
Transliteration of Judeo-Arabic Texts into Arabic Script
Using Recurrent Neural Networks

Ori Terner
School of Computer Science

Tel Aviv University
Ramat Aviv, Israel

oriterner@gmail.com

Kfir Bar
School of Computer Science

College of Management
Academic Studies

Rishon LeZion, Israel
kfirb@colman.ac.il

Nachum Dershowitz
School of Computer Science

Tel Aviv University
Ramat Aviv, Israel

nachum@tau.ac.il

Abstract

We trained a model to automatically transliterate Judeo-Arabic texts into Arabic script, enabling
Arabic readers to access those writings. We employ a recurrent neural network (RNN), com-
bined with the connectionist temporal classification (CTC) loss to deal with unequal input/output
lengths. This obligates adjustments in the training data to avoid input sequences that are shorter
than their corresponding outputs. We also utilize a pretraining stage with a different loss function
to improve network converge. Since only a single source of parallel text was available for train-
ing, we take advantage of the possibility of generating data synthetically. We train a model that
has the capability to memorize words in the output language, and that also utilizes context for dis-
tinguishing ambiguities in the transliteration. We obtain an improvement over the baseline 9.5%
character error, achieving 2% error with our best configuration. To measure the contribution of
context to learning, we also tested word-shuffled data, for which the error rises to 2.5%.

1 Introduction

Many great Jewish literary works of the Middle Ages were written in Judeo-Arabic, a Jewish dialect
of the Arabic language family that adopts the Hebrew script as its writing system. Prominent authors
include Maimonides (12th c.), Judah Halevi (11th–12th c.), and Saadia Gaon (10th c.). In this work,
we develop an automatic transliteration system that converts Hebrew-letter Judeo-Arabic into readable
Arabic text.

Generally speaking, given a text, transliteration is a process of converting the original graphemes to a
sequence of graphemes in a target script. Specifically, transliterating a Judeo-Arabic text into the Arabic
script almost invariably results in a text that has a similar number of letters. Yet, the correspondence
between the letters in the transliteration is not one to one. Judeo-Arabic Hebrew script includes matres
lectionis (e.g. ø

,ð , @) to mark some of the vowels but it typically does not include nunation – tanween

in Arabic (e.g. A
�
K.). Additionally, the hamza letter (Z), a relative latecomer to the Arabic writing system

(Shaddel, 2018), is missing in the Judeo-Arabic script when it is placed “on the line” and not as a
decoration for one of the matres lectionis.

Some other challenges are: (1) Authors of Judeo-Arabic texts sometimes use different mappings be-
tween Hebrew and Arabic letters. Some authors use the Hebrew letter ג! to transliterate the Arabic letter
h. , and others will use it to transliterate the Arabic letter

	
¨. (2) Diacritic marks (small dots placed either

above or below letters) are often omitted in the Hebrew script, another source of ambiguity. For example,
the Arabic letters X and 	

X are sometimes represented by the same letter in Hebrew. When the diacritic
marks are maintained in the original Hebrew script, usually they are used in an inconsistent way. Even if
they are used in the original manuscript, in many cases those marks appear differently or are completely
missing in digital editions (such as those we used in this work). Figure 1 shows a few examples of this
problem. The apostrophe is the only diacritic mark that is used in the digital texts we used. One impor-
tant diacritic mark that is often missing from digital versions is shadda (gemination), which may be used

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

(a) Left: manuscript, right: printed edition, but digital-
text reads: ניתא! (missing shadda diacritic)

(b) Left: manuscript, right: printed edition, but digital-
text reads: נאקצא! (missing tanwin diacritic)

Figure 1: Information missing from the digital text and present in the manuscript and critical edition.

to easily resolve some lexical ambiguities. For example, the word �PX (“he studied”) has a different
meaning when it appears with a shadda on the second consonant � �PX (“he taught”). (3) There are sev-
eral Arabic letters that do not have a one-to-one mapping with a Hebrew letter. For example, the Hebrew
letter י! typically refers either to ø

or ø when appearing at the end of a word. (4) Judeo-Arabic is heav-

ily affected by Hebrew and Aramaic; therefore, Judeo-Arabic texts are typically enriched with Hebrew
and Aramaic citations, as well as with borrowed words and expressions from the two languages. Those
citations and borrowings should not be blithely transliterated into Arabic, but rather need to be either
left in the original script, semantically translated into Arabic, or otherwise annotated. Sometimes those
borrowed words get inflected as if they were original Arabic words. For example, the word ,אלשכינה!
composed of the Hebrew שכינה! (shkhina, “divine spirit”) and Arabic definite article אל! (in Arabic È@);
see (Bar et al., 2015).

The Friedberg Jewish Manuscript Society (https://fjms.genizah.org) has recently released
a collection of hundreds of Judeo-Arabic works from different periods of time, formatted digitally as
plain text and decorated with HTML tags. Hebrew and Aramaic citations and borrowings are annotated
in those texts by domain experts. In the present work, we use texts from this collection. We noticed
that some common borrowings were missed by the annotators; therefore, in this work we focus on the
task of the transliteration of Judeo-Arabic words that originated in Arabic words only. Detecting the
boundaries between Arabic-origin words and borrowings from other languages, a task that is known as
“code switching”, is left for future improvements. Since in our approach we consider the context of a
word that needs to be transliterated, mostly to resolve lexical ambiguity, we masked those citation and
borrowings, allowing the model to handle a continuous sequence of characters.

This Judeo-Arabic-to-Arabic transliteration problem has been addressed in one previous work (Bar et
al., 2015). We elaborate on this and some other relevant previous works in the next section. In this work,
we propose an end-to-end model to handle the transliteration task, by training a flavor of a recurrent
neural network (RNN) on relatively short parallel texts, augmented with some synthetically generated
data. Our model was designed with the capability of memorizing words in the output language. Section
3 describes the texts at our disposal. It is followed by a description of the baseline algorithm, and then
our RNN solution.

2 Related Work

The only previous effort dealing with the transliteration of Judeo-Arabic texts (Bar et al., 2015) employed
a method inspired by statistical machine translation, which was state of the art before deep neural nets
took over. It consisted of a log linear model where the main component is a phrase table that counts
the number of occurrences in the training data. As in (Rosca and Breuel, 2016), they also regarded
transliteration as translation at the character level, that is, imagining single letters to be words. They
improved their results by reranking their model’s top predictions using a word-level language model.
This is expected to be beneficial since using a character-level mechanism would incur the danger of
generating non-words and nonsensical sequences of letters. A word-level language model that is rich
enough to avoid high unknown rates would screen those results out.

Proper noun transliteration is a related task, which has been addressed previously in many works. The
input term is usually provided without context, and the task is to rewrite the name in the target script,

maintaining the way the name is pronounced. A direct phrase-based statistical approach to transliterating
proper nouns from English to Arabic script is described in (AbdulJaleel and Larkey, 2002). It was
preceded by largely handcrafted methods for romanization from Arabic to English such as (Arbabi et
al., 1994; Stalls and Knight, 1998). A deep-belief approach for proper names was taken in (Deselaers
et al., 2009). An attention-based method for transliteration from Arabic named entities to English and
vice-versa is taken in (Hadj Ameur et al., 2017).

In Rosca and Breuel (2016), a transliteration system of names that employs a recurrent neural network
(RNN), in two different ways, was described. In one way, they developed a sequence-to-sequence model
that elegantly handles the different lengths of the input and output, with CTC alignment (see Section
5.1). A minor difference is their use of “epsilon insertion” to deal with input sequences that are shorter
than the matching output, which CTC cannot handle. We instead use a similar solution of letter doubling
discussed later. The second approach is a model inspired by recent work in the field of machine trans-
lation applying an encoder-decoder architecture with an attention mechanism. They report on improved
results using RNN compared to previous methods, as is usually the case when employing deep learning
techniques with problem previously solved by other means.

Another closely related problem is the transcription of Arabizi, which is a romanized transcription of
Arabic that emerged naturally as a means for writing Arabic in chats, especially in the days of limited
keyboards. Transcription into Arabic graphemes was studied by (Bies et al., 2014). Except for the
different dialects and code switches from colloquial Arabic of different dialects to modern standard
Arabic (MSA), they also had to handle changes in the language induced by the platform it appears
in, including emoticons and deliberate manipulation of words, such as repetition of a single letter for
emphasis common with internet social media. The same problem was addressed in (Al-Badrashiny et
al., 2014), which maps Roman letters to Arabic scripts to produce a set of possibilities and chooses from
them using a language model.

In another related task, the goal was to translate written text to the International Phonetic Alphabet
(IPA), capturing the pronunciation of the written text. The work in (Rao et al., 2015) tried different RNN
models, handling unequal sized input-output pairs by epsilon post-padding. They experimented with
time delays, that is, postponing the output by a few timestamps (by pre-padding the output while post-
padding the input accordingly). This allows the network to catch more of the input before deciding on the
output. They also compared this with a bidirectional long-short-term-memory (LSTM) network that is
able to see the entire context backward and forward. They combined the bidirectional LSTM with a CTC
layer, handling the longer-output-than-input issue with epsilon post-padding (we used doubling). They
reported, as expected, that greater contextual information contributes to performance. The bidirectional
LSTM performs better than the unidirectional one even when the full context (whole word) is fed to the
network before it starts its prediction. The best performance was obtained using the bidirectional LSTM,
combined with an n-gram (non-RNN) model.

This transcription from a written language to IPA can potentially be used as a mediator to transcribe
between any two languages were we to have an encoder from IPA to the source language and a decoder
from IPA for the target script. Another potential use for this ability of transliteration to IPA would be for
improved spell checking and correction (for those who only have basic knowledge of the sounds of the
letters). A model could predict the utterances from the graphemes and recognize the word by similarity
in the sound domain, to arrive at the correct spelling. For example: neyber→ neIber→ neighbor.

3 Data

Kuzari. To train and evaluate our RNN model, we needed a considerable amount of parallel text in
Judeo-Arabic along with its Arabic transliteration. Thankfully, the Kuzari (Kitab al Khazari), a medieval
philosophical treatise composed by Judah Halevi in Andalusia around 1140, was recast in Arabic by
Nabih Bashir (Halevi, 2012). We use this Arabic version and the original Judeo-Arabic as a parallel
resource for training. The original Judeo-Arabic text of the Kuzari is taken from the Friedberg repository,
and is derived from the critical edition edited by David H. Baneth. It was based on several manuscripts
and comprises 47,348 word tokens (15,532 unique types), about 11% of which are Hebrew and Aramaic

insertions. It is important to mention that Bashir’s book provides translations for those insertions, and
that there is no distinction in his edition between the transliterated and translated words. As mentioned
before, we postpone handling the Hebrew and Aramaic citation and borrowings in our work, and we use
the annotations provided by the Friedberg’s experts in the Judeo-Arabic text, to mask out all words that
are not originated in Arabic.

After cleaning the data from translation comments, section numbering and other elements irrelevant
for transliteration, we needed to align the Arabic translation with the Judeo-Arabic source, on the word
level. Aligning the texts is necessary because Bashir’s translation does not perfectly match the Judeo-
Arabic text, there being some word insertions, deletions and edits. To do that, we begin by breaking
the two texts into words, and then iterating the two sequences of words. At each iteration we choose
between skipping a word from the source (Judeo-Arabic) text, skipping a word from the target (Arabic)
text, or adding both as an aligned source/target pair. The decision is the choice that minimizes the total
edit distance of the alignment. To calculate edit distance between strings of different scripts, we applied
the simple map to the Arabic source to get a basic transliteration into Hebrew letters. (The details of the
algorithm are given in (Terner, 2020, Appendix).) After this alignment process we only keep pairs of
words in the alignment that are close enough edit-distance wise. We set the threshold for edit-distance
similarity heuristically, after normalizing the edit distance result by the maximum length of the two
words that were compared, to the value of 0.5. This left us with a total of 47,083 word pairs, of which
20% were chosen randomly as test data, and the rest left for training. We are aware of the generalization
problem of training and testing on data from the same source.

Words that do not align well according to the predefined threshold, such as Hebrew insertions, are
removed and replaced by a fixed symbol (H) both in the source and target texts. We do the same for
Hebrew insertions that are annotated as such by Friedberg’s annotators. We do this to preserve the
sentence structure since we suspect that this information is of value to the model for making better
predictions.

We see punctuation as an important feature of the language and we want to keep this information for
the model to train with. Where there are disagreements (e.g. comma vs. period) in the source and target
languages, we favor the source language.

Additionaly, we removed from the Arabic text the harakat marks (short vowel marks): fathah, kasrah,
dammah and sukun. They appear rarely in written Arabic (except for text intended for children or in
religious texts) and are usually considered “noise” for language-related algorithms due to their scarcity
(Habash, 2010). In the Judeo-Arabic text, the equivalent to these diacritics is the Hebrew niqqud signs.
They appear only for Hebrew insertions; hence they are removed incidentally by the replacement of
Hebrew insertions. Sometimes we even make use of those marks to identify Hebrew insertions missed
by Friedberg’s experts. Note that the tanwı̄n symbols when combined with alif were standardised to the
modern style, so the diacritic symbol appears on top of the alif and not on the letter preceding it.

Beliefs and Opinions. We identified an additional parallel text, namely Sa’adiah Gaon’s The Book of
Beliefs and Opinions (Kitāb al-Amānāt wa l-I‘tiqādāt). It contains roughly the same quantity of data and
was also transliterated by Bashir. We did not use it as training data; rather, we extracted 20% of it as
additional test data, for evaluating how well the model performs on unseen text.

Synthetic data. Although we have a considerable amount of parallel data, since we use only one
text source for training, we faced the problem of the model fitting to the specific writing style of the
training data, but generalizing poorly to other texts. To improve the model and make it more robust, we
generated synthetic data, using a simple technique, again leveraging the fact that the opposite direction
of transliteration, that is, from Arabic to Hebrew, has almost no ambiguities (at least in the sources that
we worked with in this study).

We found some additional texts online that correspond to the same era in which our texts were written.
We used a simple mapping to produce a pseudo-transliteration from Arabic to Judeo-Arabic for them
(Table 2 in Appendix). For instance, for the first two words in the text of Ilāhiyyāt, , a
pseudo-Judeo-Arabic transliteration is generated: . The generated Judeo-Arabic text along
with its Arabic counterpart are added to the parallel data for training the model.

Table 1: Different transliterations of ù�. In the first row it matches Hebrew ,י! while in the second row it
matches .א! The unusual transliteration might stem from the spelling of the translation.

This gave us parallel data that are genuine on the Arabic side but fictitious on the Judeo-Arabic side.
Thus, it might include words written in a different way than an original Judeo-Arabic author might have
written them. The use of such training data is justified partly by the fact that we are likewise only
interested in the accuracy of our model’s predictions on the target (Arabic) side. Therefore, we are less
concerned about providing the model with noisy examples. This synthetic data significantly enlarged the
quantity available for training.

4 Baseline Algorithm

The evaluation metric that we use is simply the average edit distance over all examples in the test dataset.
The edit distance (ED) that we use is the Levenshtein distance, which is calculated between the predicted
characters and the ground truth. It is then normalized by the length of the ground truth. The formula for
label error rate (LER) is 1

|S|
∑

(x,z)∈S ED(h(x), z)/|z| for model h on test data S ⊆ X × Z, where X

are the inputs, z is ground truth and |z| is the length of z. This is a natural measure for a model where
the aim is to produce a correct label sequence (Graves et al., 2006).

To evaluate results, we start by creating a baseline transliteration on the test data that translate each
Hebrew letter to the most common letter according to the predefined mapping mentioned earlier (Table 2
in Appendix). We produced the list manually according to a modern convention for transliterating Arabic
into Hebrew. This simple mapping achieves a relatively high accuracy (LER 9.51%) and demonstrates
the nature of this Judeo-Arabic transliteration problem. Though it is easy to achieve high accuracy,
to produce readable text and to be able to confront ambiguities in the text, some language ability is
desirable. The baseline results still do not guarantee fluent reading of the generated target text.

Common baseline mistakes. The baseline errors arise mainly from ambiguous letters that have more
than a single mapping. In what follows, we enumerate the most prominent ambiguities.

Transliteration of Hebrew alef. The letter alef (א!) most commonly should be transliterated as the
Arabic letter alif (@). This Arabic grapheme usually indicates an elongated /a/ vowel attached to the
preceding consonant. However, it can also sometimes indicate a glottal stop, that is an alif with hamza
on top (

@). As (Habash, 2010) mentions, Arabic writers often ignore writing the hamza (especially

with stem-initial alifs) and it is “de-facto optional”. This will also lead to false negatives for the test
data, deciding that the transliteration is an error while in fact it would be accepted by a human reader,
unjustifiably increasing LER; see (Rosca and Breuel, 2016, Section 2.3). A more complex model could
hopefully predict the places were hamza is required for disambiguation (for instance words with stem-
non-initial alifs). Alternatively, such a model would hopefully have a rich enough memory of the Arabic
words it has seen, attaching the hamza sign for words it has seen in the training data. If indeed there are
two legitimate forms, this model will also know to disambiguate according to the context, as we train on
sequences, that is, words in context.

Rarer cases for transliteration of א! are as follows: hamza on the line (Z) even though it is usually not
transcribed in Hebrew. Also it can mean an alif maqsura (ø) at the end of a word, but alif maqsura is
usually mapped to the letter yod .(י!) For instance, the 3-letter word וגא! is transliterated as the 4-letter
ZAg. ð. Here it is not clear whether the letter א! corresponds to the hamza or to the long vowel alif that
precedes it, in which case the hamza is missing from the transliteration. In the baseline algorithm, we
map א! to the most common transliteration, that is, a non-hamza alif. Thus we miss all the other variations.

Transliteration of Hebrew yod. The two most common uses of the yod (י!) are for the Arabic letter

Figure 2: Baseline results. Columns, right to left: Judeo-Arabic text, ground truth, baseline prediction,
error rate. Errors are marked in blue. Observe, for instance, the 4th word in row 3, missing a shadda in
the prediction and with an extra א! in the source sentence.

ya (ø

) and for alif maqsura (ø), a dotless ya appearing always at the end of a word. Less frequently it
can also be a transliteration of ya hamza (ù�). But there are variations. For instance, in the first of the
examples in Table 1, the ya hamza is transliterated as yod (,(י! while in the second when followed by a
regular ya, it can be seen as either transliterated to a Hebrew alef ((א! or dropped. In this example, the
variation can be due to the spelling in Hebrew of the translation that uses :א! ”ישראל!“ (Israel in Hebrew).

In Egypt, but not necessarily in other Arabic countries, a final ya is often written dotless, that is,
as an alif maqsura (Habash, 2010). This seems to be the case in the transliteration of Maimonides’
book, The Guide for the Perplexed (Dalālat al-h. ā’irı̄n; http://sepehr.mohamadi.name/download/

DelalatolHaerin.pdf), as transliterated by Hussein Attai (e.g. p. 45). Unfortunately, the book is not
available as a digital text. (A page of the Guide, with human and machine transliterations, is shown in
Figure 6 in Appendix.) In the baseline algorithm, we map yod invariably to a regular ya.

Arabic shadda (gemination). Another critical issue is the shadda diacritic (e.g. �
H.). The shadda

is not present in the Judeo-Arabic text, or was omitted in the digitized version of the text as described
above. Unfortunately, we could not figure out a simple rule of thumb to handle the presence or absence
of shadda that could be adopted for the baseline algorithm.

Baseline results. As mentioned above, the baseline algorithm fully disregards shadda, hamza, alif
maqsura, tanwin and a few other marks. Nonetheless the error on the test data does not increase (LER
9.5%). Some results of the baseline algorithm are shown in Figure 2.

5 Method and Results

5.1 Training using CTC Loss with Letter Doubling

The connectionist temporal classification (CTC) loss is a method introduced in (Graves et al., 2006) that
enables a tagging recurrent neural network (RNN) to learn to predict discrete labels from a continuous
signal without requiring the training data to be aligned input to output. Instead, the model produces
a distribution over all alignments of all possible labels while facilitating an extra character (the blank
symbol) added to its softmax layer in order to produce the alignment. Thus, the probability of any label
conditioned on the input can be calculated as the sum over all possible alignments of the given label.
CTC is appropriate for our mission because the Judeo-Arabic inputs and Arabic outputs are not always
of equal length. Also, there is no available alignment of the two texts at the character level.

Applying CTC loss is a convenient solution for handling this problem. However, the CTC loss is only
defined when the input sequence is longer than the output sequence, which is not always the case for us.
Actually, since there are diacritic signs in the Arabic transliteration included in the character count that
do not appear in the Judeo-Arabic source—this is a prevalent situation. This will require an adaptation
of the dataset below.

It should be noted that, as (Chan et al., 2016) describes, the CTC mechanism implicitly assumes
independence of characters over time. By using the multiplicative rule between probabilities over time,
it disregards the dependencies between timestamps. In spite of this strong assumption, CTC achieves a
substantial improvement in performance for various sequential tasks, such as speech recognition (Graves
et al., 2006), OCR (Shi et al., 2017) and handwriting recognition (Graves et al., 2007).

Doubling. This technique of dealing with shorter input than output sequences that we use is similar
to that used by (Rosca and Breuel, 2016). But instead of using a special character (epsilon) inserted
between each timestamps a constant number of times, known as epsilon insertions, we filled the extra
spaces by repetition of the previous timestamp label. For instance, the sequence would
become . Note the doubling of the apostrophe sign, which is performed
separately from the letter ג! that it decorates.

Aesthetically speaking, this brings the usage of CTC closer to its original usage of transcribing a
continuous signal to discrete labeling (as in speech recognition) in the sense that the input text obtains
the appearance of a continuous signal, whereas epsilon insertions break the succession. Further work is
required to examine the impact on performance of these two alternatives.

5.2 Training the RNN

We use for our model GRU (Cho et al., 2014) cells, stacked in four layers, followed by a linear layer
activated by softmax for the CTC loss. Each layer is bidirectional (meaning the cells observed the
input both backwards and forwards), and contains 1,024 units. We use letter embedding for the input of
dimension 8. The model is implemented with TensorFlow, and optimized with RMSprop. The text is
divided into short 20 characters sequences (according to the lengths in the input side). The sequences
contain complete words. If the 20th character happens to be midword, the rest of the word was included
in the sequence. The batch size is 128.

5.3 Pretraining on Single Letters

A method that was beneficial for speeding up convergence of the network was to pretrain the network
with single letters according to the simple letter mapping between the Hebrew and Arabic alphabet. This
is as if “to set the model in the right direction”. This is intuitively reasonable if you think of the way
children learn how to read. First they learn to identify the individual letters and then to assemble them
into words. We use for this training step the sparse cross entropy loss trained on generated random
parallel character sequences of length 10. As we show, this makes it feasible to train deeper networks.
It might also be helpful, for instance in the task of speech recognition, to pretrain the network first on
single time samples from a certain phoneme to teach the network to map to the correct grapheme, before
training on continuous speech with CTC loss, which is more complex, and with which it is less obvious
for the network how to start to optimize than with the simpler cross entropy loss.

Intermediate results. With pretraining with the cross entropy loss, the network converges quite fast
to reach error rate of 2% on the test data. On the other hand, without pretraining, it gets stuck at a local
minimum, transliterating each character in the input to the most prevalent character in the target data,
which is a space character, producing as output strings of repeating spaces. Figure 3 shows the losses
and accuracy measures. In the remainder of the experiments, we include this pretrain stage.

Running this model against the additional text of Emunoth ve-Deoth yields a higher error rate of 3.24%.
In other words, we see a decrease in performance for unseen texts. We continue with an exploration of
ways for improving prediction for unseen texts.

5.4 Training with Synthetic Data

As described in Section 3, we propose a technique to augment the training data by generating pseudo-
parallel texts using Arabic writings of roughly the same era in which our Judeo-Arabic texts were written.

The texts we used for this purpose in the current experiments are: (1) Avicenna’s Ilāhiyyāt, (2) Al-
Farabi’s Kitab Rilasa al-Huruf, (3) Al-Farabi’s Kitab Tahsil al-Saida and (4) Averroes’s Al-Darurı̄ fı̄ Isul
al-Fiqh. To all that we add the original “real” dataset of the Kuzari. By doing this, we significantly
enlarge the amount of data that we have for training.

Results. With the synthetic data, the accuracy on the original text data decreased, as expected, to
2.48%. On the additional data the accuracy also decreased but to a lesser extent, to 3.37%. This drop in
performance might indicate that the Arabic texts that we chose for generating the synthetic data are not
perfectly suitable for Judeo-Arabic. Perhaps there are other sources to consider that are more suitable.

(a) Training loss: without pretrain (b) Test loss: without pretrain (c) Test accuracy: without pretrain

(d) Training loss: with pretrain (e) Test loss: with pretrain (f) Test accuracy: with pretrain

Figure 3: Comparing results with pretraining with single graphemes with CE loss (bottom) and without
(top). Beware of the differences in scales.

(a) Training loss (b) Test loss (c) Test accuracy

Figure 4: Results of training with added synthetic data.

Note that the degree of fluctuation in the learning curve on the test is greater. This might be because the
synthetic data is shuffled between epochs. The results are presented in Figure 4.

5.5 Dropout

We are mainly interested in making the network to remember what would make sensible Arabic outputs,
relying on the letter mapping, but allowing some flexibility. It should be able to output Arabic words
that were seen during training even though the input sequence is not the exact one seen during training.
Experimenting with a small model showed the plausibility of this direction of thinking. An immediate
implication was to use dropout on the input sequence to make the network more robust to noise in the
Judeo-Arabic input. We achieved this by randomly setting a percentile of the nonspace symbols in the
input sequence (before doubling the letters) to the blank symbol.

Results. With dropout rate of 15% of the nonspace symbols that was performed on the synthetic data,
the test results for the original test of the Kuzari is set at 2.26%, which is worse than the accuracy without
synthetic data and without dropout but better than the results when trained on the synthetic data without
the dropout. On the other hand, for the additional text of Emunot, a marked improvement is achieved,
yielding an error rate of 3.14% (a 0.1 percent improvement).

(a)
(b)
(c)
(d)
(e)

(f)
(g)
(h)

(i)
(j)

Figure 5: Example transliteration results for proposed model. Right to left: Judeo-Arabic, ground truth,
baseline prediction, error rate. In (b), for the last word the network misses the ground truth. Notice the
correct positioning of the Alif Hamza. In (d) the mistake is partly due to noise in the data since the ground
truth form

�
AJ
�ñÓ is a conjugation of the noun ú

æ�ñÓ (meaning “recommender”), which the Judeo-Arabic

מוצי! form resembles more. The form that the network finally produced also exists. Example (i) shows a
mistake in distinguishing between word senses since both diacritizations of A

	
K @ produce legitimate words.

6 Discussion

We designed a model for automatic transliteration of Judeo-Arabic texts into Arabic scripts. Endeavoring
to overcome the problem of ambiguous mappings in the transliteration, we trained an RNN model using
the CTC loss that has enabled us to cope with unequal length input/output sequences due to the addition
of diacritics in the target (Arabic) side of the data. As mentioned, we wanted to create a network that will
have memory, along with some language capability in the output side that will enable it to distinguish
between different word senses and overcome small variations in the transliteration.

The results demonstrate a substantial decrease in error compared to the baseline, from 9.5% to 2%
LER, showing that the network is capable of attaching correct diacritics to the Arabic. On unseen text,
the network incurs a 3.24% error rate. This is important since Judeo-Arabic texts vary according to the
writer, time period, and region. Examples and some remaining problems are included in Figure 5.

We experimented with several methods to enhance training. First, we exercised pre-training of the
network with cross-entropy loss to teach the network the simple mapping used in the baseline transliter-
ation. This can enlarge and deepen the network and still guarantee convergence. Without this pretraining
stage, the network failed to discover this mapping by itself. Since we only train on parallel text from a
single source, and we are interested in making the model generalize better to unseen texts, we augment
the training dataset by generating parallel texts out of available medieval Arabic texts. This had a slight
adverse affect on accuracy and might depend on the choice of Arab texts that were used for the synthetic
data. Dropout was considered and implemented on the synthetic data with the desired affect. While accu-
racy on the first test data, taken from the same source as the original training data decreased as expected,
accuracy for the additional test data improved. We suspect that the network assimilates more language
skills due to the dropout on the training data.

Examining the top 5 results of the CTC-decode beam search, instead of only the top one, reveals that
sometimes the correct transliteration, at least the one that was chosen by the human transliterator, is
among those five. Therefore, running a pure Arabic language model should enhance model accuracy.

One question that arises is how much of the language the network catches. To examine this, we
perform a forward pass on the shuffled test data. Shuffling is done at word level. This generates a
parallel dataset of words that lack context, sharing the same word distribution as the real test data. Indeed
as expected, on the shuffled test data the error increases by ∼0.5% on average.

References
Nasreen AbdulJaleel and Leah Larkey. 2002. English to Arabic transliteration for information retrieval: A sta-

tistical approach. Technical Report IR-261, Center for Intelligent Information Retrieval Computer Science,
University of Massachusetts.

Mohamed Al-Badrashiny, Ramy Eskander, Nizar Habash, and Owen Rambow. 2014. Automatic transliteration of
romanized dialectal Arabic. In Proceedings of the Eighteenth Conference on Computational Natural Language
Learning (CoNLL-2014), pages 30–38, June.

Mansur Arbabi, Scott M. Fischthal, Vincent C. Cheng, and Elizabeth Bar. 1994. Algorithms for Arabic name
transliteration. IBM Journal of Research and Development, 38(2):183–193.

Kfir Bar, Nachum Dershowitz, Lior Wolf, Yackov Lubarsky, and Yaacov Choueka. 2015. Processing Judeo-Arabic
texts. In Proceedings of the First International Conference on Arabic Computational Linguistics (ACLing ’15,
Cairo), pages 138–144, April.

Ann Bies, Zhiyi Song, Mohamed Maamouri, Stephen Grimes, Haejoong Lee, Jonathan Wright, Stephanie Strassel,
Nizar Habash, Ramy Eskander, and Owen Rambow. 2014. Transliteration of Arabizi into Arabic orthography:
Developing a parallel annotated Arabizi-Arabic script SMS/chat corpus. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing (ANLP), pages 93–103.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. 2016. Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4960–4964.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October. Association for Computational Linguistics.

Thomas Deselaers, Saša Hasan, Oliver Bender, and Hermann Ney. 2009. A deep learning approach to machine
transliteration. In Proceedings of the Fourth Workshop on Statistical Machine Translation, StatMT ’09, pages
233–241. Association for Computational Linguistics.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the
23rd International Conference on Machine Learning, pages 369–376. ACM.

Alex Graves, Santiago Fernández, Marcus Liwicki, Horst Bunke, and Jürgen Schmidhuber. 2007. Unconstrained
on-line handwriting recognition with recurrent neural networks. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS 2007), volume 20, pages 577–
584, January.

Nizar Y. Habash. 2010. Arabic Natural Language Processing. Synthesis Digital Library of Engineering and
Computer Science. Morgan & Claypool Publishers.

Mohamed Seghir Hadj Ameur, Farid Meziane, and Ahmed Guessoum. 2017. Arabic machine transliteration
using an attention-based encoder-decoder model. In Third International Conference On Arabic Computational
Linguistics (ACLING 2017, November 2017, Dubai, United Arab Emirates), volume 117 of Procedia Computer
Science, pages 287–297, November.

Yehuda Halevi. 2012. The Kuzari – In Defense of the Despised Faith. Al-Kamel Verlag, Beirut. Transliterated,
translated into Arabic and annotated by Nabih Bashir.

Kanishka Rao, Fuchun Peng, Haşim Sak, and Françoise Beaufays. 2015. Grapheme-to-phoneme conversion using
long short-term memory recurrent neural networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4225–4229.

Mihaela Rosca and Thomas Breuel. 2016. Sequence-to-sequence neural network models for transliteration.
CoRR, abs/1610.09565.

Mehdy Shaddel. 2018. Traces of the hamza in the early Arabic script: The inscriptions of Zuhayr, Qays the Scribe,
and “Yazd the King”. Arabian Epigraphic Notes, 4:35–52.

Baoguang Shi, Xiang Bai, and Cong Yao. 2017. An end-to-end trainable neural network for image-based sequence
recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 39(11):2298–2304, November.

Bonnie Glover Stalls and Kevin Knight. 1998. Translating names and technical terms in Arabic text. In Proceed-
ings of the COLING/ACL Workshop on Computational Approaches to Semitic Languages (Semitic ’98), pages
34–41, August.

Ori Terner. 2020. Transliteration of Judeo-Arabic texts to Arabic using RNN. M.Sc. thesis, School of Computer
Science, Tel Aviv University.

Appendix: Figures and Tables

(a) Original Judeo-Arabic orthography. (b) Transliteration by Hussein Attai.

(c) Our model transliteration.

Figure 6: First page of Maimonides’ The Guide for the Perplexed.

Table 2: Simple mapping rules for baseline transliteration.

