) to constrain an

embedding of the subgraph into the graph𝐺𝑋,𝑌 simulated by Alice

and Bob. Instead, we rely on the fact that each endpoint in 𝐺𝑋,𝑌

has degree 𝑘 . We restrict the edges that Alice and Bob can receive,

and construct a bipartite “gadget” that cannot be embedded in𝐺𝑋,𝑌

without using two endpoints from Alice’s side and two endpoints

from Bob’s side, as intended. This gadget replaces the triangles,

allowing the reduction to go through (with more effort).

4 LOWER BOUND ON DETERMINISTIC
TRIANGLE-DETECTION

In this section we show:

Theorem 4.1. Distinguishing a triangle from a 6-cycle determinis-
tically requires Ω(log(𝑁)) bits of communication in the CONGEST
model, given a namespace of size 𝑁 .

As in the proof of the Ω(log∗ 𝑛) lower bound from [1], we rely

on the following result from extremal graph theory: let 𝐾 (𝑟) (ℓ)
be the complete 𝑟 -uniform 𝑟 -partite hypergraph, where each side

has size ℓ , (Formally, 𝐾 (𝑟) (ℓ) is defined as follows: let 𝑉1, ...,𝑉𝑟 be

disjoint vertex sets of size ℓ each. Then 𝐾 (𝑟) (ℓ) is the hypergraph
with vertex set

𝑟⋃
𝑖=1
𝑉𝑖 and edge set 𝐸 = {(𝑣1, ..., 𝑣𝑟) | 𝑣𝑖 ∈ 𝑉𝑖 }.)

Theorem 4.2 ([11], Theorem 1). If𝐺 is an 𝑟 -uniform hypergraph
that does not contain𝐾 (𝑟) (ℓ) as a subgraph, then |𝐸 (𝐺) | ≤ 𝑛𝑟−1/(ℓ𝑟−1) .

For our purposes, we take 𝑟 = 3 and ℓ = 2, and obtain that if𝐺 is

3-regular hypergraph with at least 𝑛2.75 edges, then𝐺 contains the

complete 3-uniform 3-partite graph where each side is of size 2.

We make two assumptions about the algorithms we consider:

first, we assume that in each round, each node sends at least one

bit. If we do not impose this restriction, nodes might communicate

information to each other ’for free’ by remaining silent in a given

round (we do not charge them for not sending bits). Second, we

assume that the algorithm’s messages are self-delimiting, that is,

they form a prefix code: if 𝑀1 and 𝑀2 are possible messages the

algorithm can send, then 𝑀1 is not a prefix of 𝑀2 and vice-versa.

Any algorithm can be transformed into an algorithm that has this

property by at most doubling its total communication cost.

The intuition behind the lower bound is that if the bandwidth is

so small that nodes cannot even send their neighbors’ identifiers,

then for some adversarial choice of identifiers, the algorithm cannot

distinguish between a triangle and a hexagon (a 6-cycle). This idea

was used in [1], and its roots go back to the proof of impossibility

of Byzantine consensus with 3 processors of which one may be

faulty [21].

The approach of [1] was recursive, showing that after each bit

sent, the adversary can still use many identifiers to “fool” the algo-

rithm. However, if before the 𝑖-th bit the adversary had 𝑛 identi-

fiers available, then after the 𝑖-th bit, [1] shows that it has roughly

log𝑛; because of this fast shrinkage rate, the lower bound of [1] is

Ω(log∗ 𝑛).
Here we do not take the recursive approach. Instead we argue

that there is a complete transcript 𝑡 of all messages sent by the

algorithm during its execution, which occurs for many triangles

(where each triangle is defined by the choice of identifiers for its

nodes). As in [1], we construct a 3-regular hypergraph representing

the adversary’s choices, with nodes representing identifiers and

each edge representing a triangle that yields the transcript 𝑡 . Then

we use Theorem 4.2 to argue that the adversary can choose two

“compatible” triangles and combine them to form a hexagon, in a

way that guarantees that each node’s view is consistent with some

triangle that generates transcript 𝑡 . Thus, the adversary can make

the algorithm reject the hexagon (which it is supposed to accept).

There are several subtle points in the proof: we must set up our

construction carefully, to ensure that the algorithm’s transcript

really does capture “everything there is to know” about the algo-

rithm’s execution. In particular, from the transcript we must be able

to read off the source and destination of each message. Because we

are working with total communication less than log𝑁 , we cannot

use the naïve solution of assuming w.l.o.g. that this information is

contained in the messages themselves, so we are careful about the

order of messages when we define the representation of a transcript.

We remark that although the lower bound specifically shows

that it is impossible to distinguish two constant-sized shapes (a

triangle and a hexagon), it is easy to “pad” the graph to any desired

size of at most 𝑛 < 𝑁 /3 nodes, by, e.g., attaching a fixed line of

Θ(𝑛) nodes to one of the triangle or hexagon nodes.

Proof of Theorem 4.1. Let 𝐴 be deterministic algorithm that

solves the triangle-freeness problem in the CONGEST model given

a namespace of size𝑁 = 3𝑛. We split𝑁 into three equal-size disjoint

subsets,𝑁0, 𝑁1, 𝑁2, and define 𝑆 ≔ 𝑁0×𝑁1×𝑁2. In the lower bound,

we are interested in the class of graphs

G△ ≔ {△(𝑢0, 𝑢1, 𝑢2) | (𝑢0, 𝑢1, 𝑢2) ∈ 𝑆} ,

where △(𝑢0, 𝑢1, 𝑢2) is the graph consisting of a single triangle on

nodes 𝑢0, 𝑢1, 𝑢2.

Let 𝐶 be the worst-case number of bits sent by a node in any

execution of 𝐴. Assume for the sake of contradiction that 𝐶 ≤
log(𝑛)/60.

Making decision values uniform. Our first step is to transform

𝐴 into a modified algorithm 𝐴′
, which has one extra round. In 𝐴′

,

nodes first execute 𝐴, and then in the extra round they send their

decision according to 𝐴 (i.e., whether they decided to accept or

reject) to all their neighbors. Finally, each node 𝑣 accepts iff under

𝐴, node 𝑣 and all its neighbors decided to accept.

The communication cost of 𝐴′
is 𝐶 + 1. The transformation

preserves the correctness of 𝐴, because 𝐴′
accepts iff all nodes

of 𝐴 accept, and rejects iff some node rejects in 𝐴. It also has the

following property, which will be important for our proof:

Claim 4.3. When 𝐴′ is executed in a graph that contains exactly
one triangle, all nodes of the triangle reject.

Transcripts. Next we formally define the transcript generated
by a node executing 𝐴′

in some triangle △(𝑢, 𝑣,𝑤). Although it is

intuitively obvious “what this should mean”, some care is required

to ensure that transcripts can be parsed in a unique way, otherwise

our proof does not go through.

Consider the graph △(𝑢0, 𝑢1, 𝑢2) for (𝑢0, 𝑢1, 𝑢2) ∈ 𝑆 . (Recall that
𝑆 = 𝑁0×𝑁1×𝑁2.) We define the transcript of node𝑢𝑖 in △(𝑢0, 𝑢1, 𝑢2),
denoted Tr𝑢0,𝑢1,𝑢2

(𝑢𝑖), to be the binary string obtained by first writ-
ing all the messages sent by 𝑢𝑖 to 𝑢 (𝑖+1) mod 3

(in order, round after

round), and then writing all the messages sent by 𝑢𝑖 to 𝑢 (𝑖+2) mod 3
.

We define the transcript of 𝐴′ in △(𝑢0, 𝑢1, 𝑢2) to be the concate-

nation of the nodes’ transcripts:

Tr(𝑢0, 𝑢1, 𝑢2) =
= Tr𝑢0,𝑢1,𝑢2

(𝑢0) Tr𝑢0,𝑢1,𝑢2
(𝑢1) Tr𝑢0,𝑢1,𝑢2

(𝑢2).

Note that the nodes’ transcripts are written in order of the part of

the namespace to which the nodes belong: first the transcript of 𝑢0,

which is a node from 𝑁0, then the transcript of 𝑢1 ∈ 𝑁1 and finally

𝑢2 ∈ 𝑁2.

With this encoding, transcripts can be parsed uniquely: given

the binary transcript and three nodes (𝑢0, 𝑢1, 𝑢2) ∈ 𝑆 , we know

exactly which message was sent by which node in which round.

This is the reason we insisted that 𝐴’s messages be a prefix code,

partitioned the namespace into disjoint subsets, and took care to

define the order in which messages appear in the transcript.

Since the total number of bits sent by any node to any other

node is at most 𝐶 + 1 in any execution of 𝐴′
, and the transcript

contains all the messages sent by any node to any other node with

no bits added, the length of any transcript generated by 𝐴′
is at

most 6(𝐶 + 1).
For each binary string 𝑡 of length 6(𝐶+1), define the subset 𝑆𝑡 ⊆ 𝑆

to be the set of all triples in 𝑆 on which 𝐴′
produces transcript 𝑡 :

𝑆𝑡 ≔ {(𝑢0, 𝑢1, 𝑢2) ∈ 𝑆 | Tr(𝑢0, 𝑢1, 𝑢2) = 𝑡}.
Now fix 𝑡 to be the transcript with the largest set 𝑆𝑡 (or one of

the transcripts maximizing |𝑆𝑡 |, if there is more than one). Observe

that

|𝑆𝑡 | ≥
|𝑆 |

2
6(𝐶+1) =

𝑛3

2
6(𝐶+1) .

Consider the undirected 3-uniform hypergraph 𝐻 with 𝑁 as the

vertex set, and edges given by the triplets in 𝑆𝑡 . Note that although

𝑆𝑡 is defined as a set of ordered triplets, because 𝑆𝑡 ⊆ 𝑁0 ×𝑁1 ×𝑁2,

and 𝑁0, 𝑁1, 𝑁2 are mutually disjoint, we may as well think of 𝑆𝑡 as

a set of unordered triplets.

The number of edges in 𝐻 is |𝐸 (𝐻) | = |𝑆𝑡 | ≥ 𝑛3/2(6(𝐶+1)) . By
assumption, 𝐶 ≤ log(𝑛)/60 − 1, so

|𝐸 (𝐻) | ≥ 𝑛3

2
6·log(𝑛)/60 = 𝑛2.9 .

By Theorem 4.2, if 𝐻 has at least Ω(𝑛2.75) edges, then it must

contain a complete 3-partite 3-uniform hypergraph such that each

part contains exactly two vertices. Let

𝐹 = (
{
𝑢0, 𝑢

′
0

}
,
{
𝑢1, 𝑢

′
1

}
,
{
𝑢2, 𝑢

′
2

}
)

and 𝐸 (𝐹) be one such hypergraph, with the edge set 𝐸 (𝐹) containing
every triplet {𝑥,𝑦, 𝑧} such that 𝑥 ∈

{
𝑢0, 𝑢

′
0

}
, 𝑦 ∈

{
𝑢1, 𝑢

′
1

}
, 𝑧 ∈{

𝑢2, 𝑢
′
2

}
. Since 𝐸 (𝐹) ⊆ 𝐸 (𝐻) = 𝑆𝑡 , each side of 𝐹 is a subset of

𝑁𝑖 for some 𝑖; without lose of generality we assume that 𝑢0, 𝑢
′
0
∈

𝑁0, 𝑢1, 𝑢
′
1
∈ 𝑁1 and 𝑢2, 𝑢

′
2
∈ 𝑁2.

Now consider the execution of 𝐴′
on the 6-cycle 𝑄 with vertices

𝑢0, 𝑢1, 𝑢2, 𝑢
′
0
, 𝑢 ′

1
, 𝑢 ′

2
in this order. Let Tr𝑄 (𝑢) denote the transcript

generated by node 𝑢 in the execution of 𝐴′
in 𝑄 : if 𝑢 ∈ 𝑁𝑖 , then

Tr𝑄 (𝑢) is the binary string obtained by first writing all the mes-

sages sent by 𝑢 to its neighbor in 𝑁 (𝑖+1) mod 3
(in order, round after

round), followed by all the messages sent by 𝑢 to its neighbor in

𝑁 (𝑖+2) mod 3
.

Claim 4.4. Let us write 𝑡 = 𝑡0𝑡1𝑡2, where 𝑡𝑖 = Tr𝑢0,𝑢1,𝑢2
(𝑢𝑖) =

Tr𝑢′
0
,𝑢′

1
,𝑢′

2

(𝑢 ′
𝑖
) for each 𝑖 ∈ {0, 1, 2}. Then for each 𝑖 ∈ {0, 1, 2} we

have Tr𝑄 (𝑢𝑖) = Tr𝑄 (𝑢 ′
𝑖
) = 𝑡𝑖 .

Proof sketch. By induction on rounds. In the step we use the

fact that for each node 𝑣 in𝑄 , if 𝑥 and 𝑦 are 𝑣 ’s neighbors in𝑄 , then

{𝑥, 𝑣,𝑦} is an edge of 𝐹 , meaning that the transcript generated by

𝐴′
in △(𝑥, 𝑣,𝑦) is the same transcript 𝑡 we work with; therefore, 𝑣 ’s

view in 𝑄 stays consistent its view in △(𝑥, 𝑣,𝑦). □

Now consider node 𝑢1’s view at the end of the execution of𝐴′
in

𝑄 . By the claim above, the messages𝑢1 receives throughout the exe-

cution in 𝑄 are the same messages it would receive in △(𝑢0, 𝑢1, 𝑢2).
Also, the neighbors of 𝑢1 in 𝑄 are the same neighbors it has in

△(𝑢0, 𝑢1, 𝑢2). Thus, the state of 𝑢1 is the same at the end of the

execution in 𝑄 and in △(𝑢0, 𝑢1, 𝑢2). In △(𝑢0, 𝑢1, 𝑢2) we know that

𝑢1 rejects (by Claim 4.3); therefore it also rejects in 𝑄 , violating the

correctness of 𝐴′
and hence also of 𝐴. □

5 BANDWIDTH LOWER BOUND ON 1-ROUND
TRIANGLE-DETECTION

In this section we show:

Theorem5.1. There exist a constant 𝜖 ∈ (0, 1) such that any protocol
solving triangle-detection in one round with error probability at most
𝜖 requires bandwidth 𝐵 = Ω(𝑛) in graphs of maximum degree Θ(𝑛).

To generalize to any degree Δ, we can embed our lower bound

construction in a larger graph, and trivially obtain the lower bound

of Ω(Δ) for maximum degree Δ.
The idea behind the lower bound is to take three “special” nodes,

with randomly chosen identifiers, and connect every pair of them

with iid probability 1/2, so that a triangle appears w.p. 1/8. The
error of the protocol is assumed to be much smaller, 𝜖 ≪ 1/8,
so the protocol must reject with good probability in this case. In

addition to the three special nodes, we give each of them Θ(𝑛)
non-special neighbors, in such a way that no special node can tell

a-priori whether a particular neighbor is another special node or

not. This way, the triangle edges are “hidden” among many other

edges, which look the same to each special node.

We do not prevent a special node from learning the identities

of the other two special nodes after it receives their messages, but

by this point it is too late for the protocol: because each special

node did not know a-priori which edges it should care about, we

show that its message does not convey much information about the

presence or absence of the potential triangle edges (i.e., the edges

between special nodes).

Let us now describe the graph construction more formally, and

proceed to sketch the proof of the lower bound.

The template graph. In our lower bound, we work with random

subgraphs of the following graph 𝐺𝑇 .

Figure 3: The template graph 𝐺𝑇 .

Let 𝑉𝑎 =
{
𝑣𝑎
1
, . . . , 𝑣𝑎𝑛

}
, 𝑉𝑏 =

{
𝑣𝑏
1
, . . . , 𝑣𝑏𝑛

}
,𝑉𝑐 =

{
𝑣𝑐
1
, . . . , 𝑣𝑐𝑛

}
be

three disjoint vertex sets with |𝐴| = |𝐵 | = |𝐶 | = 𝑛. The vertex set
of𝐺𝑇 is 𝑉 (𝐺𝑇) = 𝑉𝑎 ∪𝑉𝑏 ∪𝑉𝑐 ∪ {𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 }, and the edges are the

following:

• Nodes 𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 are connected in a triangle, and

• For each 𝑠 ∈ {𝑎, 𝑏, 𝑐}, every 𝑢 ∈ 𝑉𝑠 is connected to 𝑣𝑠 .

We refer to 𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 as special nodes; they are the only nodes that are
part of a triangle in𝐺𝑇 . Throughout this proof sketch, we ignore the

non-special nodes, because their input gives them no information

about the presence of a triangle. (We account for the non-special

nodesmore formally in the full proof, see the full version for details.)

In a departure from the rest of the paper, here we treat a graph
node as a separate entity from its identifier : we construct a random
graph 𝑮 by taking a random subgraph of 𝐺𝑇 as we describe below,

and assigning to each node a random identifier. The algorithm

executed at node 𝑣 ∈ 𝑉 (𝐺) knows only the identifier assigned to

node 𝑣 , and the identifiers of 𝑣 ’s neighbors; it does not know 𝑣 . This

is merely a technical convenience due to the fact that the graphs we

consider are all subgraphs of 𝐺𝑇 , and does not weaken the lower

bound.

The input distribution. We define 𝑮 to be a random subgraph

of 𝐺𝑇 , where each edge of 𝐺𝑇 is included with iid probability 1/2.
Identifiers are also assigned at random: for each 𝑣 ∈ 𝑉 (𝐺𝑇), we
choose an identifier 𝒊𝒅 (𝑣) uniformly at random from [𝑛3].

Remark. Since we choose the identifiers independently from [𝑛3],
there is a small but non-zero chance that two vertices get the same

identifier. In this case we do not know what the algorithm will

do, as it is not obligated to work when identifiers are not unique.

However, the probability of this event is so tiny that it does not

affect us by much.

For each 𝑠 ∈ {𝑎, 𝑏, 𝑐}, let 𝒖𝑠 = 𝒊𝒅 (𝑣𝑠) be the identifier assigned
to 𝑣𝑠 .

Input representation. It is technically convenient to represent the
input to each node as the sequence of identifiers assigned to its

neighbors in 𝐺𝑇 (i.e., possibly more neighbors than it has in 𝑮),
together with a bit-vector indicating for each one whether it is

a neighbor in 𝑮 or not. The algorithm is free to ignore the extra

information, so this only strengthens the lower bound. This repre-

sentation makes it technically easy to view the potential triangle

edges as “hidden” amongΘ(𝑛) other iid Bernoulli random variables.

Thus, we give each special node 𝑣𝑠 the sequence

𝑼 𝑠 = { 𝒊𝒅 (𝑤) | {𝑤, 𝑣𝑠 } ∈ 𝐸 (𝐺𝑇)}
of identifiers of 𝑣𝑠 ’s neighbors in 𝐺𝑇 , but we apply a random per-

mutation 𝝅𝑠 to the sequence, so that 𝑣𝑠 cannot tell which node in

𝐺𝑇 corresponds to which identifier in 𝑮 . In addition, 𝑣𝑠 receives

the bit-vector 𝑿𝑠 indicating for each potential neighbor 𝑤 in 𝐺𝑇
whether the edge {𝑣𝑠 ,𝑤} is in 𝑮; the vector 𝑿𝑠 is also scrambled

using the same permutation 𝝅𝑠 , so that its order matches the order

of the identifiers in 𝑼 𝑠 . And finally, 𝑣𝑠 receives its own identifier,

𝒖𝑠 .
For 𝑠 ≠ 𝑡 ∈ {𝑎, 𝑏, 𝑐}, let 𝒊𝑠 (𝑡) be the index in 𝑿𝑠 indicating

whether the potential triangle edge {𝑣𝑠 , 𝑣𝑡 } is in 𝑮 or not. (This

is a uniformly random index from 𝑣𝑠 ’s perspective.) We use the

following short-hand notation: 𝑵 𝑠 = (𝑼 𝑠 ,𝑿𝑠 , 𝒖𝑠) is the input to 𝑣𝑠 ,
and 𝑿𝑠𝑡 = 𝑿𝑠 (𝒊𝑠 (𝑡)) is the bit indicating whether the edge {𝑣𝑠 , 𝑣𝑡 }
is in 𝑮 .

Observation 5.2. 𝑮 contains a triangle if and only if 𝑿𝑎𝑏 ∧ 𝑿𝑏𝑐 ∧
𝑿𝑎𝑐 = 1.

Now, fix an algorithm 𝐴 with distributional error at most 1/1000
on `; that is, whenwe draw 𝑮 ∼ `, the probability that𝐴 outputs the

correct answer is at least 999/1000. (The constant is fairly arbitrary.)

Because a triangle appears with probability 1/8, and𝐴 has overall

error at most 1/1000, it is easy to verify that conditioned on the

presence of the triangle, 𝐴 rejects with probability at least 1 −
8/1000 > 99/100. This means that at least one of the three special

vertices, w.l.o.g. 𝑣𝑎 , rejects w.p. > 33/100 in this case. On the other

hand, if 𝑿𝑎𝑏 = 𝑿𝑎𝑐 = 1 but 𝑿𝑏𝑐 = 0, then 𝑣𝑎 must accept with

probability at least 1 − 8/1000 > 99/100. So, conditioned on the

event 𝑿𝑎𝑏 = 𝑿𝑎𝑐 = 1, node 𝑣𝑎 must learn some information about

𝑿𝑏𝑐 , and this is formalized by the following lemma. For two vertices

𝑢,𝑤 , Let 𝑴𝑢𝑤 denote the messages sent by 𝑢 to𝑤 .

Lemma 5.3. If Π is a protocol that solves triangle-detection, then
either

I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎,𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1) ≥ 0.3,

or a symmetric claim holds for 𝑣𝑏 or for 𝑣𝑐 .

Proof sketch. Let 𝒂𝒄𝒄𝑎 be an indicator for the event that 𝑣𝑎
accepts. By the data processing inequality, since 𝑣𝑎 ’s decision is a

function of its input and the messages it receives,

I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎,𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1)
≥ I(𝑿𝑏𝑐 ; 𝒂𝒄𝒄𝑎 |𝑵𝑎,𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1),

so it suffices to lower-bound the right-hand side.

As we said above, the distribution of 𝒂𝒄𝒄𝑎 changes noticeably

depending on the value of 𝑿𝑏𝑐 = 1: when 𝑿𝑏𝑐 = 0, the probability

that 𝑣𝑎 accepts is at least 99/100. However, the prior probability that
𝑣𝑎 accepts, when𝑿𝑏𝑐 ∼ Bernoulli(1/2), is at most (1/2) · (99/100)+
(1/2) · (67/100) < 8/10. This “change in behavior” translates to

a lower bound on mutual information (see the full proof for the

details). □

On the other hand, we claim that nodes 𝑣𝑏 and 𝑣𝑐 cannot convey

this much information about 𝑿𝑏𝑐 to 𝑣𝑎 .

Lemma 5.4. The information node 𝑣𝑎 learns about 𝑿𝑏𝑐 given its
input and the presence of edges {𝑣𝑎, 𝑣𝑏 } , {𝑣𝑎, 𝑣𝑐 } is at most:

I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎,𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1)

≤ 4(|𝑴𝑐𝑎 | + |𝑴𝑏𝑎 |)
𝑛 + 1

+ 2

𝑛
.

Symmetric claims hold for 𝑣𝑏 and 𝑣𝑐 .

Proof sketch. First, since Pr (𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1) = 1/4 andmu-

tual information is non-negative,

I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎)
≥ (1/4) I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎,𝑿𝑎𝑏 = 1,𝑿𝑎𝑐 = 1).

(This can be seen by writing the expectation on 𝑵𝑎 as an expec-

tation on 𝑿𝑎𝑏 ,𝑿𝑎𝑐 and the rest of 𝑵𝑎 , and expanding out the

expectation on 𝑿𝑎𝑏 ,𝑿𝑎𝑐 .)

We bound the left-hand side. It expresses the information 𝑣𝑏 and

𝑣𝑐 ’s messages together convey about 𝑿𝑏𝑐 . However, because the

two nodes’ inputs are independent given the conditioning and 𝑿𝑏𝑐 ,

we can actually break it up into the sum of what each message

conveys by itself: we show that

I(𝑿𝑏𝑐 ;𝑴𝑏𝑎,𝑴𝑐𝑎 |𝑵𝑎)
≤ I(𝑿𝑏𝑐 ;𝑴𝑏𝑎 |𝑵𝑎, 𝒖𝑐) + I(𝑿𝑏𝑐 ;𝑴𝑐𝑎 |𝑵𝑎, 𝒖𝑏) .

We bound each term separately.

Consider the first term, I(𝑿𝑏𝑐 ;𝑴𝑏𝑎 |𝑵𝑎, 𝒖𝑐) (the other term is

similar). This term essentially measures the information 𝑣𝑏 sends

to 𝑎 about 𝑿𝑏𝑐 , for a “typical” identifier 𝒖𝑐 . Crucially, when 𝑣𝑏
sends its message to 𝑣𝑎 , it does not know the identity of 𝒖𝑐 ; that
is, its message is independent of the choice of 𝒖𝑐 , conditioned on

its input. Consequently, we can argue that 𝑴𝑏𝑐 is independent of

the index 𝒊𝑏 (𝑐) where we hid the bit 𝑿𝑏𝑐 . (This is slightly delicate,

because we could have duplicate identifiers; 𝒖𝑐 does not uniquely
specify 𝒊𝑏 (𝑐). We handle this in the proof by conditioning on the

high-probability event that there are no duplicate identifiers; hence

the additive 𝑂 (1/𝑛) term in the bound we get.)

Now we have reduced everything to the following question: how

much does 𝑣𝑏 ’s message 𝑴𝑏𝑎 reveal about a random coordinate

𝑿𝑏 (𝒊) of its input, where the index 𝒊 is uniformly random on 𝑛 +
1 locations,

1
and not known to 𝑣𝑏 in advance? Using standard

arguments, we show that the answer is 𝑂 (|𝑴𝑏𝑎 |/(𝑛 + 1)). The
claim follows. □

Corollary 5.5. If |𝑴𝒃𝒂 |, |𝑴𝒄𝒂 | < 𝑛/60 then
I(𝑿𝒃𝒄 ;𝑴𝒃𝒂,𝑴𝒄𝒂 |𝑵𝒂,𝑿𝒂𝒃 = 1,𝑿𝒂𝒄 = 1) < 0.1.

By combining the two lemmas above, and dealing with the low-

probability event that 𝑮 contains duplicate identifiers, we get The-

orem 5.1.

6 SUBLINEAR-TIME PROTOCOL FOR 𝐶2𝑘

In this section we show that for any 𝑘 ≥ 2, the𝐶
2𝑘 -subgraph detec-

tion problem can be solved in𝑂 (𝑛1−1/(𝑘 (𝑘−1))) rounds. E.g.,𝐶4 can
be detected in in 𝑂 (𝑛1/2) rounds (which was already known [10]);

𝐶6 can be detected in 𝑂 (𝑛5/6) rounds; and so on. Our algorithm

combines several techniques: color coding [2], pipelining, and a

particular decomposition of low-arboricity graphs (previously used

in, e.g., [3]). We also rely on the fact that the Túran number of an

even cycle 𝐶
2𝑘 is ex(𝑛,𝐶

2𝑘) = 𝑂 (𝑛1+1/𝑘) (see, e.g., [5]).
Let𝑀 = 𝑂 (𝑛1+1/𝑘) be an upper bound on ex(𝑛,𝐶

2𝑘). We assume

for simplicity that the bandwidth is sufficiently large to send a

sequence of 2𝑘 identifiers in one message. (Note that 𝑘 is treated as

a constant throughout.)

Phase I: dealing with high-degree nodes. Our goal in this step is

to find a copy of 𝐶
2𝑘 that includes at least one “high-degree node”:

a node with degree at least 𝑛𝛿 , where 𝛿 = 1/(𝑘 − 1). If there is

such a𝐶
2𝑘 in the graph, then in this phase at least one node rejects.

Otherwise we will search for cycles comprising only low-degree

nodes, in the next phase of the algorithm.

We rely on the fact that if |𝐸 (𝐺) | ≤ 𝑀 , then there cannot be more

than ⌈𝑀/𝑛𝛿 ⌉ nodes with degree at least 𝑛𝛿 . On the other hand, if

|𝐸 (𝐺) | > 𝑀 , then we may fail, but in this case we know that the

graph contains a 2𝑘-cycle, because it has too many edges (more

than ex(𝑛,𝐶
2𝑘)).

We first color-code the graph, assigning each node 𝑢 a random

color 𝑐 (𝑢) ∈ {0, . . . , 2𝑘 − 1}. Then we look for a properly-colored
copy of 𝐶

2𝑘 : a cycle 𝑢0, . . . , 𝑢2𝑘−1, where 𝑐 (𝑢𝑖) = 𝑖 for each 𝑖 =

0, . . . , 2𝑘 −1. To search for such cycles, we start a “color-coded” BFS

1
One location is taken up by the bit 𝑿𝑎𝑏 ; since we condition here on 𝒖𝑎 , as it is part

of 𝑣𝑎 ’s input 𝑵𝑎 , only 𝑛 + 1 locations are possible for 𝑿𝑏𝑐 .

to depth 2𝑘 , from every node that has degree at least 𝑛𝛿 and color 0.

A color-coded BFS is like a regular BFS, except that the BFS token is

only allowed to move from node 𝑢 to a neighbor 𝑣 if 𝑐 (𝑣) = 𝑐 (𝑢) + 1.
In this way we “unravel” paths of nodes with colors 0, 1, . . . , 2𝑘 − 1

respectively, until finally the last node, whose color is 2𝑘 − 1, sends

the BFS token back to node 0, and then node 0 detects the cycle

and rejects.

The color-coded BFS is executed in parallel for all nodes, as

follows. Each node 𝑢 maintains a queue of messages it needs to

send; initially, if 𝑐 (𝑢) = 0 and deg(𝑢) ≥ 𝑛𝛿 , then𝑢 adds the message

(ColorBFS, 𝑢, 0) to its queue, and otherwise 𝑢’s queue is initially

empty.

In each round, every node chooses an arbitrary message from

its queue, sends it to all its neighbors, and removes it from its

queue. Upon receipt of a message (ColorBFS, 𝑢, 𝑖), node 𝑣 does the
following:

• If node 𝑣 previously received the same message, it discards

the new copy.

• If 𝑢 = 𝑣 (i.e., node 𝑢 received its own message back), and

𝑖 = 2𝑘 − 1, then we have found a 2𝑘-cycle, and node 𝑢 rejects.

• If 𝑐 (𝑣) ≠ 𝑖 + 1, it discards the message.

• Otherwise, 𝑣 adds a message (ColorBFS, 𝑢, 𝑖 + 1) to its queue.
Phase I takes 𝑅1 ≔ ⌈𝑀/𝑛𝛿 ⌉ + 2𝑘 rounds. At the end of 𝑅1 rounds,

if any node has a non-empty message queue, it rejects.

A standard pipelining argument shows:

Lemma 6.1. If |𝐸 (𝐺) | ≤ 𝑀 , then after 𝑅1 = ⌈𝑀/𝑛𝛿 ⌉ + 2𝑘 rounds,
all nodes have empty queues.

Intuitively, this is because at most ⌈𝑀/𝑛𝛿 ⌉ BFS tokens can “stand
in the way” of any given token (as this is an upper bound on the

number of high-degree nodes), and each token only travels to dis-

tance 2𝑘 .

Consequently, at the end of phase I, if |𝐸 (𝐺) | ≤ 𝑀 then all BFS

instances complete, and we get:

Corollary 6.2. If |𝐸 (𝐺) | ≤ 𝑀 , and𝐺 contains a copy of𝐶
2𝑘 that in-

cludes a node with degree at least 𝑛𝛿 , then in phase I, with probability
at least 1/(2𝑘)2𝑘 , some node rejects.

What happens if |𝐸 (𝐺) | > 𝑀? In this case we know that the

graph must contain a 2𝑘-cycle, but still, we might not find it. How-

ever, we are guaranteed that if after 𝑅1 rounds some node has a

non-empty queue, then the graph has more than 𝑀 edges, and it

contains a 2𝑘-cycle. Hence:

Lemma 6.3. If in phase I some node rejects, then 𝐺 contains a copy
of 𝐶

2𝑘 .

Phase II: dealing with the remaining graph. At the end of phase I,

any node with degree at least𝑛𝛿 removes itself and all its edges from

the graph. Now we search for copies of 𝐶
2𝑘 among the remaining

nodes.

Let 𝑑 = ⌈𝑀/2𝑛⌉. Using the decomposition from [3], if the graph

is 𝐶
2𝑘 -free (which we do not know), we can decompose it into

⌈log𝑛⌉ layers𝑉1, . . . ,𝑉𝐿 , with the property that for each layer ℓ and

node 𝑣 ∈ 𝑉ℓ , the number of edges going “up” from 𝑣 to nodes in

equal-or-higher layers 𝑉ℓ ,𝑉ℓ+1, . . . ,𝑉𝐿 is at most 𝑑 = ⌈𝑀/2𝑛⌉. Es-
sentially, we recursively remove from the graph nodes with degree

sufficiently small in the remaining graph, relying on the fact that if

there is no 2𝑘-cycle, then at each point the average degree cannot

exceed ⌈𝑀/𝑛⌉. After ⌈log𝑛⌉ such steps, if there is some node that

has not been assigned to any layer, this node rejects, as we know

that there is a 2𝑘-cycle.

Otherwise we continue as follows: for each 𝑣 ∈ 𝑉 , let ℓ (𝑣)
denote the layer of node 𝑣 . We randomly assign each node 𝑣 a

color 𝑐 (𝑣) ∈ [2𝑘]. We look only for properly-colored 2𝑘-cyles

𝑢0, . . . , 𝑢2𝑘−1 where 𝑐 (𝑢0) = 0, . . . , 𝑐 (𝑢
2𝑘−1) = 2𝑘 − 1 and further-

more, 𝑢0 is on the highest layer out of all the cycle nodes. (That is,

for each 𝑖 = 1, . . . , 2𝑘 − 1 we have ℓ (𝑢𝑖) ≤ ℓ (𝑢0).)
For this type of cycle, we have the advantage that from the

perspective of nodes 𝑢1 and 𝑢2𝑘−1, the number of neighbors they

need to “consider for the role of 𝑢0” is bounded by their “up-degree”

𝑑 — the number of neighbors they have in equal-or-higher layers.

Let us call a sequence 𝑢0, . . . , 𝑢𝑖 a length-𝑖 increasing prefix if

𝑐 (𝑢0) = 0, 𝑐 (𝑢1) = 1, . . . , 𝑐 (𝑢𝑖) = 𝑖 , or a length-𝑖 decreasing prefix if

𝑐 (𝑢0) = 0, 𝑐 (𝑢1) = 2𝑘 − 1, 𝑐 (𝑢2) = 2𝑘 − 2, . . . , 𝑐 (𝑢𝑖) = 2𝑘 − 𝑖 . Our
goal now is to have node𝑢𝑘 (the “midpoint” of the 2𝑘-cycle) receive

a length-𝑘 increasing sequence and a length-𝑘 decreasing sequence,

both starting from node 𝑢0 (the highest-layer node). Node 𝑢𝑘 will

then detect the cycle and reject.

We propagate prefixes of increasing length, as follows:

(1) First, each 𝑣 with 𝑐 (𝑣) = 0 sends the message (𝑣, ℓ (𝑣)).
(2) Next, each node 𝑣 colored 1 or 2𝑘 − 1 sends the following: for

each message (𝑢, ℓ (𝑢)) received in the previous round, if ℓ (𝑢) ≥
ℓ (𝑣), then 𝑣 sends out the prefix (𝑢, 𝑣). Since node 𝑣 has at most

𝑑 neighbors in equal-or-higher layers, this requires at most 𝑑

rounds.

(3) For each 𝑖 ∈ {2, . . . , 𝑘 − 1}, nodes colored 𝑖 (resp. 2𝑘 − 𝑖) send
all the length-(𝑖 − 1) increasing (resp. decreasing) prefixes they

received, appending their name at the end to form length-𝑖

increasing (resp. decreasing) prefixes. This takes at most 𝑑 ·
𝑛𝛿 · (𝑘−2) rounds.

(4) Finally, nodes 𝑣 colored 𝑘 collect the length-𝑘 increasing and

decreasing prefixes they received, and check if there is some

node 𝑢0 that starts both an increasing and a decreasing prefix

ending at 𝑣 . If so, they have found a 2𝑘-cycle, and they reject.

Claim 6.4. Assume that |𝐸 (𝐺) | ≤ 𝑀 . Then (a) all nodes are assigned
to a layer after ⌈log𝑛⌉ steps of layer assignment; and (b) if𝐺 contains
a 2𝑘-cycle, then with probability at least 1/(2𝑘)2𝑘 some node rejects
in phase II.

The running time of phase II is𝑅2 = ⌈log𝑛⌉+(2𝑘)·𝑑 ·𝑛𝛿 · (𝑘−2) . Bal-
ancing the running times 𝑅1, 𝑅2 of the two phases, we see that when

we take 𝛿 = 1/(𝑘 − 1), both running times are𝑂 (𝑛1−1/(𝑘 (𝑘−1))), as
desired.

Putting everything together. Phases I and II together give us the

following guarantee:

• If |𝐸 (𝐺) | ≤ 𝑀 , and the graph contains a 2𝑘-cycle, then with

probability at least 1/(2𝑘) (2𝑘) some node rejects.

• If some node rejects, then either |𝐸 (𝐺) | > 𝑀 , or the graph

contains a 2𝑘-cycle.

Of course, if |𝐸 (𝐺) | > 𝑀 , then we know that the graphmust contain
a 2𝑘-cycle, even though we did not necessarily detect a specific one.

Therefore it is proper that the algorithm reject in this case.

To construct an algorithm that detects a 2𝑘-cycle with constant

probability, we simply repeat each phase 𝑂

(
2𝑘2𝑘

)
times, each iter-

ation using independently-chosen colors for the nodes.

7 ACKNOWLEDGMENTS
We would like to thank Dan Karliner for fruitful discussions, and

for pointing out Theorem 4.2 to us.

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. 2017.

Fooling Views: A New Lower Bound Technique for Distributed Computations

under Congestion. CoRR abs/1711.01623 (2017).

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4

(1995), 844–856.

[3] Leonid Barenboim and Michael Elkin. 2008. Sublogarithmic Distributed MIS

Algorithm for Sparse Graphs Using Nash-williams Decomposition (PODC ’08).
25–34.

[4] Zvika Brakerski and Boaz Patt-Shamir. 2011. Distributed discovery of large

near-cliques. Distributed Computing 24, 2 (2011), 79–89.

[5] Boris Bukh and Zilin Jiang. 2017. A bound on the number of edges in graphs

without an even cycle. Combinatorics, Probability and Computing 26, 1 (2017),

1–15.

[6] Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev.

2016. Fast Distributed Algorithms for Testing Graph Properties. 43–56.
[7] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2015. Algebraic Methods in the Congested Clique. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015. 143–152.

[8] Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2017. Quadratic and Near-

Quadratic Lower Bounds for the CONGEST Model. In 31st International Sympo-
sium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria.
10:1–10:16.

[9] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. “Tri, Tri Again”: Finding
Triangles and Small Subgraphs in a Distributed Setting. 195–209.

[10] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the

Congested Clique Model. In Proceedings of the 2014 ACM Symposium on Principles
of Distributed Computing (PODC ’14). 367–376.

[11] P. Erdös. 1964. On extremal problems of graphs and generalized graphs. IJoM
(1964).

[12] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina,

Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan

Todinca. 2017. Three Notes on Distributed Property Testing. In 31st Interna-
tional Symposium on Distributed Computing (DISC 2017) (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 91. 15:1–15:30.

[13] Pierre Fraigniaud and Dennis Olivetti. 2017. Distributed Detection of Cycles.

In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017. 153–162.

[14] Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. 2016. Distributed
Testing of Excluded Subgraphs. 342–356.

[15] Tzlil Gonen and Rotem Oshman. 2017. Lower Bounds for Subgraph Detection in

the CONGEST Model. To appear in OPODIS 2017.

[16] Taisuke Izumi and François Le Gall. 2017. Triangle Finding and Listing in CON-

GEST Networks. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC ’17). 381–389.

[17] Bala Kalyanasundaram and Georg Schnitger. 1992. The Probabilistic Communica-

tion Complexity of Set Intersection. SIAM J. Discrete Math. 5, 4 (1992), 545–557.
[18] Janne H. Korhonen and Joel Rybicki. 2017. Deterministic Subgraph Detection in

Broadcast CONGEST. In 21st International Conference on Principles of Distributed
Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017. 4:1–4:16.

[19] Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge

University Press.

[20] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2016. Tight Bounds

for Distributed Graph Computations. CoRR (2016). http://arxiv.org/abs/1602.

08481

[21] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. J. ACM 27, 2 (1980), 228–234.

[22] Alexander A. Razborov. 1992. On the Distributional Complexity of Disjointness.

Theor. Comput. Sci. 106, 2 (1992), 385–390.
[23] Igor Rivin. 2002. Counting Cycles and Finite Dimensional Lp Norms. Adv. Appl.

Math. 29, 4 (2002), 647–662.
[24] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1

(1976), 31–42.

http://arxiv.org/abs/1602.08481
http://arxiv.org/abs/1602.08481

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Superlinear Lower Bounds on Subgraph Detection
	3.1 Informal Description of Hk
	3.2 The Lower Bound Family Gk,n
	3.3 The Lower Bound
	3.4 A Superlinear Lower Bound for Bipartite Subgraphs

	4 Lower Bound on Deterministic Triangle-Detection
	5 Bandwidth Lower Bound on 1-Round Triangle-Detection
	6 Sublinear-Time Protocol for C2k
	7 Acknowledgments
	References

