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Abstract—We examine the use case of performing
handwritten character recognition (HCR) on a newly
compiled collection of Tibetan historical documents,
which presents multiple challenges, including inherent
challenges such as image quality and the lack of word
separation, and dataset challenges such as a lack of
supervised training data.

To tackle these challenges, we introduce an end-to-
end unsupervised full-document HCR approach com-
posed of unsupervised line segmentation and a convo-
lutional recurrent neural network, trained using solely
synthetic data. Various augmentations are applied to
these synthesized images, and we compare the effect of
each augmentation on the HCR results.

Since we work on a collection of historical
manuscripts, we can fit the model to the available test
data. During training, our network has access to both
the labeled synthetic training data and the unlabeled
images of the test set, and we adapt and evaluate four
different semi-supervised learning and domain adapta-
tion approaches for transductive learning in HCR.

‘We test our approach on a set of 167 images from the
Kadam collection, containing 829 lines. We show that
correct data augmentation is crucial for the success of
HCR trained solely on synthetic data and that using
an effective transductive learning approach drastically
improves results.

Index Terms—Handwritten Recognition, Historical
Document Analysis, CRNN, Transductive Learning,
Domain Adaptation, Synthetic Data, Neural Network

I. INTRODUCTION

Historical document analysis and specifically handwrit-
ten character recognition (HCR) have both been active
fields of research for a long time. In recent years, with
the advent of deep learning, the accuracy of HCR systems
improved dramatically for whole word [[] and even whole
paragraph [2] HCR. However, state-of-the-art algorithms
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require a vast amount of images with matching transcrip-
tions for training.

While promising results in HCR were obtained, in
certain cases they fall short due to the setting of the
data. One example is the Tibetan text where syllable and
word separation is done by the hard-to-segment tsheg ()
sign. Thus, performing HCR on such data either requires
performing word segmentation, a similarly hard task on
Tibetan writing, or a vast amount of whole-line images
of text, along with their transcriptions. Since transcribing
Tibetan manuscripts is a time consuming task, collecting
such data is challenging.

In the field of Tibetan character recognition, all research
conducted so far involves either online HCR [3], [4], which
does not deal with the challenges of text degradation, or
offline HCR on upright uchen book-form characters [f].
A distinctive feature of the umé style we deal with, in
comparison to uchen, is the absence of a horizontal guide
line across the top of the characters, which makes for an
additional challenge facing umé HCR.

We present an end-to-end framework for unsupervised
HCR on umé Tibetan handwritten documents, using a
projection-based method for line segmentation and a deep
neural network for HCR, trained solely on computer-
generated data. We follow the success of synthetic data
generation for printed word recognition in natural images
[6] by creating a mechanism for generating entire lines of
handwritten data. We show that by using appropriate data
rendering and augmentation, deep learning models trained
solely on synthetic data can achieve good performance on
original image text lines without the need for additional
preprocessing other than line segmentation. In addition,
as the training distribution is different from the test
distribution, we examine two methods of regularization to
allow the model to generalize better.

A key contribution of this paper is the study of trans-
ductive methods using images from the test data (without
labels) to improve the prediction of the HCR model on
the specific test distribution. In transductive learning, the



learner sees unlabeled samples from the test sets during
training. While obtaining transcriptions for historical and
handwritten documents is an expensive and complicated
procedure, images of the documents themselves are avail-
able to researchers. A possible approach when obtaining
a new dataset of documents can be fine-tuning existing
HCR models for better performance on those documents.
Hence, training a model on a synthetic dataset and using
transductive methods to improve the results on a specific
test set is a viable approach for historical HCR.

Transductive learning is closely related to unsupervised
domain adaptation, where we consider the target domain
to be represented by the test images. We therefore adapt
two domain adaptation algorithms in the context of our
HCR model. The first consists of using cycle-consistent
adversarial networks (CycleGAN) [[7] to either map the
training data images to the testing data distribution or
vice versa. CycleGANs were shown to work successfully on
handwritten character generation [§] and for data augmen-
tation [g]. The second is combining a domain-adversarial
neural network approach (DANN) with the convolutional
recurrent neural network (CRNN) architecture we use for
HCR. DANN methods use adversarial training to find
domain—invariant representations in neural networks.

Another approach we try is self-supervision, which
was used in semi-supervised HCR in the past [10]. Self-
supervision uses the output of the network on unlabeled
data as labels for network training, choosing data accord-
ing to the recognition confidence. We use self-supervision
on test data as a method for transductive learning.

Furthermore, we introduce a novel approach for trans-
ductive learning. Adversarial training (AT) is a regu-
larization method that uses adversarial examples (the
examples that confuse the model the most) by adding
a measurement of model accuracy on these examples
as a loss during training. In [11], the authors show a
method to compute an approximation of the adversarial
examples and demonstrate their effectiveness for model
regularization. In [L2] they propose an extension to this
method that enables the calculation of virtual adversarial
examples from unlabeled data. We propose to compute the
virtual adversarial examples from the test data and add a
loss measuring the accuracy of the model on these samples
during training. This allows the model to learn a classifi-
cation that is locally isotropic around the distribution of
the testing data. We show this approach to be superior in
comparison with the three previous approaches.

Our main contributions are as follows: (1) An end-to-
end system for historical handwritten paragraph recogni-
tion tested on a novel historical handwritten umé Tibetan
document dataset. (2) A novel augmentation method for
creating synthetic data for handwritten paragraph recog-
nition on documents with overlapping lines. (3) A thor-
ough examination of the effects of different augmentation
methods on unsupervised handwritten paragraph recogni-
tion. (4) A thorough examination of the effects of differ-

ent regularization methods on unsupervised handwritten
paragraph recognition. (5) A comparison of different do-
main adaptation methods for transductive learning in the
case of unsupervised handwritten paragraph recognition.
(6) A novel approach to transductive learning for unsu-
pervised handwritten text recognition by adding virtual
adversarial learning loss from the test images (without
labels). This is compared to three alternative transductive
learning approaches and shown to be superior.

As far as we can ascertain, this is the first time OCR
has been performed on wumé Tibetan scripts and it is
also the first attempt to perform line or paragraph-level
handwritten OCR, by training solely on synthetic data.

II. PREVIOUS WORK

Tibetan character recognition: Previous work on HCR
of Tibetan documents concentrates on character-level
recognition of either modern handwritten cursive charac-
ters (gyuk yig) [3], 4] or scripts containing uchen upright
book form characters [5]. The latter offers an offline
character recognition dataset and gives HCR character-
level results.

Handwritten character recognition: There have been
some attempts at performing HCR on datasets with little
to no transcription using transfer learning [13]. They
show promising results, yet still require the use of a
small transcribed dataset for training. Another approach
for training with little transcribed data is using semi-
supervised learning for HCR. In [L0], self-training is used
as a form of semi-supervised learning by training the
network on samples which give confident output.

The literature on_training HCR on purely synthetic
data is scarce. In [14], a synthetic dataset of English
words improves training for word-level HCR. However, this
dataset was never tested for unsupervised HCR and no
analysis was reported as to which data augmentation step
is important for the success of HCR.

An HMM system for training on synthetic data was
proposed by [15]. While they show good results, their
method heavily relies on the use of a word-level language
model and is less relevant to the Tibetan language, where
separating words is as hard a task as HCR, since syllables
and words are separated using the tsheg sign rather than a
space. In another work, an HMM for printed Arabic text
was learned on synthetic data without using a language
model [[16].

State-of-the-art methods in HCR include gated
CRNNSs [1]]. A recent method [2] performs paragraph-level
recognition for English handwritten documents.
Unsupervised line segmentation: There exist many
methods for unsupervised handwritten line segmentation.
A straightforward approaches is projection-based segmen-
tation. Specifically, the Radon transform is sometimes
used to approximate the locations of text lines [17], [1§].
Regularization methods and HCR: In the context of
word recognition, dropout has been successful with recur-



rent neural networks [@], and specifically for HCR [@]
We employ methods from the object recognition literature
that are based on adversarial examples generated based
on labeled [@] or unlabeled [] data.

Domain adaptation: Transductive learning is far less
researched in the context of deep learning than domain
adaptation. Modern approaches employ adversarial train-
ing, following Ganin et al. [@] VAT regularization [@]
is a method for semi-supervised learning via virtual ad-
versarial training, which was shown to also be relevant to
domain adaptation [22].

One can perform domain adaptation by learning a
mapping between two image distributions. This was shown
to be possible in a completely unsupervised way in [[].
This mapping was shown to be effective for the task of
data augmentation [g] Specifically, Chang et al. [E] show
a successful use of this method for Chinese handwritten
character generation.

III. METHODOLOGY

We perform line segmentation by first using the Radon
transform [@}, [1&] to find the center of each line and then
clustering connected components to line centers to find
exact line borders in case of curvilinear lines. We then
use a convolutional recurrent neural network (CRNN),
shown to work successfully for HCR @] Network training
is done solely on synthetic text line images augmented to
better resemble the distribution of historical documents.
We note that the lines are rendered from Tibetan text
unrelated to the test data. Since we train the network
on one distribution and test it on another, we perform
regularization to prevent the network from over-fitting to
the training distribution. In addition to this completely
unsupervised approach, we examine four domain adapta-
tion approaches for using the unlabeled historical images
in order to improve HCR training for these images.

A. Synthetic Training Data Augmentations

The ability of a network to generalize depends on the
data distribution it trains on. A crucial part of the suc-
cess of the OCR algorithm lies in the synthetic training
data generator’s ability to emulate the distribution of
Tibetan document images. Computer-generated text does
not contain noise or significant variations. Using data
augmentations allows the network to be robust to noises
and variations in the original data is a key aspect in our
approach. An illustration of the rendering and augmenta-
tion steps can be seen in Fig.

Multiline image rendering: As consecutive lines in the
texts contain overlapping characters, we find that it is
critical for the training data to contain such structure as
well. Thus, when creating the synthetic data we do not
render each line separately, but rather a number of text
lines consecutively in each image. On the multiline images
we run the same line segmentation algorithm that we run
on the original data. As shown in Section [V, this process
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Fig. 1. Illustration of the text augmentation procedure. The first
two images are renderings of text using different font sizes, stretch,
weight and spacing; the 3rd is the text after rendering it together with
adjacent lines and performing line segmentation; 4th is the result
of performing elastic deformation augmentation on the image; 5th
is after sinusoidal displacement; 6th is after rotation; 7th is after
intensity gradient noise; 8th is after adding white Gaussian noise.

is crucial for the success of the OCR process on historical
documents, and that without it the network is unable to
generalize from the synthetic data to the original test data.
Geometric line augmentations: Due to the scribe’s
hand movements, cursive handwritten lines can be curved
or rotated. To account for the variability in line structure,
we apply two augmentations that change the geometry
of the image at the line level: random image rotation
and sinusoidal image displacement. The latter applies a
vertical displacement to each image column according to
a sinusoidal wave form and simulates the curvature of the
images in handwritten documents.

Color modification: The digitization of the histori-
cal documents requires scanning text written on paper.
During image acquisition, factors such as sensor quality
and changes in illumination may result in changing pixel
values. When creating the synthetic dataset we imitate
such noise so as to train the HCR algorithm to become
invariant to it. We perform two types of color modification
augmentations. Additive white Gaussian noise is used to
mimic the effect of the noise of the scanning procedure and
the pattern of the paper. In addition, scanned documents
often present a gradual intensity change throughout the
image, which we simulate by adding a sinusoidal varying
factor to the intensity.



Elastic distortion augmentation: In handwritten text
there exists high variability in character shapes due to
motion of the hand and the different handwriting styles
of scribes. As the synthetic data is computer-generated,
it has no such variations. To mimic this effect we apply
elastic distortion, which has been used successfully for
handwritten data augmentation in the past [23].

B. Convolutional Recurrent Neural Network

The base architecture we use for HCR is the convolu-
tional recurrent neural network (CRNN) [24]. Using it,
the work described in [[] achieved state-of-the-art results
for supervised HCR. The CRNN architecture consists of
a convolutional network followed by a recurrent network
and a classification layer. We use connectionist temporal
classification [25] loss, since it does not require prior
alignment between the input and target sequences.

C. Regularization Methods

Since the distribution of the data we train on is different
from the test data distribution, regularization is key to
avoid overfitting to the training distribution. We examine
two methods: conventional dropout [19], which is widely
used in OCR [20] and HCR [26]), and virtual adversarial
loss [L1], which is new to this context. We compare the
regularization methods separately and together, and show
that indeed using regularization drastically improves the
results. The regularization method of [[11] considers the
direction 7 in which the classifier A changes the most, and
requires that the KL divergence D gj, between the network
output on the permuted sample z 4+ 1 and the one-hot
vector of the label y of the sample z is minimal. The loss
term per sample is given by L.q, = Dgr(h(z + n),y),
where h(x) is a vector of outcome probabilities, and n =
e - sign(V,Dgr(h(x),y)).

As the output of our network is of varying length and
is not aligned with the target sequence, we change the
AT loss to be Lagy = Lere(h(z +1n),y), where n = ¢ -
sign(VyLore(h(x),y)).

IV. TRANSDUCTIVE LEARNING APPROACHES

When a given document collection is important enough,
as in historical documents, spending the extra time to re-
train the network for the specific collection is acceptable.
The type of learning in which the model has access to un-
labeled samples from the testing set is called transductive
learning. Since we found no transductive learning method
in the literature that is suitable for RNN architectures, we
borrow four methods from the fields of domain adaptation
and semi-supervised learning, adapt them to HCR and
compare their performances regarding our problem.

A. VAT for Transductive Learning

The adversarial training loss of Section was gen-
eralized in [12] to be used in an unsupervised manner

in virtual adversarial training (VAT). This method intro-
duces the local density smoothness (LDS) loss term, which
measures the stability of the network:

LLps(LL') = DKL[h({L‘), h(l’ + rvadv)] (1)

where 7,4, is the adversarial sample with network output
the furthest away from x that is at most a distance of &
from it: ryedp = argmax,, ., <. Drr[h(z), h(z +1)].

In practice, Dy, is replaced by the L2 norm, and 7,44y
is computed using the second-order Taylor approximation
as Tyady ~ 5@, where g = V. D[h(x), h(z + 1)].

In our work, we test the use of this loss for transductive
learning by applying it on samples from the testing distri-
bution rather than the training distribution. In addition,
we examine an alternative approximation which is based
on the L, norm, which leads to the slightly modified
formulation of

Tvadv =~ € - Slgn(g) (2)

To apply VAT in HCR, we add noise to the image in the
same way as in regular VAT, and calculate the distance
loss to be the average of D on each output time step:

T
Lips(z) =Y D[k (), h'(z + Tvaav)] (3)
t=0

B. Domain Adaptation with CRNN

The DANN method [21] performs unsupervised domain
adaptation between source domain S and target domain T’
by training three networks. The first network is responsible
for feature extraction of the image representation. The two
following networks receive the extracted features as input.
The domain classification network attempts to correctly
classify between the features obtained for samples from
the two domains S and T'. The label classification network
is trained to correctly predict task-specific class labels.

Denoting the feature extraction, label classification and
domain classification networks as F', C;s and Cy, respec-
tively, random source samples and matching labels as
(Xs,Y5), and random target domain samples as x;, DANN
solves the following optimization problem:

i L s 4
glcli(mfys) cts(Ts, Ys) (4)

minmax Ellog(Ca(w.))] + Ellog(1 — Ca(x,))]  (5)
Cy F oz T

where L.s(z,y) is defined as the task-specific classifica-
tion loss of the network. The first equation causes the
feature extraction network and the classification network
to collaborate on minimizing the classification loss on
the supervised samples in the source domain. The sec-
ond loss causes the domain classification network and
the feature extraction network to behave adversarially:
while the domain classifier tries to distinguish between
the two domains, the feature extractor wishes to have
the features arising from samples in the two domains as
indistinguishable as possible, the logic being that if similar



features are extracted, then the classifier, which is trained
only in S, would also fit the samples in T'.

We integrate domain adversarial loss in our framework
in two locations. One is after the CNN feature extraction
and before the RNN, and the other is after the RNN
and before the classification layer. We do this by adding
additional domain classification networks to the model
training. One receives the feature layer output of the CNN
network as input, and the other the RNN network output
prior to the classification layer. Similarly, two adversarial
losses are added to the training of the model: minimax
games between the CNN and CNN+RNN parts of the
network and the first and second domain classification
networks, respectively. We compare the results of training
the network in these three scenarios:

o Adding only one domain adversarial network receiv-
ing the CNN output as input.
o Adding only one domain adversarial network receiv-
ing the RNN output as input.
e Adding both domain adversarial networks, receiving
the RNN and CNN outputs as inputs, respectively.
An illustration of the training with both CNN and RNN
domain adversarial networks is in Fig. .

C. CycleGan for Visual Domain Adaptation

We observe that augmentation that brings the training
distribution as close as possible to the testing distribution
is crucial. Mapping images between two image distribu-
tions, without relying on matching samples in the two
domains, is the goal of unsupervised domain mapping
methods, including CycleGAN [[7]. This method was used
in the past to generate handwritten Chinese characters [§].

We tried to use CycleGAN as an augmentation method
and as a transductive learning method. As augmentation,
it did not perform as well as the engineered augmentation
methods, despite producing attractive looking images. As
a transductive learning method, we employ it in the other
direction, that is, to transform the test images to be-
come visually similar to the training images. The method
produces clean binary images, as shown in Fig. §. These
images are better at test time than those obtained by a
naive binarization process. However, the results it yields
are worse than those obtained using the original images.

D. Self-Supervision for Transductive learning

Previous work [10] has shown impressive results when
using self-supervision in the field of semi-supervised hand-
writing recognition. In this method, the network is first
trained on labeled data, followed by several iterations
where it is retrained on a subset of unsupervised data, for
which its own output was recognized with high confidence,
using that output as labels.

We apply self-supervision by retraining the network on
confident output on the historical test data. For this, a
confidence measure is needed. We experiment with two
measures of output confidence:

1) The intensity of the normalized output activation.
2) The consensus among four trained networks, each
initialized randomly.

In both experiments we train the networks in iterations.
In each iteration we retrain on all test samples with
confidence measure above a threshold in addition to la-
beled train data. In (m) we experiment with threshold
values between 0.1 and 0.9. In (aj) we train four networks
and experiment with thresholds of two to four networks
agreeing.

We note that [10] use a validation set to estimate a
function of the network accuracy based on the number
of networks agreeing and the output of the network.
They then use the estimated accuracy as the confidence
measure. Since we observed that the network accuracy
on synthetic data does not predict accuracy on historical
data, we do not employ such a validation set and use the
number of networks agreeing directly.

V. EXPERIMENTS

To test our framework we use a set of 167 images of
historical handwritten manuscripts from the bKa’-gdams
(Kadam) collection, containing manuscripts mostly dating
from around the 11th to 14th centuries. Each image
contains four to five lines, totaling 829 lines. The images
are in relatively good condition, yet contain problems seen
in historical data such as ink spreading, faded characters
and scanning artifacts.

The transcription of the images in the test dataset was
created for Tibetan research purposes and not specifically
for this research. An example of the transcription in
the test dataset compared to the exact letter-by-letter
transcription of an example manuscript can be seen in
Fig. B. There are some inconsistencies between the text
in the images and the transcription text, caused by two
main reasons: (i) The scribes use abbreviations frequently,
and in many cases the transcription includes the full
form of the intended text and not the abbreviation; and
(ii) differences in writing, such as writing a number and
spelling a number. As a result, the performance we obtain
is a lower bound of the actual results of the models.
However, as the errors in the dataset affect all models
similarly, it is safe to say that these errors do not affect
the comparison between the different methods.

To measure the performance of different methods we use
the standard character error rate (CER) measure defined
as

D(prediction, label)
length(label)

CER(prediction, label) = (6)
where D is Levenshtein distance (the minimum number
of single-letter edits required to change one word into the
other). Word error rate is less relevant for Tibetan, where
most words are disyllabic and the separation between
syllables is signified using a tsheg.
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Fig. 2. Illustration of the training procedure with DANN added to the CNN output and RNN output.
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Fig. 3. Example of transcription errors. Above is the test image and below is the ground truth transcription. Letters omitted from the
original manuscript are marked in pink. Letters that were changed are marked in green.

A. Implementation Details

To support full reproducibility we publish our codeﬂ.
For the convolutional part of the model, we use the first
convolutional layer and the first three residual blocks
of the ResNetl8 architecture. To flatten the height of
the images we add max-pooling layers between the first
convolution layer and the first residual block, between
the second and third residual blocks and after the third
residual block. We examined the results of a model pre-
trained on ImageNet and a model trained solely on our
data and saw that using a pre-trained network does not
affect the final results, but does decrease the training
time significantly. Thus, to accelerate training, we use a
convolutional network pre-trained on ImageNet.

For the RNN part, we use two layers of bidirectional
RNN with GRU cells. For all results, except the one show-
ing the performance without dropout, we add dropout
layers before and after the RNN. We also tried adding
dropout in between the RNN layers, but it did not improve
the results. Training is performed with an Adam optimizer
with a weight decay of 0.0001.

Thttps://github.com/SivanKe/TransductiveHCR.git

To avoid reaching the point of overfitting while not using
the original data for early stopping, we choose to stop
training when the error rate on the synthetic data reaches
a plateau. To do this we manually look at the error rate
of the model on the synthetic validation data and visually
choose the plateau point. To give fair and accurate results
we average the results of each model on 50,000 iterations
after the plateau point and report both the average and
the standard deviation of the model.

B. Augmentation Ablation Study

In Table m we compare the results of models trained
on data created with one or more augmentations omitted.
The most dramatic effect is achieved by the augmentation
of rendering multiple lines and using line segmentation
to crop each line. This result is probably significant for
many other full document recognition systems. Another
drastic effect is that of omitting both color augmentations.
While they seem to be somewhat interchangeable, as each
one by itself causes a much less significant change in
results, removing both has drastic effects. This echoes the
importance of binarization in classical OCR systems.
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TABLE I
TEST CER WITHOUT SPECIFIC TYPES OF AUGMENTATION

Test CER
92.584+0.96%
59.3844.03%
32.744+0.98%
27.9540.24%
27.4940.96%
26.974+1.48%
26.2941.06%
25.774+1.00%
25.094+0.45%

24.23+0.93%

Augmentation

Multiline omitted

Color tran. omitted
Multi-font properties omitted
Elastic omitted
Geometric tran. omitted
Rotation omitted

Color Gaussian omitted
Geometric sine omitted
Color sine omitted

All augmentations

TABLE II
CER FOR VARIOUS REGULARIZATION METHODS

Regularization Test CER
Only L2 and BN (RNN Hidden 128) 25.80+0.69%
Dropout 24.23+0.93%

25.65+0.56%
22.231+0.70%

Dropout (RNN hidden double)
Dropout + AT

C. Regularization Importance

To show the importance of regularization in training
HCR on synthetic data, we compare the results without
dropout, with dropout, and with dropout and adversarial
training loss. In all cases, batch normalization and L2
regularization were applied.

After examining the influence of adding dropout at three
different stages of the network (between the RNN and the
CNN, between RNN layers and after RNN output), we
chose to add dropout before and after the RNN, as it
gives the best results. As the change in results was not
significant, we leave this comparison out. We follow the
path of [@], and examine the addition of dropout both
with the original RNN hidden size, and with doubling the
size of the hidden layer, as dropout effectively causes the
number of parameters trained in each step to drop by a
factor of two. We find that while adding dropout does
improve the results, doubling the size of the hidden layer
does not. See Table [[] for the results.

In addition, we see that adding AT regularization to
dropout improves the results. This is of particular interest,
as we apply AT using CTC loss (since we have no align-
ment between the CRNN output and the transcription),
which is very different from the loss that is applied in the
original article [11].

D. Transductive Methods Comparison

Test side data augmentation: To show the importance
of using transductive methods for HCR with sparse data,
we compare these methods to the baseline method of test
side data augmentation used by [27]. Given a test image,
we generate ten variant images using the augmentations
described in Section . In [@], the most frequently
occurring prediction is chosen as output. Since we perform

TABLE II1
CER FOR VARIOUS TRANSDUCTIVE LEARNING METHODS

Transductive Test CER

22.23+0.70%
40.40+£2.13%

Best without transductive
Naive binarization on test

Test side augmentation 22.68+0.52%

29.45+0.60%
22.9240.30%

Cycle on test (best obtained)
Cycle on train (best obtained)

20.64£0.83%
16.53+0.21%

Self-supervision score conf. (best obtained)
Self-supervision ensemble conf. (best obtained)

DANN RNN 19.04£0.51%
DANN CNN 18.75+0.67%
DANN CNN+RNN 16.8040.60%
Sign VAT 15.441+0.24%
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Fig. 4. The effect of the CycleGAN transformation on test images.

handwritten recognition on full text lines, it is rare for
two augmentations to give the same result. We, therefore,
adapted the method of [@] by computing the distances
between all pairs of output predictions, choosing the pre-
diction with the lowest median distance as output.

Result analysis: In Table , we compare the four trans-
ductive learning methods proposed in Section [V]. “Test
side augmentation® is the result of the baseline described
above. “Cycle on test” is the result of training a method
without transductive learning and testing it on the testing
dataset transformed by a CycleGAN network trained for
100,000 iterations (the best result we got) on the training
and testing datasets. “Cycle on train” is the result of
training the model on training data transformed by a
CycleGAN network trained on the synthetic and original
data for 10° iterations. All experiments on CycleGan were
done using dropout as the regularization method of the
HCR network. “Naive binarization on test” means per-
forming inference on test images after adaptive binariza-
tion, and is shown for comparison with using CycleGAN
as a form of test data binarization. “Self-supervision score
conf” and “Self-supervision ensemble conf” mean self-
supervision with confidence measure of output score and
ensemble agreement, respectively. “DANN RNN”, “DANN
CNN”, and “DANN CNN+RNN” are done by training



the network adding DANN loss on the CNN, RNN and
both CNN and RNN output features, respectively. “Sign
VAT” means adding VAT loss to the CTC loss. We call this
experiment “Sign VAT” since VAT is calculated using the
sign of the direction vector and not the normalized vector,
as shown in Eq. (B), which we found to work better than
using the original VAT loss. In the three methods of adding
DANN, self-supervision and VAT loss, we use a ratio of ten
to one between the transductive loss and the CTC loss, as
it gives the best results for all three algorithms.

We see that VAT, DANN and ensemble self-supervision
methods significantly outperform self-supervision, test-
side augmentation and CycleGan. We believe that test-
side augmentation gives inferior results as it does not
incorporate knowledge on test distribution during train-
ing. Output based self-supervision giving inferior results
is consistent with the report of [[L10]. As for the results
of CycleGan, this might be due to the fact that the
other methods perform domain adaptation directly for the
classification task, while CycleGan transfers the style of
the images without regard for the labels of the characters.
Another important takeaway from these experiments is
the significance of transductive learning for unsupervised
HCR. We show that by using transductive learning meth-
ods we are able to improve results by more than 6%.

In addition, we see that adding DANN both after the
CNN feature extraction and after the RNN feature extrac-
tion is superior to using only one DANN. Inspired by this,
we tried adding VAT loss to different parts of the network,
but it did not improve the results.

Using VAT on test samples appears to be superior to
using DANN or self-supervision, but not by a large margin,
compared to the improvement achieved by using either.

VI. CONCLUSIONS

We have presented a novel approach to end-to-end HCR
of historical handwritten documents, suited especially to
the challenges of the Tibetan language and script. We
evtaluated the approach on a novel test dataset consisting
of images taken from the historical Kadam manuscript
collection and showed promising results.

We have shown that using proper augmentation and
correctly rendering printed text, a model trained solely on
synthetic data can have acceptable performance for HCR
on ancient manuscripts. We presented a novel approach to
augmentation of entire text lines in the case of HCR on
documents with touching lines and showed its importance
to the HCR process.

We have seen that strong regularization techniques
are important for unsupervised HCR. In addition, we
presented four approaches to transductive learning for
HCR, and examined their impact. We showed that using
transductive learning can significantly improve the results
for HCR trained on synthetic data.
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