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Abstract. Pottery is of fundamental importance for understanding archaeological 
contexts. However, recognition of ceramics is still a manual, time-consuming ac-
tivity, reliant on analogue catalogues created by specialists, held in archives and 
libraries. The ArchAIDE project worked to streamline, optimise, and economise 
the mundane aspects of these processes, using the latest automatic image recog-
nition technology, while retaining key decision points necessary to create trusted 
results. The project has developed two complementary machine-learning tools to 
propose identifications based on images captured on site. One method relies on 
the shape of the fracture outline of a sherd; the other is based on decorative fea-
tures. For the outline-identification tool, a novel deep-learning architecture was 
employed, integrating shape information from points along the inner and outer 
surfaces. The decoration classifier is based on relatively standard architectures 
used in image recognition. In both cases, training the classifiers required tackling 
challenges that arise when working with real-world archaeological data: the pau-
city of labelled data; extreme imbalance between instances of the different cate-
gories; and the need to avoid neglecting rare types and to take note of minute 
distinguishing features of some forms. The scarcity of training data was over-
come by using synthetically-produced virtual potsherds and by employing mul-
tiple data-augmentation techniques. A novel way of training loss allowed us to 
overcome the problems caused by under-populated classes and non-homogene-
ous distribution of discriminative features. 
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1 Introduction 

Pottery is the most common type of excavated artefact, and its identification permits 
the understanding of the chronology, function, and importance of archaeological con-
texts. This identification is based on the archaeologist’s domain knowledge and is usu-
ally made by matching potsherds to exemplars in catalogues of archaeological typolo-
gies. These catalogues contain, for each type, a standardised sketch of the complete 
vessel and sometimes a few photos. While not seeking to replace the knowledge and 
expertise of specialists, the ArchAIDE project worked to optimise and economise iden-
tification processes, developing a new system that streamlines the practice of pottery 



2 

recognition in archaeology, using the latest automated image recognition technology. 
At the same time, archaeologists remained at the heart of the decision-making process 
within the identification workflow. Specifically, ArchAIDE worked to support the es-
sential classification and interpretation work of archaeologists (during both fieldwork 
and post-excavation analysis) with an innovative app for tablets and smartphones. The 
collaborative work of the archaeological and technical partners created a pipeline where 
potsherds are photographed, their characteristics compared against a trained neural net-
work, and the results returned with suggested matches from a comparative collection 
with typical pottery types and characteristics. Once the correct type is identified, all 
relevant information for that type is linked to the new sherd and stored within a database 
that can be shared online.  

The goals of the ArchAIDE project have been reported in (Wright and Gattiglia 
2018; Anichini et al. 2020) and have been implemented through the creation of two 
distinct neural networks for shape-based and appearance-based recognition. The choice 
of the pottery classes, and, consequently, the catalogues to be used for the ArchAIDE 
project, was one of the main issues to be considered to create a system that requires a 
real-world implementation. The decision was made to choose four types: amphorae 
manufactured throughout the Roman world between the late 3rd century BCE and early 
7th century CE; Roman Terra Sigillata manufactured in Italy, Spain and South Gaul 
between the 1st century BCE and the 3rd century CE; Majolica produced in Montelupo 
Fiorentino (Italy) between 14th and 18th centuries, and medieval and post-medieval 
Majolica from Barcelona and Valencia (Spain).  

 The set of tools the project developed addresses two scenarios: (i) when the pottery 
is undecorated, the identification relies on the geometry of the sherd; (ii) if visual pat-
terns, such as colours and decorations, are preserved, classification is usually based on 
those, since they are more diagnostic than the shape of the sherd. Preliminary results 
on classification may be found in (Itkin et al., 2019).  

Potential uses of computer vision and machine learning in archaeology were already 
proposed in (Van der Maaten et al., 2007) and applied to coin classification and to the 
retrieval of visually-similar glassware from a reference collection. Modern methods 
were used, for example, in (Orengo and Garcia-Molsosa, 2019) to detect and survey 
surface potsherds in high-resolution drone images. Detection and classification of 
whole pottery vessels in images by a prototype system called Arch-I-Scan is described 
in (Tuykin et al., 2018). 

Much of the existing work on automated identification of sherds is based on 3D 
scanning or multi-view reconstruction technologies (Barreau et al. 2014; Calin et al. 
2012; Kampel and Sablatnig, 2006; Karasik, 2010). However, the adoption of such 
methods is minimal due to the challenges of 3D acquisition in the field. The automatic 
analysis of profiles of potsherds has been studied using classical computer vision meth-
ods, but none is robust enough to be applied automatically on a varied set of excavated 
sherds. The problem of reconstruction from line drawing or sketches is classical (e.g. 
Malik, 1987; Tian et al., 2009; Yingze et al., 2009; Xu et al., 2014).  

The complete processing chain for the two classifiers, shape-based and decoration-
based, are sketched in Figures 7 and 8. 
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Fig. 1. An illustration of the archaeological data. (a) An image of a sherd positioned to show the 
fracture surface, with a reference scale ruler in the background. (b) A traced fracture outline 
overlaid over the source image. Green is the outer profile; red is the inner profile; black is for 
break lines that are ignored by the algorithm. (c) An archaeological sketch as it appears in a 
catalogue. One or more sketches define a class of pottery. (d) A 3D computer graphics vessel 
obtained by rotating the catalogue sketch. (e) A synthetic sherd obtained by breaking the 3D 
vessel. (f) A fracture outline obtained directly from the sketch, without the 3D reconstruction and 
shattering process. 

1.1 Shape-Based Identification 

Since our goal is aiding archaeologists in the field, we forgo multiple attempts to 
extract 3D geometry and rely on the 2D outline of the fracture surface of the sherd as 
the source of shape information. We tackle the task of classifying the outline of a pot-
sherd based on a single image of it, as depicted in Figure 1(a). After marking the outline 
in a semi-automatic way and determining the scale using a ruler (Figure 1(b)), our AI-
powered mobile app suggests an identification in the form of a list of archaeological 
types, ranked by their relevance to the pictured potsherd. 

A major challenge in building the necessary AI tools is the lack of sufficient real-
world samples to train neural networks. Furthermore, the variability in the dataset 
would still cover only a small fraction of the space of possible sherds. Instead, we define 
each class by one or more 2D sketches of the profile of the complete vessel; see Figure 
1(c). Whereas the sketch describes the geometry of the profile of the entire vessel, an 
excavated sherd is a relatively small piece of the original, containing very limited in-
formation regarding the shape as a whole. 
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The outline of the fracture is a consequence of both the geometry of the pottery and 
the random breakage process. On the dataset side, we reconstruct the 3D pottery by 
rotating the profile of the vessel (Figure 1(d)) and shatter it to derive synthetic sherds 
(Figure 1(e)). We adopt a way to circumvent the computation overhead of 3D recon-
struction and instead obtain the synthetic fracture surfaces (Figure 1(f)) efficiently. 

To identify outlines, we train a network that supports the unique characteristics of 
archaeological outlines, including the need to separate between the inner outline and 
the outer outline of the sherd, the importance of the order of the points along the outline, 
the inherent noise in the tracing process, and the need to overcome sub-optimal data 
acquisition processes. 

The architecture of our classifier relates to an emerging body of work, encoding in-
puts that are given as sets (Qi et al., 2017; Zaheer et al., 2017). It is similar to PointNet 
(Qi et al., 2017) in that it employs pooling in order to obtain a representation that is 
invariant to the order of the elements, following a local computation at each element. It 
has previously been shown (Qui et al., 2017; Zaheer et al., 2017) that, under mild con-
ditions, such pooling is the only way to achieve this invariance. Recent works on shape 
classification include PointNet++ (Qi et al., 2017a), which employs local spatial rela-
tions, and PointCNN (Hua et al., 2018) which applies spatial information to group 
points prior to aligning them spatially to a grid where a convolution can be applied. 
While previous work has mostly been focused on the identification of 3D point clouds, 
we encode a 2D outline and benefit from the information that arises from the order of 
the points along the outline. 

1.2 Decoration Identification 

The case in which the pattern information on the face of the artefact is informative 
is much better addressed in the current computer vision literature. In this case, we em-
ploy a commonly used transfer-learning technique in which a neural network that was 
pre-trained to perform visual identification is adapted to the task at hand, using a rela-
tively small archaeological training dataset. 

1.3 Challenges and Results 

Both in the shape and the decoration methods, we overcame a broad range of com-
pounding challenges. These include: (1) the lack of real-world data to train on (shape) 
or a small one (decorations); (2) a partial view of the object that is obtained by a random 
breakage process, which presents large variability; (3) a large portion of the sherds, 
among both the synthetic training samples and the captured test samples, are almost 
entirely non-informative; (4) very similar classes, making the distinction more chal-
lenging and also causing ambiguity in the ground truth classification of the test data; 
and (5) a noisy acquisition process: an error-prone process for extracting the outline 
and obtaining scale from the real images (shape), variability in illumination (decora-
tions). 

In addition, to be used by experts, there is an acute need to optimise to fit consider-
ations beyond accuracy. For example, most neural network loss measures would be 
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prone to sacrificing challenging classes to improve the average accuracy across all clas-
ses. However, a reference tool brings the most value when the identification is less 
obvious. To tackle the heterogeneous and unbalanced nature of the data, we train using 
a novel weighting technique that considers both the error of each ground truth class and 
false positives in each class. The reweighting scheme that we use addresses both the 
difficulty of correctly classifying a sample from a given class and the frequency of the 
current classification of a sample. 

Our results demonstrate a relatively high recognition rate in the face of these chal-
lenges. The development was carried out in two phases to ensure the validity of our 
results. In the first, we developed the method on one dataset of potsherds of one specific 
family; in the second, the same method, with the same pipeline and (hyper-)parameters, 
was applied to three new datasets. With our Phase I dataset, out of 65 different classes, 
the tool can identify—based on images of sherds captured with a dedicated mobile 
app—almost 74% of the sherds within the top-10 results. With three additional datasets 
that were received after the completion of our research phase, without any tweaking of 
the pipeline, we reached 81%, 68%, and 60% top-10 accuracy for 65, 98, and 94 classes, 
respectively. Thus, our network may serve as the basis of a reliable reference tool for 
the use of archaeologists in the field, one that significantly narrows down the list of 
relevant classes to be considered for each sherd. 

 

2 Shape-Based Identification 

2.1 Synthetic Training Data 

Generating high-quality data with as much similarity to real data as possible is cru-
cial for our training. ArchAIDE process follows the steps described next to generate 
synthetic training data using the sketches extracted from the catalogues 

Extraction of the profile from the sketch is done by tracing the edges of the profile 
of the vessel (the left half of Figure 1(c)). Handles, if present in the profile, are removed 
(Banterle et al., 2017). Finally, the scale is extracted from the ruler. A sample result can 
be seen in Figure 2(a). A 3D model can be obtained by rotating the profile around the 
vertical axis. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Fig. 2. Sketch processing. (a) The processed sketch with the inner profile, outer profile, and ro-
tation axis. (b) The rotation process. The inner and outer profiles are positioned for rotation 
around the rotation axis. (c) A cutting plane P through the 3D pottery. (d) The complete fracture 
face. In practice, only one of two sides (marked in orange and blue) is present in most excavated 
sherds. We further cut the top and bottom of the fracture, using two lines, to create a sherd with 
more realistic edges and size. 

To generate a fracture directly from the profile, without reconstructing a computa-
tionally expensive 3D model, we imagine circles going around the vertical (z) axis, for 
each point in the profile (Figure 2(b)). We then generate a random 3D plane (Figure 
2(c)), and compute the intersection of the plane with all the circles, connecting the in-
tersection points from the circles along the profile to generate the fracture face (Figure 
2(d)). To make the fracture shape more distinctive, we keep the random plane almost 
vertical (Figure 2). To add further realism to the generated fracture, after projecting the 
fracture back to 2D, we reduce its extent to match the dimensions of real potsherds; To 
do so, we cut the resulting polygon using two almost-horizontal lines (Figure 2(d)). 

Since the drawings are scanned in high resolution to capture as many details as pos-
sible, artefacts resulting from the printing process may be visible (see Figure 3(a)) and 
reflected in the traced outline (Figure 3(b)). To avoid learning the artefacts, we simplify 
the outlines by sampling points randomly from each outline, limiting the number by 
resolution. When more points are needed (as training operates on a fixed number of 
points), we duplicate points as necessary. The network employs max-pooling, as de-
tailed in Section 3.2, and seems to be able to overcome this inconsistency in sampling. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Propagation of artefacts as a function of sampling resolution. (a) A scan of a drawing from 
the catalogue, depicting only the rim of a vessel and scanned at high resolution. Printing artefacts 
are clearly visible. (b) Accurate tracing of the drawing propagates some of the printing artefacts 
as rough edges. (c) Fixed-count sampling, matching the number of points required to achieve 
2mm resolution on some of the larger potsherds. Due to the sample density, the tracing artefacts 
are still present. (d) A resolution-limited sampling, sampling every 2mm at the scale of the real 
pottery. Most artefacts are no longer visible. 

When photographing potsherds, the fracture must be aligned with the image—where 
the sherd’s vertical axis is aligned with the vertical axis of the image, and the fracture 
surface is kept parallel to the horizontal plane—to minimise distortions in the acquired 
fracture shape. Note that an archaeologist has no difficulty in approximating the vertical 
axis z since the ceramic manufacturing process creates shapes with dominant circles 
around z. The ability of the users to properly align the vertical axis (aligning both the 
vertical axis to the rotation axis and the fracture surface to the image plane) has been 
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verified in field trials. Despite the intuitive ability of users to align the fracture correctly, 
this alignment is inexact, since it is a manual process. For robustness, we simulate a 
small random 3D rotation on each fracture before projecting it onto a 2D outline. 

Another concern with regard to data acquisition quality arises from the nature of the 
fieldwork. With one hand operating the camera and another hand holding the potsherd, 
a ruler that is used for inferring scale information is often left on the table and not held 
at the same distance as the fracture surface; see Figure 1(a). This seemingly small dif-
ference in distance from the camera, when combined with close-range photography, 
has been empirically shown to lead to scale computations that cause sherds to appear 
up to 50% larger than their actual size. To achieve robustness to this sort of issue, we 
also add a random scale factor. 

2.2 Network Architecture 

Our OutlineNet is based on PointNet with multiple improvements. Unlike PointCNN 
and Point-Net++, we do not attempt to cluster points together dynamically, but rather 
use the natural ordering of points along the outline for enriching the available infor-
mation at each point with more than just its spatial location. 

In our network, we supplement each point with two important pieces of information: 
(1) an annotation whether it is on the inside or outside, and (2) the angle of the outline 
at that point, which gives a rotation-invariant representation of the context around the 
point. The former is categorical; the latter is continuous. To combine them, we took an 
approach we called “group-hot” encoding; to represent d continuous values coupled 
with one categorical value with c options, we use a vector representing c groups of d 
values. To represent group i, we zero out the values of all but the ith group and store the 
d values in that group.  

Previous works construct hierarchies between points to encode spatial context for 
each point (Hau et al., 2018; Qi et al., 2017a). In our case, points are ordered, and we 
instead encode the immediate context around each point using angular information by 
considering, for every point, the cosine and sine of the angle formed at this point along 
the outline. Employing a point representation that incorporates both angle and location 
showed little to no benefit (compared to spatial information alone). Thus, we employ a 
multi-pathway architecture to enable learning separate features for spatial and angular 
information. We begin with separate branches of multilayer perceptrons (MLPs), one 
for angle data and one for location data. Their outputs are concatenated and fed into 
two perceptron layers. Max pooling is then performed over all points to obtain a global 
feature vector of the same size. Going through an additional MLP and a final softmax 
layer, we obtain output scores for the classes. All MLPs, except for the one producing 
the output score, employ ReLU activations. 

3 Decoration-Based Identification 

The drawings and the colours used to decorate pottery can be classified based on the 
usage of specific colours or their combination, by the type of patterns that are being 



8 

painted, by the areas that are being painted, and more. For appearance-based classifi-
cation, our work was mainly carried out on the Majolica of Montelupo pottery. The 
data collection was led by the University of Pisa (UNIPI), using both existing images 
(from archaeological excavations, PhD theses, and more) and multiple photography 
campaigns. Most of the images were collected during the Autumn of 2017, with more 
than 8000 sherds being photographed, covering 67 genres with more than 20 sherds, 
many of which with more than 100 sherds. All the pictures have been classified by 
UNIPI archaeological staff. 

Similar to other applications of computer vision in domains in which the data is rel-
atively scarce, we rely on feature extraction from an existing neural network to the task 
at hand. As the base, we use a pre-trained version of the ResNet-50 network (He et al., 
2016) trained on the ImageNet collection (Deng et al., 2009). The network operates on 
RGB colour images after these have all been resized to 224 x 224 pixels. 

 
Fig. 3. The ResNet-based network for classifying potsherds by their appearance. The ResNet part 
of the network is frozen, and only the parts operating on the feature vectors are being trained. We 
use a significant dropout to reduce the overfitting that may occur with large feature vectors. 

In order to utilise features at various levels of abstraction, we combine features from 
multiple levels of depth: while the lower levels encode colour and texture, the top layers 
encode complex patterns that are more related to the semantic content of the image. 
ResNet-50 is composed of a sequence of blocks, and we concatenate the features from 
blocks 2-5 in order to obtain one large feature vector, as can be seen in Figure 4. The 
feature maps from each block is a multidimensional map with a varying number of 
channels. Since we want to be position invariant, before this concatenation, we elimi-
nate the spatial information by performing average pooling over the entire spatial extent 
of each channel, resulting in one vector of features from each block. To account for the 
different statistics of the features, we normalise each feature (in the concatenated vec-
tor) separately to have a mean of 0 and a variance of 1 on the training set. 

The concatenated vector contains 3840 features. To this vector, we apply a dropout 
regularisation, a fully connected layer projecting to 1024 features, followed by a ReLU 
activation, a second dropout, and a projection to the number of classes followed by a 
softmax operator. Both dropout layers employ a high level of drop (80%) in order to 
increase robustness and decrease reliance on specific features. During training, we fix 
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the parameters of the ResNet layers that extract the features and only train the parame-
ters of the fully connected layers on top of the features. 

To fit the images to the expected input dimensions of the ResNet model, we scale 
them to 224 pixels (along the shorter axis) and crop them (equally on each side of the 
longer axis) to obtain a 224x224 image. To train our network to work with varying 
amounts of decorations/background inside the image, we enrich the original image da-
taset by adding augmented versions of each image: for each image, we scale it to four 
different sizes; on each scaled image, we create three flipped versions (unflipped, hor-
izontally flipped and vertically flipped); we crop all of those images, leaving just the 
centre square. Thus, from each image, we create 12 images that can go into the neural 
network, increasing the dataset size from around 8000 images to about 100,000 images. 

In our initial experiments, varying illumination was the most challenging factor in 
identification. To solve this lack of robustness, we simulate different white balance re-
sults and various brightness and contrast adjustments. This was applied during the gen-
eration of the training dataset by multiplying the luminosity (“brightness”) of all the 
pixels within each image, using a randomised factor to simulate different lighting con-
ditions. To compensate for different white balance setups, we additionally apply a sim-
ilar random multiplicative factor to each channel in the image; that is, we multiply each 
of the red/green/blue channels, by a separate random constant factor, to change the ratio 
between colours in the image. 

In addition, the imaging conditioned (background, ruler) varied considerably be-
tween the collection campaigns and the other sources, leading to an inherent bias (as 
each campaign had different kinds of pottery), as can be seen in Figure 5. To overcome 
this, we extract the foreground of the training images automatically. During testing, the 
GrabCut algorithm (Rother et al., 2004) was used to extract the relevant image part. 

   
Fig. 4. Three typical images captured during the photography campaign. 

4 Loss Reweighting 

Most common techniques for combating low-classification accuracy introduce 
weights on the loss expressions of individual samples, with higher weights assigned to 
inputs from classes with low accuracy. While the rationale is clear, there is no guarantee 
that it will make the classifier learn anything “meaningful” about the classes. To miti-
gate this issue, we employ a new loss function, dubbed CareLoss, which weights sam-
ples not just by their true label but also by their predicted label. For each sample, the 
loss has one weight by the true label (assigning higher weights for classes with low 
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accuracy) and another weight by the predicted label, assigning higher weights to mis-
classifications. The second weight is aimed at tackling an increase in accuracy, which 
is accompanied by an increase in the number of false positives. 

As it turns out, the new loss function not only increases the uniformity of the accu-
racy among the classes but also increases the overall performance on the test set. We 
attribute this to the fact that during testing, the same types of confusions that occur in 
the training data are likely to occur, only more frequently. This loss function was suc-
cessfully applied to both appearance-based and shape-based identification. 

5 Experiments 

5.1 Shape-based identification 

The development of the reference tool was planned as a two-phase process, where 
we first develop the classification algorithm on one dataset and then validate it on mul-
tiple other datasets for different types of pottery. Separation of datasets enables avoid-
ing overfitting due to multiple hypotheses testing, thus enabling better confidence in 
our results. The dataset used in the first phase is made of 435 sketches of Terra Sigillata 
Italica (TSI), grouped into 65 standardised top-level classes, as defined in the Conspec-
tus catalogue (Ettlinger et al., 2002). From these drawings, we generated class-balanced 
synthetic data, while reserving the outlines of the real-world sherds, to be used exclu-
sively for testing. The real-world outlines were extracted from images collected across 
Europe using a dedicated mobile app. 

To obtain the outlines, the user taps with their finger on a touch screen, marking the 
points of the outline and annotating these with side information (inner or outer outline). 
The manual annotations result in coarse polygons, thus making the dataset more chal-
lenging due to lack of fine details, and inaccuracies resulting from a touch-based input. 
The real-world test dataset contains 240 extracted outlines from 29 different top-level 
classes. Nevertheless, we train our classifier on all 65 classes. When training our model, 
OutlineNet’s real-world top-2 classification rate was 1.5 times the top-1 classification 
rate. This indicates that the classes are easily confused. Ablation experiments showed 
that separation of inner and outer outlines, angle information, group-hot encoding, and 
adaptive sampling each add to the overall top-K performance, even when changes in 
the top-1 accuracy were small.  Similarly, augmentation also contributed to the top-K 
result, without significant impact on the top-1 accuracy. A plausible reason is that all 
these modifications to the model and training, are less meaningful for samples that are 
carefully collected and informative, and mainly impact the accuracy of the lower-qual-
ity samples. 

This befits its use as a reference tool for domain experts who would be happy to 
consider a short list of results as part of the mandatory expert verification but would be 
discouraged to use a tool that often completely omits the correct result. 

Following the first phase development on the Terra Sigillata Italica (TSI) dataset, 
we obtained three additional datasets. The first was an additional TSI dataset, collected 
with the aid of the app. It includes the outlines of a further 96 actual sherds not included 
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in our previous dataset of real data and belonging to 11 classes previously unseen. Two 
additional datasets, Terra Sigillata Hispanica (TSH) and Terra Sigillata South Gaulish 
(TSSG) were added. These also belong to Terra Sigillata pottery but has different geo-
graphical origins, manufacturers, set of classes, and typology. (There is no intersection 
in classes between TSI, TSH, and TSSG.) 

On the new TSI test set, using the same model from phase I (without any retrain-
ing/adaptations), the accuracy values obtained are even better than the phase I dataset. 
Additionally, for the datasets using new typologies, similar or better accuracies (meas-
ured relative to the number of classes) were obtained using exactly the same training 
method, without any adaptations.  

5.2 Decoration-based identification 

Experiments with decoration-based identification were carried out mainly with Ma-
jolica of Montelupo pottery, also in a two-stage process. In the first stage, the model 
was trained on a dataset, and while demonstrating promising results, evaluations made 
using real potsherds captured in varying conditions (and not using pictures from the 
dataset), demonstrated poor robustness of the classification process. 

After a thorough ablation process, and as mentioned in section 4, the key differenti-
ators in the classification results were found to be varying backgrounds and varying 
lighting conditions. While varying lighting conditions could be simulated during train-
ing (by augmenting the image), removing the background and ruler from the image (as 
these are correlated to specific classes thus generating a bias) was more challenging. 
After integrating an interactive extraction algorithm (GrabCut) to be used in the app, 
going back to extract the background from thousands of images in the dataset was not 
a reasonable effort. 

After experimenting with multiple options, we developed a heuristic to fill the inter-
active role that is traditionally required in GrabCut. First, we collect values along the 
edges of the image (Figure 6(b)), and then compute the colour-distance of all pixels in 
the image from the nearest edge colour (Figure 6(c)). Applying dynamic thresholding 
to obtain two islands (Figure 6(d)), we can now remove the ruler island via simple 
corner symmetry detection, to obtain an input mask for GrabCut. 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 5. The process to generate the masks for GrabCut. (a) The input image, (b) the edge pixels 
we sample for their colours, (c) a measure of the colour distance of each pixel from the nearest 
edge pixel, (d) a threshold to obtain two white patches (sherd and ruler). 
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This heuristic for background extraction worked well for most, but not all images. 
Nevertheless, retraining the model with the background removed automatically and 
lighting augmentation, produced more robust results significantly in the face of varying 
photography conditions. 

6 Results 

6.1 Shape-based identification 

The evaluation of the shape-based identification was done both on the captured real-
world data (used in the testing phase), and also in an end-to-end fashion, with users 
capturing new photos, annotating them, and using the classification algorithm. 

 
Fig. 6. The process of obtaining the outlines for the classification is described in the above figure. 
We start with an input picture which is captured using a smartphone. The image is then cropped 
and aligned to align the rotation axis with the vertical axis of the image. Afterwards, the scale is 
extracted by marking the physical distance between two points on the ruler. Finally, the inner and 
outer outlines are annotated by tapping on the screen to mark the outline points. The resulting 
shape is then classified by our model. 

The end-to-end evaluation was done using 381 different pictures of sherds of TSI, 
taken from 42 (out of 65) different types. Most images were captured with a smartphone 
or a tablet (as would be the case on the field), with only 25 pictures using a regular 
camera. The average mobile-app top-5 accuracy is 50.8%, and the top-1 accuracy is 
18.9%. This is slightly lower than 22.0% top-1 accuracy and 57.9% top-5 accuracy 
reported in our evaluation, but these results are still good and usable for archaeologists. 

The results reported on the testing data, evaluated in a broader set of images, across 
multiple datasets, are reported below: 

 

Accuracy TSI (#1) TSI (#2) TSH TSSG 

Top-1 22.0% 30.5% 27.6% 14.5% 
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Top-2 32.7% 43.6% 40.6% 25.0% 

Top-5 57.9% 62.8% 58.4% 41.9% 

6.2 Decoration-based identification 

 
Fig. 7. The process of obtaining the potsherd images for the classification is described in the 
above figure. We start with an input picture which is captured using a smartphone. The image is 
then cropped and aligned to remove other potsherds that might be visible in the same image. 
Afterwards, white balance is performed to correct the image colours, and finally, interactive 
background extraction is performed using the (interactive) GrabCut algorithm. 

The evaluation of the decoration identification method was done on both the mobile 
and desktop versions, including testing of different lighting conditions (as these were a 
key factor in the classification results for the first version). The results for the classifi-
cation are reported below: 

 

Accuracy Mobile 
Performance 

Desktop 
Performance 

Top-1 55.2% 51.0% 

Top-5 83.8% 77.2% 
 

   
The analysis was conducted on 49 different genres (out of 84) with more than 700 

images taken on mobile devices (phones and tablets) and more than 120 taken with a 
camera and classified in the desktop app. 

Further results show that the accuracy of appearance-based recognition, on both mo-
bile devices and desktop, is not related to the light type, being approximately equal with 
artificial and natural light. 
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7 Discuss 

Several lessons were learned. 
A first key lesson was that ArchAIDE has demonstrated the potential of using auto-

mated image recognition to identify archaeological pottery, even if at first glance, the 
results may appear unbalanced in comparison with the large-scale data capturing and 
the functionality of the algorithms.  ArchAIDE has implemented original techniques 
for data generation and augmentation, for the weighting of samples and for line-based 
shape recognition. These are directed towards specific challenges in the classification 
of highly complex data such as pottery fragments, which include 3D and 2D infor-
mation and multiple factors that complicate a homogeneous recording. Although the 
classification validation results might not look particularly striking in comparison with 
other artificial intelligence application in archaeology, these are impressive given the 
difficulty of the task at hand and represent a significant advance on the road to auto-
mated pottery classification. The achieved level of accuracy has been calculated on the 
full number of types or decorations known for a pottery class, which also contain very 
uncommon types or decorations. On the contrary, the level of satisfaction of the archae-
ologists who used the application on the field is higher than the raw number of the 
accuracy results. This is because the system can recognise all the more common types 
archaeologists found.  In the case of Majolica of Montelupo, for example, the algorithm 
identifies with difficulty only the decorations realised in a few specimens for a richer 
client. These are not found in archaeological excavations, they are conserved in a mu-
seum, but their decoration is listed within catalogues. In this case, 83% of the accuracy 
of appearance-based recognition represent the full totality of archaeological finds. 
Moreover, ArchAIDE has also shown that it may be used for a variety of pottery types 
if the necessary comparative data can be gathered (and potentially other artefact types 
as well), as virtually all pottery identification relies on recognition based on either the 
shape or decorative elements of a vessel (or both).  

The second lesson was the amount of training data necessary for the image recogni-
tion algorithm to return useful results. In our case, multiple photo campaigns were con-
ducted across the life of the project to produce a complete dataset of images for all the 
ceramic classes under study. The photo campaigns aimed to provide a sufficient number 
of images to train the algorithms for both the appearance-based (Majolica of Montelupo 
and Majolica from Barcelona) and the shape-based image recognition neural network 
(Roman amphorae, Terra Sigillata Italica, Hispanica and South Gaulish). As not all 
types were stored in a single site, it was necessary to access multiple resources involv-
ing more than 30 different institutions in Italy, Spain, and Austria. To train the shape-
based neural network was essential to take diagnostic photos of sherd profiles, so de-
tailed guidelines were prepared for use by the consortium partners and project associ-
ates. Finding, classifying, photographing and creating digital storage for the necessary 
sherds was very time-consuming, as images of at least ten different sherds for every 
type were needed to provide enough training information for the algorithm. It became 
apparent that not every top-level type and sub-type could be represented. In some in-
stances, this was because the type was rare, or because sherds of different types were 
mixed when stored, and it was challenging to locate them. This task is a challenge 



15 

across all forms of pottery studies, not just for a digital application like ArchAIDE. 
Overall, 3498 sherds were photographed for training the shape-based recognition 
model. For appearance-based recognition, using every image where the decoration was 
visible, it was possible to collect photos taken for different purposes, e.g. graduate or 
PhD theses, archaeological excavations, etc. In these cases, photos were collected, clas-
sified, tagged, and stored based on the genres of decoration to which they belonged. A 
larger corpus of pictures was collected through photo campaigns in Italy and Spain. A 
total of 13,676 photos were obtained. This resulted in far more time and effort spent on 
digitising the paper catalogues and undertaking the enormous photo campaigns to cap-
ture the necessary primary data. This effort helped partners understand the importance 
of working together if the humanities wish to take advantage of the many machine-
learning methods now available. Datasets are small, fragmented, and rarely optimised 
for machine-learning applications. 

The third lesson was that it was not reasonable to design an image recognition system 
that could identify pottery using both decoration-based and shape-based characteristics. 
It took considerable effort and discussion, but it became clear that it was necessary to 
separate them, developing two different algorithms. From an archaeological point of 
view, this does not represent a problem. If needed, ceramic classes for which both shape 
data and appearance data are available can be recognised using the two different clas-
sifiers in order to obtain more detailed results. Moreover, the project represents a proof 
of concept, and new experiments could be conducted with other ceramic classes. This 
choice allowed a creative outcome, as separating shape-based recognition allowed the 
3D models to be used to create desperately needed training data. By “breaking” the 
models into “virtual sherds” and using the sherds to train the shape-based image recog-
nition algorithm, the accuracy rate was increased to an acceptable level. 

Finally, archaeological classification is not made purely based on the shape or dec-
oration. Additional domain expertise, which is not currently captured in our scheme, 
enables the archaeologist to filter out some classes based on the location of the findings, 
other findings in the excavation site, and various other considerations. This by itself is 
not a technological limitation, as this sort of filtering can be implemented on top of the 
class ranking predicted by our reference tool. However, it means that the gap in the 
ability to distinguish potsherds based on their shape or decoration, vs human archaeol-
ogists, is probably much lower than the error rates of our method. 

Another reason to believe that the error rates are probably inflated is that the label-
ling of individual potsherds is gathered from accepted labelling that is documented in 
catalogues and established collections. However, in some cases, the exact provenance 
of the assignment has been lost, and the ground truth classification is likely to contain 
mistakes. 

To tackle a real-world cross-modality matching problem that presents a large set of 
compounding challenges, we conceived of multiple innovations, including the design 
of novel data generation techniques, a new shape representation scheme, and an original 
reweighting method. Our work also provides—beyond various technical novelties and 
a working application—a case study of deep learning applied to real-world data in a 
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situation where most of the conventional assumptions are grossly violated, and the re-
ality gap (“sim2real domain shift”) is wide, and the simulation must be done with sig-
nificant care. 

The method described in this paper is already deployed in the field as the main part 
of an archaeological reference tool. The source code, models and data are already made 
public.   

Acknowledgements. This research was supported by the EU Horizon 2020 grant agree-
ment No. 693548. We thank all the members of the ArchAIDE (archaide.eu) team. 

 

References 
 
Anichini, F., Banterle, F., Buxeda, I Garrigós J., Callieri, M., Dershowitz, N, Diaz 

Lucendo, D., Evans, T., Gattiglia, G., Gualandi, M.L, Hervas, M.A., Itkin, B., Madrid 
I Fernandez, M., Miguel Gascón, E., Remmy, M., Richards, J., Scopigno, R., Vila, L., 
Wolf, L., Wright, H., Zallocco, M.: Developing the ArchAIDE application: A digital 
workflow for identifying, organising and sharing archaeological pottery using auto-
mated image recognition, Internet Archaeology 52. https://doi.org/10.11141/ia.52.7 
(2020) 

Banterle, F., Itkin, B, Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N. and 
Scopigno, R.: VASESKETCH: Automatic 3D representation of pottery from paper cat-
alog drawings. In: 14th IAPR International Conference on Document Analysis and 
Recognition (ICDAR), 9-15 Nov 2017, Kyoto, Japan. 683–90. 
https://doi.org/10.1109/ICDAR.2017.394 (2017). 

Barreau, J-B, Nicolas, T., Bruniaux, G., Petit, E., Petit, Q., Gaugne, R., Gouranton, 
V.: Ceramics fragments digitisation by photogrammetry, reconstructions and applica-
tions. In: International Conference on Cultural Heritage, EuroMed, Lemessos, Cyprus 
(2014). 

Calin, N., Popescu, S., Popescu, D., Mateescu, R.: Using reverse engineering in ar-
chaeology: Ceramic pottery reconstruction. Journal of Automation, Mobile Robotics 
and Intelligent Systems 6(2), 55–59 (2012). 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. ImageNet: A large-scale 
hierarchical image database. In IEEE Conference on Computer Vision and Pattern 
Recognition, Miami, FL, pp. 248-255, doi: 10.1109/CVPR.2009.5206848 (2009). 

Ettlinger, E., Römisch-Germanische Kommission Des Deutschen Archäologischen 
Instituts zu Frankfurt: Conspectus formarum terrae sigillatae Italico modo confectae. 
Habelt, Bonn (2002). 

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
770-778 (2016).  

Hua, B.S., Tran, M. K., Yeung, S.K.: Pointwise convolutional neural networks. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
984-993 (2018).  



17 

Itkin, B., Wolf, L., Dershowitz, N.: Computational ceramicology. arXiv: 
1911.09960 (2019). 

Kampel M., Sablatnig R.: 3D data retrieval of archaeological pottery. In: Zha H., 
Pan Z., Thwaites H., Addison A.C., Forte M. (eds) Interactive Technologies and Soci-
otechnical Systems. VSMM 2006. Lecture Notes in Computer Science, vol 4270. 
Springer, Berlin, pp. 387–395 (2006). 

Karasik, A.: A complete, automatic procedure for pottery documentation and analy-
sis. In: Proceedings of the IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition - Workshops, San Francisco, CA, pp. 29-34, doi: 
10.1109/CVPRW.2010.5543563 (2010). 

van der Maaten, L.J.P., Boon, P.J., Paijmans, J.J., Lange, A.G., Postma, E.O.: Com-
puter vision and machine learning for archaeology. In J.T. Clark and M. Hagemeister 
(eds.) Digital Discovery. Exploring New Frontiers in Human Heritage. Computer Ap-
plications and Quantitative Methods in Archaeology. Archaeolingua, Budapest. 
https://lvdmaaten.github.io/publications/papers/CAA_2006.pdf (2007).  

Malik, J.: Interpreting line drawings of curved objects. International Journal of Com-
puter Vision 1(1), 73–103 (1987). 

Orengo, H.A., Garcia-Molsosa, A.: A brave new world for archaeological survey: 
automated machine learning-based potsherd detection using high-resolution drone im-
agery. Journal of Archaeological Science, 112: 105013 (2019). 

Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: Deep learning on point sets 
for 3D classification and segmentation. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Honolulu, HI, pp. 77-85, doi: 
10.1109/CVPR.2017.16 (2017). 

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning 
on point sets in a metric space. In: Advances in Neural Information Processing Systems, 
pp. 5099-5108 (2017a).  

Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive foreground extrac-
tion using iterated graph cuts. In: ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). 
Association for Computing Machinery, New York, NY, USA, pp. 309–314. 
DOI:https://doi.org/10.1145/1186562.1015720 (2004). 

Tian, C., Masry, M.A., Lipson, H.: Physical sketching: Reconstruction and analysis 
of 3D objects from freehand sketches. Computer-Aided Design, 41(3), 147–158, 
doi:10.1016/j.cad.2009.02.002 (2009). 

Tyukin, I., Sofeikov, K., Levesley, J., Gorban, A.N., Allison, P., Cooper, N.J. Ex-
ploring automated pottery identification [Arch-I-Scan], Internet Archaeology, 50. 
https://doi.org/10.11141/ia.50.11 (2018).  

Wright, H., Gattiglia, G.: ArchAIDE: Archaeological automatic interpretation and 
documentation of ceramics. In: Proceedings of the Workshop on Cultural Informatics 
Research and Applications, colocated with the International Conference on Digital Her-
itage, Nicosia, Cyprus, November 2018: 60-65 (2018).  

Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., Singh, K.: True2Form: 
3D curve networks from 2D sketches via selective regularisation. ACM Transactions 
on Graphics 33(4), Article 131. DOI:https://doi.org/10.1145/2601097.2601128 (2014). 



18 

Yingze, W., Chen, Y., Liu, J., Tang, X.: 3D reconstruction of curved objects from 
single 2D line drawings. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, Miami, FL, pp. 1834-1841, doi: 
10.1109/CVPR.2009.5206841 (2009). 

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., Smola, 
A.J.: Deep sets. In: Neural Information Processing Systems, pp. 3394–3404 (2017). 

 


