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Abstract

Radio networks can be a challenging platform for which to develop distributed algorithms, because
the network nodes must contend for a shared channel. In some cases, though, the shared medium is
an advantage rather than a disadvantage: for example, many radio network algorithms cleverly use
the shared channel to approximate the degree of a node, or estimate the contention. In this paper
we ask how far the inherent power of a shared radio channel goes, and whether it can efficiently
compute “classicaly hard” functions such as Majority, Approximate Sum, and Parity.

Using techniques from circuit complexity, we show that in many cases, the answer is “no”. We
show that simple radio channels, such as the beeping model or the channel with collision-detection,
can be approximated by a low-degree polynomial, which makes them subject to known lower bounds
on functions such as Parity and Majority; we obtain round lower bounds of the form Ω(nδ) on these
functions, for δ ∈ (0, 1). Next, we use the technique of random restrictions, used to prove AC0 lower
bounds, to prove a tight lower bound of Ω(1/ε2) on computing a (1± ε)-approximation to the sum
of the nodes’ inputs. Our techniques are general, and apply to many types of radio channels studied
in the literature.
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8:2 On the Computational Power of Radio Channels

1 Introduction

In a radio network, nodes communicate over a shared channel, and must contend with each
other for access to the channel. This can make some essential distributed tasks challenging,
e.g., even broadcasting one piece of information across the network is highly non-trivial (see
[34] for a survey). On the other hand, many works have observed that the shared channel also
presents some opportunities: in a radio network, nodes can use the fact that they contend
for the same channel to quickly elect a leader [21], approximate their degree (e.g., using the
famous Decay algorithm [7]), approximate local sums, and even approximate the PageRank
[29].

In this paper we ask: what is the computational power of a shared radio channel? Can
it efficiently compute “classical hard functions”, like majority or parity? How well can it
approximate functions like threshold or sum? We use techniques from circuit complexity
to show that the computation power of a shared radio channel is subject to significant
limitations, and prove tight lower bounds for several functions.

Part of our motivation comes from the problem of computing an approximate sum, which
is a useful building block in many radio network algorithms: it can be used to compute
an approximate degree or estimate the contention, and also to compute the PageRank and
related problems [29] (also see subsection 1.2). Approximate sum is also used in interactive
compression [8, 28], where we require a very good (sub-constant) approximation error. In [29]
it is shown that in any beeping network (not just single-hop networks), all nodes can compute
a (1± ε) approximation of the sum of their neighbors’ inputs, in O(polylog(n)/ε2) rounds.
Our results show that this quadratic dependence on 1/ε is tight, even for the simple single
hop topology (although we do not match the polylogarithmic dependence on n).

The model. We consider n wireless nodes with inputs x1, . . . , xn, communicating over a
shared channel (i.e., a single-hop radio network), with the goal of computing some function
f(x1, . . . , xn). Our techniques are quite general, and can handle many types of channels
considered in the literature, with or without collision detection. We can also handle an
additive network (see, e.g., [14]), where the nodes receive the XOR of the bits sent on the
channel. Generally, as long as the contents of the channel in every round can be computed by
a simple Boolean circuit over the values broadcast by the nodes in that round, the channel
will be amenable to our techniques.

For simplicity, in the body of the paper we mostly focus on the single-hop beeping model:
in each round, every node decides whether to beep or not to beep; if at least one node decided
to beep, all nodes hear a beep, and otherwise they hear silence. In other words, the beeping
channel computes the Boolean OR of the inputs to the channel (i.e., of the individual nodes’
decisions whether to beep). The beeping model, and other related models, have received
a lot of attention in recent years [2, 36, 3, 24, 19, 21, 30, 10, 23, 18, etc.], as they provide
an abstraction capturing the simplest possible communication primitive: a detectable burst
of ‘energy’. This abstraction is well suited for describing wireless networks. In addition,
one of the main motivations for studying the beeping model is due to its connections to
signal-driven biological systems [4, 31]: e.g., cells communicating by secreting proteins and
other chemical markers that are diffused and sensed by neighboring cells, or fireflies reacting
to flashes of light from nearby fireflies.
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1.1 Our Results and Techniques
We describe two approaches for bounding the computation power of a radio channel. Again,
we focus here on the beeping channel.

1.1.1 Lower Bounds via Polynomial Approximations
Our first approach shows that a protocol for the beeping channel can be approximated by a
low-degree polynomial over the inputs, where the degree of the polynomial depends on the
number of rounds used by the protocol.

I Theorem 1.1. If there is a randomized r-round beeping protocol P that computes f :
{0, 1}n → {0, 1} with error ε, then there is a polynomial g ∈ F2[X1, . . . , Xn] of degree O(r3)
which agrees with f on all but a 2ε-fraction of the inputs in {0, 1}n.

Here, F2[X1, . . . , Xn] denotes the polynomials over x1, . . . , xn with coefficients in F2.
It is well-known that some functions, such as the parity function, Parityn(x1, . . . , xn) =∑
i xi mod 2, and the majority function, Majorityn(x) = [

∑
i xi

?
≥ n/2], cannot be approx-

imated by a low-degree polynomial, and this allows us to prove round lower bounds in the
beeping model.

I Corollary 1.2. Any randomized beeping protocol for Parityn or Majorityn with error
1/10 requires Ω(n1/6) rounds.

Along the way, we show that any deterministic beeping protocol can be simulated by a
constant-depth circuit with unbounded fan-in AND and OR gates. The size of the circuit
corresponds to the number of rounds used by the protocol, so we can use known lower
bounds for AC0 to prove deterministic lower bounds in the beeping model. We then use
Razborov’s Lemma, which shows that an AC0 circuit can be approximated by a low-degree
polynomial [35].

The beeping channel can be replaced by other types of channels: the degree bound of
O(r3) in Theorem 1.1, and consequently the exponent in Corollary 1.2, change depending
on the channel. For example, if we use a channel with collision detection, the degree bound
changes to r5 and the corresponding lower bound on Parityn and Majorityn becomes
Ω(n1/10).

1.1.2 Lower Bounds via Random Restrictions
While the technique of approximation by polynomials yields fairly general lower bounds
that can be applied to a wide range of functions and models, it falls short of proving tight
lower bounds, at least in the case of Majorityn (and also for Parityn with randomized
protocols); this is inherent, because these functions can be computed by polynomials of
degree

√
n. We were especially interested in the Majority function, because a lower bound

on Majority implies a lower bound on computing a sum; moreover, a lower bound on
Approx-Majorityn,ε, the promise problem of distinguishing whether

∑
i xi ≥ (1/2 + ε)n

or whether
∑
i xi < (1/2− ε)n, implies a lower bound on computing a (1± ε)-approximate

sum. We were therefore especially motivated to prove tight bounds for Majorityn and
Approx-Majorityn,ε.

To do so, we use another classical technique from circuit complexity, called random
restrictions (defined in subsection 4.2). Essentially, we show that for a certain class of
functions, there is no “clever” way to use the beeping channel, and we cannot do much better
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8:4 On the Computational Power of Radio Channels

than simply having the nodes speak one after the other. For this simpler setting we can then
use known results.

Using this technique, we prove a nearly-tight lower bound on Approx-Majorityn,ε,
and consequently we obtain the same bound on (1± ε)-approximate sum. We mention that
our proof also yields a similar lower bound for a “weaker” problem, called Coinn,ε, see
Corollary 4.11.

I Theorem 1.3. Every randomized beeping protocol that solves Approx-Majorityn,ε with
error 1/10 and ε > c/

√
n (for some sufficiently large constant c), must use Ω

( 1
ε2

)
rounds.

The same theorem applies to other “simple” channels, such as the channel with collision
detection.

I Corollary 1.4. Any randomized beeping protocol for Majorityn with error 1/10 requires
Ω(n) rounds.

Our lower bound applies even if nodes have a shared source of randomness. It is easy
to see that in this setting, our lower bound is tight: sampling 1/ε2 random nodes, and
having these nodes announce their inputs one after the other, solves Approx-Majorityn,ε
with constant error. If nodes only have private randomness, the problem becomes more
challenging, but [29] shows it can still be solved in O(log2 /ε2) rounds. Therefore, our result
is tight up to the polylogarithmic dependence on n even with private randomness.

We are also able to give a lower bound of Ω(1/ε2) on computing a (1± ε)-approximation
to the size of the network in the beeping model and related models. This problem was studied
in [10], where the authors give an algorithm that runs in O(log(1/δ)/ε2 + log logn) rounds
and succeeds with probability 1− δ, and prove a lower bound of Ω(log(1/δ)/ε+ log logn). A
lower bound of Ω(1/(ε2 log(1/ε)) + log logn) is shown in [15] for the related model of RFID
networks. Computing an approximate sum reduces to the problem of approximating the
size of the network, by simply having nodes with input 0 pretend that they are not present;
thus, Theorem 1.3 also gives a lower bound of Ω(1/ε2) on this problem. The converse is
not necessarily true; the lower bounds of [10, 15] rely on being able to choose which nodes
participate in the computation, and they do not apply to computing an approximate sum
in a fixed-size network. Our result recovers the dependence of 1/ε2 in these bounds, and
extends it to other models.

1.2 Related Work
The literature on wireless networks is vast; for lack of space, we survey only work that is
directly related to out results. Many radio network algorithms use approximate counting as
a subroutine, or solve it directly: [25, 13, 26, 27, 32] give constant-factor approximations in
polylogarithmic time in the general radio model, under various assumptions, such as whether
or not collision detection is present, and whether there is an adversary that can corrupt some
messages.

In the beeping model [17], approximate counting was studied in [10], which gives an
upper bound of O(log logn+ log(1/δ)/ε2), where ε is the approximation quality and δ is the
error probability, and a lower bound of Ω(log logn+ log(1/δ)/ε). It is assumed in [17] that
nodes do not have unique identifiers, and nothing is known a-priori about the size of the
network. We show a lower bound of Ω(1/ε2) on the same problem, which holds even when
nodes do have identifiers, and the size of the network is initially known up to a constant
factor. In [29], the approximate sums problem is introduced: every node has some number
in the range {0} ∪ [1,m], and each node must compute a (1± ε)-approximation to the sum
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of its neighbors’ numbers. The authors give an algorithm for this problem that runs in
O((log2 + logn logm)/ε2) rounds, and use it to develop algorithms for PageRank and related
problems. Our lower bound shows that the quadratic dependence on 1/ε of the algorithm
from [29] is inherent, even in single-hop networks when the inputs are Boolean, and even
when the nodes have public randomness.

In [33], Newport gives a general technique for proving lower bounds in radio networks,
and used it to prove and unify existing proofs for the wake-up and broadcast problems in a
few different variants of the model (with or without collision detection and multiple channels).
The focus in [33] is different than ours: we are mainly interested in the computational power
inherent in the broadcast medium, while [33] gives a unified strategy for quantifying the cost
of uncertainty and symmetry breaking.

The computational power of the beeping model is also studied in [21], but from a different
perspective: [21] characterizes the number of states the nodes must have in order to solve
randomized leader election, and show that with this number of states, it is also possible
to simulate a logspace Turing machine with a constant number of unary input tapes. In
a sense, [21] shows what the beeping model can do, while we focus on what it cannot do.
Unlike [21], we do not restrict the computational power of the nodes themselves; they can
have unbounded space or solve undecidable problems if they so wish.

A somewhat related model to radio networks is RFID networks, and many approximate
counting protocols have been developed for that setting—we refer to [15] for a survey of this
line of research. It is shown in [15] that RFID networks require Ω(log logn+ 1/(ε2 log(1/ε)))
to estimate their size to within (1± ε), and this is almost tight.

2 Preliminaries

Notation. We use bold-face letters to denote random variables. All logarithms are base 2
(unless stated otherwise).

Given a string s = s1 . . . sk ∈ {0, 1}∗ and an index i ≤ k, we let s<i = s1 . . . si−1 denote
the length-(i− 1) prefix of s (with s<1 = ε, the empty string).

2.1 The Beeping Model
Model. In the single hop beeping model, a set of n nodes communicate over a shared channel.
We assume that each node i has a single input bit, xi ∈ {0, 1}.

Communication occurs in synchronous rounds. In every such round, each node can choose
to either beep or listen. If a node i ∈ [n] listens in round m, it can only distinguish between
silence (no other node beeps in round m) or the presence of one or more beeps (at least one
other node beeps in round m). Thus, we can think of each node as broadcasting a bit in
every round (where 0 corresponds to silence and 1 means beeping), and all nodes receive the
OR of the n bits sent in this round.

Protocols. An r-round deterministic protocol for the beeping model specifies, for each node
i ∈ [n], two functions: a broadcast function, specifying whether node i should beep in each
round ` = 1, . . . , r, as a function of its input xi and the transcript (i.e., the contents of the
channel) in rounds 1, . . . , `− 1; and an output function, which takes the complete r-round
transcript and the input xi of node i, and determines what value node i should output at the
end of the protocol. Since we are concerned only with Boolean functions here, we assume
for convenience that the protocol’s output is the contents of the channel in the last round
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8:6 On the Computational Power of Radio Channels

(i.e., if the transcript is b1, . . . , br, then all nodes output br). We refer to r as the length or
running time of the protocol.

A randomized beeping protocol P is a distribution over deterministic beeping protocols.
Note that this definition corresponds to assuming that the nodes have shared randomness,
an assumption that is usually avoided when designing beeping protocols, but this only
strengthens our lower bounds.

The length of a randomized protocol P is the maximum length of a deterministic protocol
in the support of P.

3 Beeping Lower Bounds via Polynomial Approximations

We begin by showing that the beeping model is no more powerful than AC0 circuits where
deterministic protocols are concerned, and for randomized protocols, a beeping protocol can
be approximated by a low-degree polynomial. For both computation models (AC0 circuits and
low-degree polynomials), powerful lower bounds are known, and we can then apply these
lower bounds to the beeping model.

3.1 From Deterministic Beeping Protocols to Circuits
Fix an r-round deterministic protocol P for the beeping model. We would like to simulate P
by a “simple” circuit CP whose output agrees with P on all inputs x ∈ {0, 1}n.

The natural approach would be to try to simulate P round-by-round: in each round,
every node decides whether or not to beep, as a function of the transcript (i.e., the contents
of the channel) so far, and the contents of the channel is an OR over the nodes’ decisions in
the current round. Thus, an r-round deterministic protocol can be represented as a circuit of
depth O(r) and size 2O(r), where the exponential size comes from the fact that each node’s
decision whether to beep in a given round can be an arbitrarily complex function of the
transcript so far and its input. Unfortunately, no lower bounds are currently known against
such circuits, except when r is very small (e.g., less than logarithmic in the input size).

Instead of constructing a circuit with high depth, given a deterministic beeping protocol,
we transform it into a circuit of constant depth, composed of AND, OR and NOT gates
with unbounded fan-in. We can then apply known AC0 lower bounds against constant-depth
circuits.

The circuit we construct is in negation-normal form, i.e., NOT gates are used only on
input wires. To simplify the presentation, we assume that the circuit receives as input the n
variables x1, . . . , xn on which it computes, as well as their negations, x1, . . . , xn. The depth
of the circuit is defined to be the maximum number of AND or OR gates on any path from
an input (either xi or xi) to the output of the circuit; the size of a circuit is the total number
of wires.

I Lemma 3.1. Let P be a deterministic beeping protocol between n nodes, each node i ∈ [n]
holding an input bit xi. Assume that P has worst-case running time of r rounds. Then there
exists a circuit CP of depth 3 and size 2O(r+logn) such that CP (x) = P (x) for all x ∈ {0, 1}n.

Proof. We construct CP by “flattening” the protocol: instead of simulating it round-by-
round, we guess an accepting transcript of the protocol (i.e., we guess the contents of the
channel in every round, in an execution that leads to output 1), and verify that indeed the
protocol would generate this transcript on the input at hand. Here, “guessing” corresponds
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to an OR over all accepting transcripts; verifying that a given transcript is consistent with
the input can be done using a small depth-2 circuit.

Let us describe the construction more formally, from the bottom up.
Observe that for each player i, once we have fixed the transcript t<` ∈ {0, 1}`−1 of the

rounds preceding round `, player i’s decision whether to beep in round ` next round depends
only on its input xi. Thus, it is either constant or a literal, xi or xi.

Let Di
t,` be the depth-0 circuit representing player i’s decision whether to beep or not in

round `, when the transcript of the rounds up to ` is t<`. (Again, Dt,` is either constant or a
literal). Our next step is to construct a circuit Rt,` that “verifies” that round ` is consistent
with the preceding rounds and the input: that is, Rt,` outputs 1 on input x iff when P is
executed on input x, if the transcript of the first `− 1 rounds is t<`, then that the contents
of the channel in round ` is indeed t`. By definition, the contents of the beeping channel is a
disjunction over the players’ decisions, so we define:

Rt,` =
{∨

i∈[n]D
i
t,`, if t` = 1,∧

i∈[n] ¬Di
t,`, if t` = 0.

Note that in case t` = 0, we want to verify that no player decided to beep, and since the
inputs to the circuit are x1, . . . , xn, x1, . . . , xn, we can still verify this using a single AND
gate. As a result, Rt,` is always a single gate; it has depth 1 and size at most n.

Now, let

Vt =
r∧
`=1

Rt,`

be a depth-2 circuit of size O(n · r) that checks whether the transcript t would indeed be
generated on the current input and outputs 1 iff this is the case.

Finally, let T ⊆ {0, 1}r be the set of accepting transcripts of P (i.e., transcripts that
cause the nodes to output 1). The circuit CP is given by

CP =
∨
t∈T

Vt,

a depth-3 circuit of size O(n · r · 2r) = 2O(r+logn), since |T | ≤ 2r and the size of each
sub-circuit Vt is O(n · r). J

Using this transformation, we can immediately “import” known lower bounds for AC0,
and obtain, for example, lower bounds for the round complexity of beeping protocols for the
Parity and Majority functions.

I Corollary 3.2. Any deterministic beeping protocol that computes Parityn or Majorityn
requires Ω(

√
n) rounds.

Proof. It is known that any depth-3 circuit for Parityn or Majorityn must have size
2Ω(
√
n) [22]. Together with Lemma 3.1, we obtain the corresponding lower bounds for the

beeping model. J

We remark that while every r-round beeping protocol can be simulated by an AC0 circuit
of depth 3 and size 2O(r+logn) (Lemma 3.1), the converse is not true: AC0 circuits have
inherent parallelism, which makes them more powerful than the beeping model. One example
is the majority function, which can be computed by an AC0 circuit of depth 3 and size 2O(

√
n),

DISC 2019



8:8 On the Computational Power of Radio Channels

but requires Ω(n) rounds in the beeping model (as we show in the next section). An example
that seems even worse is the function

Tribesk,`(x1, . . . , xk·`) =
k∨
i=1

∧̀
j=1

xi,j

 .

For any k, ` ∈ N, the function Tribesk,` is computed by an AC0 circuit of depth 2 and size
k · `. However, it seems plausible that the beeping model requires Ω(k) rounds to solve
Tribesk,`: even though each inner conjunction can be computed in a single round, we still
need to compute k such conjunctions, and it seems this should require Ω(k) rounds (but we
have not proven this intuition).

3.2 Randomized Beeping Protocols
The lower bound technique above applies only to deterministic protocols, since it relies on
deterministic lower bounds for AC0. To extend this approach to randomized protocols, we
take it one step further, and use the fact that a small low-depth circuit can be approximated
by a low-degree polynomial, while “complex” functions like Parity and Majority cannot
be approximated by a low-degree polynomial. This is one central approach used to prove
AC0 lower bounds, e.g., [35, 38], and we use the construction from [35]:

I Lemma 3.3 (Razborov’s Lemma, [35]). Given a circuit C of size s and depth d, for any
sufficiently small ε ∈ (0, 1/2), there exists a distribution G over multivariate polynomials
g(x1, . . . , xn) ∈ F2[X1, . . . , Xn] of degree at most (log(s/ε))d, such that for all x ∈ {0, 1}n,

Pr
g∼G

[g(x) 6= C(x)] ≤ ε.

Here, F2[X1, . . . , Xn] denotes the polynomials over x1, . . . , xn with coefficients in F2.

Combining Lemma 3.3 with Lemma 3.1 yields the following corollary:

I Corollary 3.4 (Theorem 1.1 restated). If there is a randomized r-round beeping
protocol P that computes f : {0, 1}n → {0, 1} with error ε, then there is a polynomial
g ∈ F2[X1, . . . , Xn] of degree O((r + logn)3) which agrees with f on all but a 2ε-fraction of
the inputs in {0, 1}n.

Now we can rely on the fact that Majority and Parity do not have low-degree
approximating polynomials:

I Theorem 3.5 ([35, 38]). For any polynomial p ∈ F2[X1, . . . , Xn] of degree t,

Pr
x∼U({0,1}n)

[p(x) = Majorityn(x)] ≤ 1
2 +O

(
t/
√
n
)
,

and similarly for Parityn.

In other words, to obtain constant error on the Majority or Parity function, our polynomial
must have degree t = Ω(

√
n). Therefore:

I Corollary 3.6 (Corollary 1.2 restated). Any randomized beeping protocol for Parityn
or Majorityn with error 1/10 requires Ω(n1/6) rounds.
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Proof of Corollary 1.2. Given P, we construct for each deterministic protocol P in the
support of P the corresponding circuit CP from Lemma 3.1, which agrees with P on all
inputs. Each CP has depth 3 and size at most 2O(r+logn), so using Razborov’s Lemma
(Lemma 3.3), there is a distribution GP on polynomials of degree at most(

log 2O(r+logn)

ε

)3

= O((r + logn)3),

such that for all x ∈ {0, 1}n,

Pr
g∼GP

[g(x) 6= P (x)] ≤ ε.

Now let G be the distribution over F2[X1, . . . , Xn] where we first pick P ∼ P, and then
sample g ∼ GP . Then, for any x ∈ {0, 1}n,

Pr
g∼G

[g(x) 6= f(x)] ≤ Pr
P∼P,g∼GP

[P (x) 6= g(x)] + Pr
P∼P

[P (x) 6= f(x)]

≤ ε+ ε = 2ε.

Viewed another way: when we sample x uniformly at random from {0, 1}n,

E
g∼G

[
Pr

x∼U({0,1}n)
[g(x) 6= f(x)]

]
≤ 2ε.

Therefore, there exists at least one polynomial g in the support of G such that

Pr
x∼U({0,1}n)

[g(x) 6= f(x)] ≤ 2ε,

and this polynomial, like all polynomials in the support of G, has degree O((r+ logn)3). J

Unfortunately, this is more or less as far as we can go using this approach: there exists a
circuit of depth 3 size 2O(

√
n) for Majority, and if we relax the requirement to computing

Majority correctly on a (1− ε)-fraction of inputs (instead of all inputs), the circuit size
reduces to 2O(n1/4) [6]. Therefore, our approach cannot yield a lower bound better than
Ω(
√
n) for deterministic beeping protocols, or better than Ω(n1/4) for randomized protocols,

even if we somehow improved the degree of the approximating polynomial in our construction.
In the next section, we show that by applying the technique of random restrictions directly to
a beeping protocol, we can obtain a lower bound of Ω̃(n) for Majorityn (and for Parityn),
and we can also handle Approx-Majorityn,ε.

4 Beeping Lower Bounds via Random Restrictions

In this section we use another central technique from circuit complexity, called random
restrictions, to show that the beeping model cannot compute certain functions efficiently.
For lack of space, some proofs are omitted.

Random restriction were used in the seminal proof that AC0 circuits cannot compute
the parity function [5, 20, 40, 22], and since then have found many applications. The basic
idea is the following: we are given a Boolean function f : {0, 1}n → {0, 1}, and a circuit (or
decision tree) C that computes f . We would like to show that C must have high depth. To
do this, we randomly choose a subset of the input variables, and fix their values to 0 or 1 at
random; this is referred to as “hitting the circuit with a random restriction”. We say that an
input variable “survived” the restriction if it was not fixed. Then we show:

DISC 2019



8:10 On the Computational Power of Radio Channels

(a) The complexity of the circuit C is significantly reduced. For example, after hitting an
AC0 circuit with a random restriction where every variable survives with some inverse
polynomial probability, the circuit becomes constant with high probability.

(b) The complexity of the function f is not significantly reduced. For example, hitting the
parity function with a random restriction yields a parity over the set of inputs we did
not fix.

We begin by describing OR decision trees, a convenient way to represent beeping protocols.
Then we formally define random restrictions and analyze what happens to an OR decision
tree when hit with a random restriction; finally, we use this machinery to prove a lower
bound for approximate majority.

4.1 OR Decision Trees

When each node has a single-bit input xi ∈ {0, 1}, a deterministic beeping protocol can be
modeled as an OR decision tree:

I Definition 4.1 (OR decision tree). An OR decision tree of depth d on variables x1, . . . , xn
is a binary tree T of depth d, where each inner node v ∈ {0, 1}∗ is labeled with a disjunction
Dv =

∨wi
i=1 `

i
v. Here, each `iv is a literal, `iv ∈ {xi, xi : i ∈ [n]} ∪ {0, 1}. The leafs of the tree

are labeled with Boolean values.
The value of T on an input x = (x1, . . . , xn) ∈ {0, 1}n is defined by induction on the

height of the tree: the value of a leaf is its label; the value of an inner node v is the value of
its left subtree if Dv(x) = 0, or the value of its right subtree if Dv(x) = 1.

OR decision trees are a generalization of decision trees, where every node queries a single
variable (see [12] for a survey). Other generalizations have been considered, e.g., Parity
Decision Trees (see [41] for a survey). To our knowledge, however, OR decision trees have
not been studied before in related contexts.

Beeping protocols as OR trees. To represent a deterministic beeping protocol P as an
OR decision tree, we construct the following tree: at each node v ∈ {0, 1}∗, we place the
disjunction Dv =

∨n
i=1 `

i
v, where `iv = Pi(v) is 1 if node i beeps after witnessing the transcript

v, and 0 otherwise. At each leaf we write the output of P on the corresponding transcript.
A randomized beeping protocol is simply a distribution over OR decision trees.
Observe that the depth of the OR decision tree representing a beeping protocol is the

number of rounds used by the protocol. Therefore, to prove that a function f does not have
a deterministic beeping protocol using r rounds, it suffices to show that every OR decision
tree that computes f has depth greater than r, and similarly, for randomized protocols, we
must show that every distribution over OR decision trees that computes f with low error
has some tree in its support with depth greater than r.

In the sequel, we restrict attention to OR decision trees where at each node of the tree,
no variable is queried more than once; that is, the tree does not contain a disjunction of the
form xi ∨ xi ∨ . . . or of the form xi ∨ xi ∨ . . .. This is true of trees generated from beeping
protocols, but we can also assume it, without loss of generality, about general trees—in the
first case we can simply get rid of duplicates, and in the second case the value of the node is
always 1, and we can remove it from the tree and replace it with its right subtree.
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4.2 Random Restrictions
Let us review the formal definition of a random restriction, and study what happens to an
OR decision tree when we hit it with a random restriction.

I Definition 4.2 (Restriction). An n-bit restriction is a mapping r : {x1, . . . , xn} → {0, 1, ∗}.
Given an input x ∈ {0, 1}n, the restriction of x to r, denoted x|r ∈ {0, 1}n, is defined by

(x|r)i =
{
xi if r(xi) = ∗,
r(xi) otherwise.

Given a function f : {0, 1}n → {0, 1}, the restriction of f to r, denoted f |r : {0, 1}n →
{0, 1}, is defined by f |r(x) = f(x|r).

For a parameter α ∈ [0, 1], let Dn,α be the distribution over n-bit restrictions obtained
by setting, independently for each i ∈ [n],

r(xi) =


∗ w.p. 1− α,
0 w.p. α/2,
1 w.p. α/2.

In other words, each input variable survives with probability 1− α, and otherwise it is fixed
to 0 or 1 with equal probability.

What happens to an OR decision tree when we hit it with a random restriction? We
show that for any path of length d, with high probability, the total number of variables
queried along the path drops to Õ(d). (Recall that even a single node of an OR tree may
be labeled by a disjunction of all the variables, so this is a significant.) To show this, let us
first formally define the “total cost” of a path, and then study in turn what happens to a
disjunction, to a path, and to the entire tree when we hit them with a random restriction.

The total cost of a path. Let π be a path—a sequence of disjunctions, π = D1, . . . , Dd,
where Di =

∨wi
j=1 `

j
i for each i, and each `ji is a literal. The cost of each disjunction Di is its

width, cost(Di) = wi. Define the total cost of π as

cost(π) =
d∑
i=1

cost(Di).

The number of variables queried along π is at most cost(π), although it could be smaller, if
the same variable is queried by more than one disjunction along π.

Hitting a disjunction with a random restriction. When we hit a disjunction D =
∨w
i=1 `i

of width w with a restriction r, the resulting function is also a disjunction: if there is some
literal `i in D that is fixed to 1 (i.e., `i|r = 1), then the value of D becomes fixed, D|r = 1.
Otherwise, D|r =

∨
i∈Sr `i, where Sr = {j ∈ [w] : `j |r = `j}. In this case we say that D

survives r.
We have

Pr
r∼Dn,α

[D survives r] =
(

1− α

2

)w
,

so wide disjunctions have low survival probability. (Recall that we assumed D does not query
the same variable more than once, and therefore, the value of each literal after hitting it with
r is independent of the other literals.)
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Hitting a path with a random restriction. Consider a path π = D1, . . . , Dd. Given a
restriction r, let π|r = D1|r, . . . , Dd|r be the path obtained by hitting each node (disjunction)
of π with r.

When we apply a random restriction to π, it has the effect of “killing off” wide disjunctions,
and therefore, we expect the total cost of the path to be fairly small:

I Lemma 4.3. For any path π = D1, . . . , Dd,

E
r∼Dn,1/2

[cost(π|r)] ≤ 2|π|.

Proof. Let wi be the width of Di for i ∈ [d]. Since a disjunction of width w survives with
probability (3/4)w, the expected cost of π|r is

E
r∼Dn,1/2

[cost(π|r)] =
|π|∑
i=1

E
r∼Dn,1/2

[cost(Di|r)]

<

|π|∑
i=1

(
wi · Pr

r∼Dn,1/2
[Di survives r]

)

=
|π|∑
i=1

(
wi

(
3
4

)wi)
< 2|π|.

In the last step we used the fact that (3/4)x · x < 2 for all x ≥ 1.
J

Hitting the entire tree with a random restriction. For an OR decision tree T and an
input x ∈ {0, 1}n, let πT (x) be the computation path of T on x. We let T |r denote the tree
obtained from T by replacing each disjunction Dv with the disjunction Dv|r. Observe that
if f : {0, 1}n → {0, 1} is the function computed by T and r is a restriction, then f |r is the
function computed by T |r.

As we saw above, hitting T with a random restriction has the effect of reducing the cost
of each path, with high probability. However, some small fraction of paths may retain high
total cost (in fact, this is likely). We deal with these paths by truncating them.

I Definition 4.4. Given a restriction r, an OR decision tree T and a cost bound c ∈ N, we
define a truncated OR decision tree T |r,c as follows: T |r,c is the same as T |r, except that for
any node v at depth c, if v is not a leaf, we replace v with a leaf labeled with 0.

Truncating an OR decision tree can increase its error, but if we choose the depth bound
appropriately, the error does not increase by much:

B Claim 4.5. Let T be an OR decision tree of depth d on n inputs. Let η ∈ (0, 1/2), and let
γ = 2/η. Then for any input x ∈ {0, 1}n, we have

Pr
r∼Dn,1/2

[T |r,γd(x|r) 6= T |r(x|r)] ≤ η.

Proof. Let π be the computation path of T on x. By Lemma 4.3 and Markov,

Pr
r∼Dn,1/2

[cost(π|r) > (2/η)|π|] < η.
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Thus, the probability that π needs to be truncated in T |r,γd is at most η. If π is not truncated,
then it is the same as in T |r, and in particular it returns the same answer as T |r. Otherwise,
we may err, but this happens with probability at most η. J

Finally, we observe that an OR decision tree with low total cost can be “unrolled” into
a plain decision tree of low depth: we can replace every disjunction of width w by a plain
decision tree of depth w that queries the same variables and computes their OR. (In general,
any function on w variables can be computed by a decision tree of depth w.)

B Claim 4.6. Let T be an OR decision tree where all paths have total cost at most d. Then
there exists a (plain) decision tree of depth d that computes the same function as T .

It is known that plain decision trees require high depth to compute an approximate
majority; next, we show how we can apply this result to obtain a lower bound for the beeping
model.

4.3 The Coin Problem
The coin problem [37, 1, 11, 39, 16] is essentially a randomized version of approximate
majority, and it is often used to prove lower bounds on approximate majority.

In the coin problem, Coinn,ε, we have an ε-biased coin, where either ‘heads’ or ‘tails’ has
probability 1/2 + ε, but we do not know which. The coin is flipped n independent times, and
given the n outcomes we need to decide if the coin is biased towards heads or tails. More
formally:

I Definition 4.7 (The coin problem). We say that a function f : {0, 1}n → {0, 1} solves the
coin problem Coinn,ε with error δ if, for any a ∈ {0, 1},

Pr
x∼B(1/2+(−1)a·ε)n

[f(x) = a] > 1− δ.

We say that a distribution F over functions f : {0, 1}n → {0, 1} solves Coinn,ε with error δ
if

Pr
x∼B(1/2+(−1)a·ε)n,f∼F

[f(x) = a] > 1− δ.

Abusing the terminology slightly, we will also say that a distribution T over OR decision
trees solves Coinn,ε if the distribution of functions computed by trees sampled from T solves
Coinn,ε.

It is not hard to see that the best strategy for solving the coin problem is to output the
majority of the n inputs. By Chernoff, this strategy works as long as ε > c/

√
n, where c = c(δ)

depends on the desired error probability δ. (If ε� c/
√
n, it is impossible to solve Coinn,ε

with error δ.) Moreover, when ε > c/
√
n for some sufficiently large c = c(δ), it suffices to

compute an ε/2-approximate majority: the probability that |
∑
i xi − n/2| ≤ ε/2 is small, so

even an ε/2-approximate majority will yield the right answer w.h.p. Thus, a lower bound
on solving Coinn,ε immediately yields a lower bound on computing an ε/2-approximate
majority on n bits (with slightly higher error).

It is known that the coin problem is very difficult for regular decision trees:

I Theorem 4.8 ([16]). There is a constant c > 0 such that for any ε > c/
√
n, the depth of

any decision tree that solves Coinn,ε with error 1/10 is Ω(1/ε2).
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Next, we will show that this is also true for OR decision trees (up to constants).
A key property of the coin problem is that when we hit it with a random restriction, it

does not become much easier: essentially, fixing a random subset of the outcomes of the coin
to 0 or 1 corresponds to increasing the bias of the coin, but not by much. This property is
used to prove lower bounds for AC0 using the coin problem.

I Lemma 4.9 ([11, 16]). Let α ∈ [0, 1). Suppose that f : {0, 1}n → {0, 1} solves the coin
problem Coinn,ε with error δ. The distribution f |r over functions, where r ∼ Dn,α, solves
Coinn, ε

1−α
with error δ.

We showed that when hit with a random restriction, an OR decision tree of depth d

“collapses” to a plain decision tree of roughly the same depth. The coin problem, on the other
hand, does not become significantly easier when hit with a random restriction (Lemma 4.9).
Combining everything, we have:

I Theorem 4.10. Let T be a distribution over OR decision trees that solves Coinn,ε with
error at most 1/10 and ε > c/

√
n (for some large enough constant c). Then, there is a tree

T in the support of T that has depth Ω(1/ε2).

As we showed in Section 4.1, a beeping protocol can be modeled as an OR decision tree,
whose depth corresponds to the number of rounds of the protocol. We therefore obtain the
following corollary, which implies Theorem 1.3:

I Corollary 4.11. Any randomized beeping protocol that solves Coinn,ε with error 1/10 and
ε > c/

√
n (for some large enough constant c), has Ω(1/ε2) rounds.

5 Extension to Other Channel Types

In addition to the beeping model, our techniques can be used to prove lower bounds for other
types of wireless channels.

Throughout the paper we have simulated a round of a beeping protocol by a circuit of
depth one consisting of a single OR gate. When considering a different wireless channel C, as
long as this channel is not too complex, we can also model it as a “simple” circuit C. Then,

If C is a relatively shallow circuit, then the techniques of Section 3 can be generalized
to C, by replacing the OR gates used to simulate one round of the beeping protocol by
C-type circuits (see, e.g., Lemma 3.1).
If hitting C with a random restriction (say, with constant survival probability) yields
a circuit that depends on only a small number of inputs w.h.p. then the techniques of
Section 4 can also be generalized to C, by replacing the OR trees used to model a beeping
protocol by C-trees (trees where each node is labeled by a C-type circuit).

The collision detection channel. Consider, for example, a wireless channel C with collision
detection. The output of the channel is one of four symbols, ⊥,>, 0 and 1: if no node decides
to broadcast, all nodes receive ⊥; if more than one node decides to broadcast, all nodes
receive >; and if exactly one node decides to broadcast, all nodes receive the message it sent.

Next, we implement the operation of C as a simple circuit C. Note that unlike the beeping
channel, in the collision detection channel, each node has two decisions to make: first, whether
to broadcast; and second, what value to broadcast (if broadcasting). Accordingly, our circuit
C will have inputs x1, . . . , xn, b1, . . . , bn, where xi indicates whether node i broadcast (xi = 1
means that node i did broadcast), and bi gives the bit broadcast by node i in the case that
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it did broadcast. The circuit C outputs three bits s, c and b. If s = 1, then this is a silent
round, i.e., C outputs ⊥. If c = 1, then a collision has occurred, i.e., C outputs >. Otherwise,
if s = c = 0, then the output of C is the bit b. (We make sure that only one of these three
cases holds.)

The circuit C consists of three parts, where each part computes one of c, s and b:
Computing s: the circuit C computes s by taking s =

∧n
i=1 ¬xi.

Computing c: the circuit C computes c by taking c =
∨
i 6=j(xi ∧ xj).

Computing b: the circuit C computes b by taking b =
∨n
i=1(bi∧xi). Note that when s = c = 0,

there is exactly one node i with xi = 1, and in this case bi =
∨n
i=1(bi ∧ xi).

The circuit C we constructed is of depth 2 and size O(n2). We could use it to construct
an AC0 circuit as we did in Lemma 3.1, and the resulting circuit would have depth 4 and
size 2O(r+logn). However, we can do better using random restrictions. Instead of explicitly
computing the survival probability of each node in the tree, we can appeal to Håstad’s
Switching Lemma, which analyzes the behavior of DNFs under random restrictions.

A DNF of width w is a formula of the form
∨m
i=1

(∧ki
j=1 `i,j

)
, where each `i,j is a literal,

and ki ≤ w for each 1 ≤ i ≤ m. Let DT(f) denote the minimum depth of a (plain) decision
tree that computes f .

I Lemma 5.1 (Håstad’s Switching Lemma [22]). Let f be a DNF of width w over n variables,
and let α ≤ 1/5. Then for any d ≥ 0,

Pr
r∼Dα

[DT(f |r) ≥ d] ≤ (5αw)d.

In particular, whenever 5αw ≤ 1/2, we have Er∼Dα [DT(f |r)] ≤
∑∞
d=0(5αw)d ≤ 2. The

same holds for CNFs (circuits of the form
∨m
i=1
∧ki
j=1 `i,j).

In the circuit C that describes the behavior of the collision detection channel, each of the
three parts is a DNF or a CNF of width ≤ 2. The Switching Lemma shows that if we hit a
C-decision tree with a random restriction r where every variable survives with sufficiently
small constant probability (e.g., 1/100), and then “unroll” each C-type node into a decision
tree with the smallest depth possible, then for each path π in the original C-decision tree,
the expected length of the “unrolled” π|r is O(|π|). From here, we can proceed exactly as in
Section 4, and obtain that the channel with collision detection also requires Ω(1/ε2) rounds
to solve ε-approximate majority.

The additive channel. Another interesting example is the additive channel [14], where
in every round, each of the n nodes broadcasts a bit, and each node hears the XOR (or,
Parity) of the broadcast bits.

It is known that the Parity function is not very useful when it comes to computing
Majority: for example, any depth-3 AC0 circuit that is additionally equipped with un-
bounded fan-in Parity gates must still have size at least 2Ω(n1/4) to compute Majorityn
[38]. Thus, following the outline from Section 3, we see that a deterministic protocol for the
additive single-hop network requires Ω(n1/4) rounds to compute Majorityn.

Similarly to our approach in Section 4, one can model protocols over the additive channel
as parity decision trees, objects that have been extensively studied (see [41] for a survey).
Known lower bounds on the depth of a parity decision tree that computes a specific function,
imply the same lower bound in the additive channel model (e.g., the lower bound on the
parity decision tree complexity of the recursive majority function in [9]).
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