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Abstract—The Dead Sea Scrolls are of immense historical
significance. Unfortunately, the scrolls have deteriorated over
the millennia and continue to deteriorate since their discovery.
Thus, it is of paramount importance to preserve for posterity the
current state of the material as best as possible. This goal is being
achieved in various ways. One way is via the ongoing digitization
efforts of the Israel Antiquities Authority, which complement the
older infrared images of plates of fragments done under the
auspices of the Palestine Archaeological Museum.

Each parchment or papyrus fragment is being photographed
at high resolution on a black felt background and images are
being made available to all on the IAA Leon Levy Dead Sea
Scrolls Digital Library. At the same time, we are in the midst of
an international project with the goal of designing and building
algorithmic tools that will relate the different images of scroll
fragments with each other and with their transcriptions. As part
of that effort, we are in the process of incorporating a deep-
learning based segmentation method into the pipeline, which
will allow one to manipulate images of the individual fragments
themselves. Previous segmentation efforts succeeded in removing
most of the shadows from the older images but failed to remove
from the foreground of the new images those parts that show
the Japanese tissue paper used by conservators to strengthen the
edges of the fragment and hold it in place.

We solve the problem of identifying and removing the tissue
from the segmented images. This advance dramatically improves
the effectiveness of our matching algorithms for searching among
the old plates for the location of the newly-digitized fragments. In
particular, the improved matching has allowed us to locate two
fragments whose positions on the old plates were unknown. The
matching algorithm is being incorporated in the new platform
and will begin serving scroll scholars in the very near future.

I. INTRODUCTION

The Dead Sea Scrolls (DSS) were discovered during the
years 1947–1956 in the caves of the Judean desert. They date
to the centuries around the turn of the eras, and hold great
historical, religious and linguistic significance. The tens of
thousands of parchment and papyrus fragments include the
oldest known manuscripts of many works later included in
the Hebrew Bible, along with non-canonical and extra-biblical
manuscripts in Hebrew, Aramaic, and Greek.

Shortly after the scrolls were discovered, grayscale infrared
images were taken of each plate on which they were stored
by Najib Anton Albina, the photographer of the Palestine
Archaeological Museum (PAM). These often contain dozens
of small fragments.

As the reconstructions of scrolls changed, the place of
fragments on plates changed and new photo series were taken.
Many fragments appear on at least half a dozen images and
no complete record is extant for each photo of each fragment.

Presently, high-quality multispectral images are being taken
at the Israel Antiquities Authority (IAA) by Shai Halevi,
and are offered to scholars and the public on the net (https:
//www.deadseascrolls.org.il).

An important aspect of the digitization project is also
to identify the location of each fragment in older images,
especially the PAMs. Once we find a fragment in the PAM
plates, one can then assess the level of degradation endured
by the fragment in the interim. See Fig. 1.

To this end, a system that segments, matches, and aligns
the DSS fragments is under development at Tel Aviv Univer-
sity [3]. It will be incorporated in the ongoing international
Scripta Qumranica Electronica project [1], which will link the
images of the IAA with the Qumran-Wörterbuch produced
over the past decades at Die Akademie der Wissenschaften zu
Göttingen [2].

The main platform for the project’s future operation is
what we call the scrollery, a standardized environment for
collaborative production and presentation of scholarly editions
of the scrolls. Besides accessing both the image and the
readings of each individual fragment, a scholar will be able
to create and store her own new reading and align them with
a material reconstruction of the fragments using the images
located by this algorithm.

The segmentation algorithm we describe below produces
“masks” that – for each fragment – cover the irrelevant parts
of the image. So the scrollery can display that part alone, and
give the scholar the ability to move it around, turn it over,
paste it virtually to other fragments, and so on.

Given an image of a new fragment, the Tel Aviv system first
segments it using simple morphological image operations. For
the older, grayscale plates, it segments the fragments from
their white background using a deep-learning based method
to create a “pool” of candidates. Shadows are also removed.
Using a cascaded approach, it compares the size and shape
of the query image to each candidate. If the shape and scale
of the candidate are roughly the same as those of the query,
the textures of the two fragments are compared. Later, a dense
matching is used to align them. See Fig. 2.

The main drawback of that system is its failure to match
the smaller fragments. And since many of the scroll fragments
are small (often less than 1 cm2 in size), this represents a
serious limitation. Studying the failures, it became clear that a
major cause of the poor results is that the current segmentation
algorithm treats the Japanese tissue paper used by conservators
to strengthen the edges of the fragment and hold it in place
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Fig. 1. Examples of recent color images on the left and an old IR image on
the right. The two arrows indicate matches. (All images are courtesy Leon
Levy Dead Sea Scrolls Digital Library, Israel Antiquities Authority; color
photographer Shai Halevi, infrared by Najib Anton Albina.)

Fig. 2. System overview: We segment the new images, and the old images.
Then we compare each fragment on the old plates to the new image using the
scale, shape, and texture tests. The correct match is seen in the middle. Images
courtesy of Leon Levy Dead Sea Scrolls Digital Library, Israel Antiquities
Authority; color photographer Shai Halevi, infrared by Najib Anton Albina.

as foreground.
In this paper, we offer a simple solution that produces better

segmentation of the new images. We verify the improvement
by measuring the overall effectiveness of the combined system
in the task of locating fragments in old plates. By ranking
matches, we obtain a robust system that is impervious to
large numbers of candidates. The outcomes of the wholesale
matching of the new and old images will be incorporated in
the toolkit that is currently being developed for both scholars
and laypeople. The system has already located several “lost”
fragments.

II. PROPOSED METHOD

A. Segmentation of new images

The main contribution of this paper is the devising of
a cleaner segmentation method, one that also removes the
Japanese tissue showing in many of the images of new
fragments (see Fig. 3). This material is used for conservation
and preservation purposes to strengthen weak areas in the
fragments. Previously, the Japanese tissue was usually left
together with the foreground; that is, it was considered a part
of the fragment. In some cases for smaller fragments, the tissue
took up as much as 40% of area of the segmentation. This led

Fig. 3. Two examples of tissue removal. Images courtesy of Leon Levy Dead
Sea Scrolls Digital Library, Israel Antiquities Authority, photo: Shai Halevi.

to unreliable results when we compared between the texture
of the new and old fragment in the last step of our method.

1) Segmentation: We first convert the image to grayscale
and set a low threshold to separate the foreground and back-
ground. We need to set a low threshold since the fragments
were placed on a dark felt surface. Following this step we
find the connected components of the image. We know that
the fragment will always be the component that falls in the
centre of the image, so we mark a boundary around its
connected component. This leaves us with a cropped image
of the fragment without other components such as the color
patch and ruler.

The next step is to separate the fragment from the back-
ground. This is not easy since there are holes in some
fragments, which result in black background pixels, and we
need to know if a dark pixel is ink and is part of a letter
or if it is background seen through a hole. To solve this,
we use GrabCut [6], which is a state-of-the-art background
removal tool that uses graph cuts to separate object from
background. We apply only the first, automatic step of the
GrabCut algorithm, and the results appear excellent.

At this stage of the process, we consider the Japanese tissue
to be part of the fragment. It is removed in the next step.

2) Removing Japanese tissue: We tried two methods for
isolation of the Japanese tissue in the new images.

In the first, we used a simple brightness threshold to create
a binary mask for the tissue. The tissue is a light color,
so all pixels with red, green, and blue channels with value
greater than 108 were selected, followed by a morphological
close operation to remove the small holes in the resulting
mask. The mask was used to remove the tissue from the
fragment image. The fragment was then further smoothed
using a morphological open operation to remove long thin
lines.

In the second method, we use a two color separation in
the Lab space. We first transform the fragment from the RGB
space to Lab space. In the latter, the brightness of each color
is ignored, and it is easier to distinguish between two color
classes. We cluster the absolute values of the transformation
into two color classes using k-means. The first class represents
the color of the fragment and the other color is the background
color, which includes the Japanese tissue.
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TABLE I
SUMMARY OF FRAGMENT OVERLAP BETWEEN PLATES: EACH CELL

CONTAINS THE NUMBER OF GROUND TRUTH MATCHES BETWEEN THE OLD
PLATE IN THE GIVEN ROW AND THE NEW PLATE IN THE GIVEN COLUMN.

Plate 4Q57 363 4Q57 382 4Q57 387
M42.002 5 7 7
M42.000 7 8 7
M42.022 7 13 7
M42.162 7 3 7
M42.029 7 7 18

3) Recto-verso alignment: We take the binary mask of the
recto and verso of each fragment, and flip the verso mask left
to right. We then find the orientation of the recto and the verso
and use this to find the angle between the two orientations.
The orientation is a scalar that specifies the angle between the
abscissa and the major axis of the ellipse that has the same
second-moments as the fragment.

B. Segmentation of old images

Segmenting the older images is a harder task since the
images of the old plates have a lower resolution, have multiple
fragments on them, and the fragments themselves can have
shadows. We use a u-net architecture [5] with a training set
of 21 manually labeled plates. Details may be found in [3].

We found experimentally that training multiple models and
taking multiple segmentations of the same plate gives better
results because some models correctly label fragments that
other models may miss entirely. In addition, the models often
mislabel fragments that are close to one another as one
fragment. Most of the time, they are connected together with
a thin line. So we perform a morphological open with a
disk structuring element on the segmentations to create new
connected components.

C. Locating fragments

1) Scale test: We apply a scale test to determine which
fragments are roughly the same size. The new images were
taken at an aspect ratio approximately three times larger than
that of the old images, so we scale accordingly, and measure
the absolute differences in height and width.

2) Shape test: We use Hamming distance as a measure of
how similar two fragments are in terms of shape. Given a
new image and an old image, we resize the new image to the
size of the old one, take the binary masks of both images,
and find the Hamming distance between the two masks. For
binary masks S′

i0 and P ′
j0, their Hamming distance is

‖S′
i0 − P ′

j0‖ =
t∑

α=1

p∑
β=1

(
s′α,β xor p′α,β

t · p

)

For simplicity, we refer to the Hamming distance as “shape
distance”.

3) Texture test: To compare the texture of two fragments,
we use SIFT-flow [4]. First we calculate the SIFT descriptor
at every pixel of the new and old images. Then the algorithm
attempts to find the flow between the two images w(p) =
(u(p), v(p)). That is, for each pixel p = (x, y) in the new
image, find the displacement w(p) = (u(p), v(p)) such that
(x+u(p), y+v(p)) is the same SIFT feature in the old image.
This is done by optimizing an energy function using dual-layer
loopy belief propagation. The energy function is as follows:

E(w) =
∑
p

min{‖s1(p)− s2(p+w(p))‖1, t}+∑
p

η(|u(p) + v(p)|) +∑
(p,q)∈ε

min{α|u(p) + u(q)|, d}+

min{α|v(p) + v(q)|, d}

where s1 and s2 are two SIFT images to match. The set ε
contains all the spatial neighborhoods. Here, η is a parameter
to ensure that flow vectors are small.

Using SIFT-flow allows us to rank the candidates, and also
to do image registration on the correct fragments. An example
of image registration is shown in Fig. 4.

Fig. 4. Registration: New image of fragment on left, old image in the
middle, and the registration of the two on the right. Images courtesy of Leon
Levy Dead Sea Scrolls Digital Library, Israel Antiquities Authority; color
photographer Shai Halevi, infrared by Najib Anton Albina.

We use the minimum of the energy required to align two
images as a texture similarity metric, from here on referred to
as the SIFT-flow distance.

III. EXPERIMENTS

A. Dataset details

We worked with 77 new images of fragments taken from
three plates, and 111 old fragments appearing on five different
PAM plates. Some new fragments correspond to multiple old
fragments. We know that roughly, 4Q57 363 corresponds to
PAM plate M42.002, 4Q57 382 corresponds to PAM plates
M42.000, M43.022 and M43.162, and 4Q57 387 corresponds
to PAM plate M43.029. The overlap between each new and
old plate is summarized in Table I.

B. Ranking

In [3] the matching was done with some prior knowledge
about where each fragment was originally located. We are
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interested in searching without a priori knowledge about the
location of the fragment. Thus, the ranking must be robust
enough that the correct fragment is near the top of the rankings
no matter the number of candidates.

We search for each new fragment in all five of the old plates
and rank the returned pool of candidates by their SIFT-flow
distance. We also try ranking by shape distance.

We try decreasing the size of the query and candidate
images before calculating the SIFT-flow distance. Smaller
images allow us to compute the SIFT-flow distance faster.
Since we would like to search through thousands of images,
we would like the computation to be as fast as possible without
sacrificing MRR (mean reciprocal rank) and recall. Initially,
we resized both images to 512×512. On a personal computer,
it took 20 seconds to calculate the SIFT-flow distance, whereas
resizing to 100×100 pixels decreases the calculation time to
only 1 second.

The direction of the alignment when using SIFT-flow is
also important. We can align the old image of the fragment to
the new image or vice versa. Experimentally, we found that
trying to align the new image to the old image of the fragment
gives subpar results due to the noisy segmentation of the old
fragments. Thus, we only align the old images to the new
images when calculating SIFT-flow distance.

For this task, we manually labeled 73 correct pairs. After
removing double occurrences (some fragments on the new
images have multiple matches on the old photos), we ended
up with 52 pairs. So, when we find two correct matches for a
new image, we only count one of them. We report results for
these 52 new fragments.

C. Experimental setup

Let Tscale, Tshape be thresholds on the scale, and shape
distances, respectively, such that candidates with any distance
higher than either of the set thresholds are discarded. We set
Tscale to 400[px], and Tshape to 0.3

IV. RESULTS

A. Removal

The Lab method performs better in general, as the thresh-
olding method performs poorly for lighter fragments. After
our initial experiments with the first five plates, we moved to
the Lab method.

B. Ranking

Our main focus was on the smaller fragments. Previously
unmatched fragments such as the fragment on the right in
Fig. 3 are not only found but are also at the top of the
results. We nearly double the MRR, and achieve very high
recall. Ranking by SIFT-flow distance gives us by far the
highest recall at 1 (!), but we also note that ranking only by
shape distance – given that a candidate also meets the size
requirements – gives fair results. In fact, from Table II, we
see that ranking by shape after removing the Japanese tissue
is better than ranking by SIFT-flow distance without removing

TABLE II
RANKING RESULTS, IMAGE SIZES: 512×512. ‘7’ DENOTES THAT THE

JAPANESE TISSUE (JT) WAS REMOVED

JT Ranking metric Recall@1 Recall@3 Recall@10 MRR
3 SIFT-flow 33% 49% 61% 0.440
3 shape 27% 41% 55% 0.375
7 SIFT-flow 72% 86% 86% 0.857
7 shape 41% 64% 78% 0.599

the tissue. Here, all images were resized to 512×512 [px]
before SIFT-flow distance calculation.

Since removing the Japanese tissue gives us much better
results, all further experiments were carried out after the tissue
was automatically removed.

We find that, although MRR and recall at 1 decrease when
we decrease the size of the images, recall at 10 does not. At
50×50 pixels, we achieve comparable results to the 512×512
pixels case in almost one-hundredth of the time.

From this point on, we resize all images to 100×100 when
calculating SIFT-flow distance.

TABLE III
RANKING RESULTS AT VARIOUS IMAGE SIZES, RANKED USING SIFT-FLOW

DISTANCE AND AFTER REMOVING TISSUE.

Time [s] Size [px] Recall@1 Recall@3 Recall@10 MRR
∼ 20 512×512 72% 86% 86% 0.857
∼ 4 250×250 72% 86% 88% 0.855
∼ 1 100×100 66% 88% 88% 0.831
∼ 0.3 50×50 60% 86% 88% 0.793

V. PRACTICAL APPLICATION

A. Verification task

After these improvements, we tested the system in a more
practical setting. The task is to find the location of fragments
on the PAM plates given their recently acquired images.
For testing purposes, we know a priori which set of PAM
plates contain the fragments that we would like to search for.
However, we do not know exactly on which PAM plate each
fragment belongs. We only know that it is on one of them.

We have two new plates, P106 and P107, with 38 individual
images, 32 of which are of well-preserved fragments. (We
don’t consider fragments that are poorly preserved to test
our system.) Thanks to prior work of experts, we knew that
each fragment appears on one of the following PAM plates:
M40613, M40601, M40618, M41455, M41453, M41664,
M42396, M41974, M41516, M43293, M43294, and M42395.
These 12 plates provided a total of around 500 candidate
fragments.

An example of a correct match from the system can be seen
in Fig. 5. The system highlights the fragment that it has found
to make it easy for scholars to verify the results.

Considering the success of the matching, we increased the
number of plates to 350 (provided by the IAA), showing
the robustness of ranking. These 350 plates contain a total
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Fig. 5. Examples of new fragments located on an old PAM plate: The system
highlights the location of the fragment in green. Inset on the upper plate is
the enlarged match. Note that the matching new image has an extra piece
connected with tissue paper. Images courtesy of Leon Levy Dead Sea Scrolls
Digital Library, Israel Antiquities Authority; color photographer Shai Halevi,
infrared by Najib Anton Albina.

TABLE IV
VERIFICATION OF FRAGMENTS FROM P106 AND P107.

Number of candidates Recall@1 Recall@3 Recall@10 MRR
∼ 500 87% 90% 90% 0.890
∼ 6000 84% 84% 84% 0.848

of over 6000 candidate images for matching. Because of the
morphological open operation, some candidates are spurious,
not actual fragments. We overcompensate with the number of
possible fragments, and show that the system will still find the
most correct match.

B. Results

We were able to correctly match and locate 29 out of the 32
well-preserved fragments on plates P106 and P107. As can be
seen on the second line of Table IV, the system is remarkably
impervious to the large increase in the number of candidates.
It also doesn’t matter that many of the candidates are spurious.

More importantly, we also located two fragments in previ-
ously unknown locations – fragment 3 from P106 was found
in plate M40626, and fragment 19 from P107 was found in
plate M40964. The fragments are shown in Fig. 6.

VI. CONCLUSION

We have demonstrated the practical effectiveness of the
proposed system for searching visually through the Dead
Sea Scroll repository to locate manuscript fragments in older

Fig. 6. Two newly located fragments: P106, fragment 3 (right) and P107,
fragment 19 (left) were found on previously unlisted plates. Images courtesy of
The Leon Levy Dead Sea Scrolls Digital Library; Israel Antiquities Authority,
photo: Shai Halevi.

images of plates of fragments. We have already found the
locations of two newly-imaged fragments. In upcoming work,
in coöperation with the IAA, we plan to use the system
we have developed to search for all of the many thousands
of newly-imaged fragments among the old infrared images,
thereby creating a full and accurate catalog for scholars, link-
ing the new high-quality images with the older plates, which
sometimes show fragments in a better state of preservation.
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Wörterbuch zu den Texten vom Toten Meer: Einschliesslich der
Manuskripte aus der Kairoer Geniza [Hebrew and Aramaic Dictionary
of the Dead Sea Scrolls – Including the Manuscripts from the Cairo
Geniza], volume 1, de Gruyter, Berlin/Boston, 2017.

[3] G. Levi, P. Nisnevich, A. Ben-Shalom, N. Dershowitz, and L. Wolf,
“A Method for Segmentation, Matching and Alignment of Dead Sea
Scrolls”, Proceedings of the IEEE Winter Conference on Applications
of Computer Vision (WACV), Lake Tahoe, CA, pp. 208–217., March
2018.

[4] C. Liu, J. Yuen, and A. Torralba, “SIFT Flow: Dense Correspondence
across Scenes and Its Applications,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 978–994, May
2011.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, vol. 9351,
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham:
Springer International Publishing, 2015, pp. 234–241.

[6] C. Rother, V. Kolmogorov, and A. Blake, GrabCut: Interactive Fore-
ground Extraction Using Iterated Graph Cuts, ACM Trans. Graph., vol.
23, no. 3, pp. 309–314, Aug. 2004.


	Introduction
	Proposed Method
	Segmentation of new images
	Segmentation
	Removing Japanese tissue
	Recto-verso alignment

	Segmentation of old images
	Locating fragments
	Scale test
	Shape test
	Texture test


	Experiments
	Dataset details
	Ranking
	Experimental setup

	Results
	Removal
	Ranking

	Practical Application
	Verification task
	Results

	Conclusion
	References

