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Abstract

Field archeologists are called upon to identify potsherds, for
which they rely on their professional experience and on ref-
erence works. We have developed a recognition method start-
ing from images captured on site, which relies on the shape of
the sherd’s fracture outline. The method sets up a new target
for deep-learning, integrating information from points along
inner and outer surfaces to learn about shapes. Training the
classifiers required tackling multiple challenges that arose on
account of our working with real-world archeological data:
paucity of labeled data; extreme imbalance between instances
of different categories; and the need to avoid neglecting rare
classes and to take note of minute distinguishing features of
some classes. The scarcity of training data was overcome by
using synthetically-produced virtual potsherds and by em-
ploying multiple data-augmentation techniques. A novel form
of training loss allowed us to overcome classification prob-
lems caused by under-populated classes and inhomogeneous
distribution of discriminative features.

1 Introduction
Pottery is the most common type of excavated artifact. Its
identification permits the understanding of the chronology,
function, and importance of an archeological site. Identifica-
tion is based on the archeologist’s domain knowledge and is
usually achieved by matching unearthed potsherds to exem-
plars recorded in catalogs of semi-standardized archeolog-
ical typologies. These catalogs typically contain—for each
type—a standardized sketch of the complete vessel and oc-
casionally a few photos of excavated instances.

In the most common case, the pottery is undecorated, ei-
ther because it was manufactured that way or because any
decorations have been lost to the ravages of time. We tackle
the task of classifying the shape of a potsherd based on a
single image of it, as depicted in Fig 1(a). Our prior at-
tempts to apply standard image-based classification to un-
decorated pottery produced poor results, thus we turned to
identification relying on the geometry of the sherd. Since
our work is aimed toward aiding archaeologists in the field,
we forwent complex methods of extracting 3D geometry—
as these are impractical in field conditions, and relied instead
on the 2D outline of the sherd’s fracture surface as the sole
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Figure 1: Illustration of the archeological data. (a) An im-
age of a sherd, positioned to show the fracture surface, with a
reference scale ruler in the background. (b) A traced fracture
outline, overlaid on the source image: green for the outer
profile; red for the inner profile; black is for break lines that
are ignored by the algorithm. (c) An archeological sketch as
it appears in a catalog. One or more sketches define a class
of pottery. (d) A 3D computer graphics vessel obtained by
rotating the catalog sketch. (e) A synthetic sherd obtained
by breaking the 3D vessel. (f) A fracture outline obtained
directly from the sketch, skipping the 3D reconstruction and
shattering processes.

source of shape information. After marking the outline in a
semi-automatic way and determining the scale using a ruler
(Fig 1(b)), our AI-powered mobile app supplies the identi-
fication in the form of a list of archaeological types, ranked
by their computed relevance to the photographed potsherd.

A major challenge in training the AI tool is that one can-
not obtain sufficient training samples that are similar to those
used to test or those evaluated in the field, as only a handful
of sherds per class have ever been digitized. Furthermore,
even if all extant sherds were to be digitized, the variabil-
ity in the dataset would still cover only a small fraction of
the space of possible sherds. Instead, we define each class
by one or more 2D sketches of the profile of the complete
vessel; see Fig 1(c). Note that the catalog sketch describes
the geometry of the profile of the entire vessel, while the
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Figure 2: Illustration of the mobile app workflow. (a) The
user captures an image of the potsherd. The ruler is placed
on a table and the sherd is held in a position such that the
scales approximately match. (b) The user employs an in-
tuitive interface to semi-automatically mark the outline of
the potsherd. (c) The app applies our method to search for
matching pottery from the catalog entries.

excavated sherd is a relatively small piece of the original,
containing very limited information regarding the shape as a
whole. This poses a serious challenge, as do the accidental
shape features introduced when it shattered.

The outline of the fracture is a consequence of both the
geometry of the original vessel and of the random breakage
incident. On the dataset side, we could have reconstructed
the 3D pottery by rotating the profile of the vessel (Fig 1(d))
and then “shattered” it in order to obtain synthetic sherds
(Fig 1(e)). (Cf. (Banterle et al. 2017).) However, to avoid
the associated computation overhead of 3D reconstruction,
we propose a method to obtain the synthetic fracture sur-
face (Fig 1(f)) directly from the 2D catalog sketch, and even
on-the-fly during training. To identify outlines, we train a
network that supports the unique characteristics of archeo-
logical outlines, including the need to distinguish between
the inner and outer surfaces of the sherd, the significance of
the order of points along the outline, the inherent noise in the
tracing process, and the need to compensate for sub-optimal
data acquisition processes.

As a real-world application, we were compelled to over-
come a large set of compounding challenges. These include:
(1) the lack of real-world data to train on; (2) a partial view
of the object that is obtained by its random breakage, which
presents large variability; (3) a large portion of the sherds,
among both the synthetic training samples and the captured
test samples, are almost completely non-informative; (4)
very similar classes, making their distinction more challeng-
ing and also causing ambiguity in the ground-truth classifi-
cation of the test data; and (5) a noisy acquisition process,
prone to errors when extracting the outline and determining
the scale from the real-world images.

In addition, to be useful for experts, there is an acute need

to optimize to fit considerations beyond accuracy. For exam-
ple, most neural network losses would be prone to sacrificing
challenging classes so as to improve average accuracy across
all classes. However, a reference tool such as ours delivers
the most value when the identification is less obvious. To
tackle the heterogeneous and unbalanced nature of the data,
we train using a novel weighting technique that considers
both the error of each ground truth class and false positives
in each class.

Our results demonstrate a relatively high recognition rate
in the face of these many challenges. To ensure the validity
of our results, development was carried out in two phases.
First, we developed the method on one dataset of potsherds
of one specific family; in the second phase, evaluation was
performed based on images of sherds captured with a ded-
icated mobile app. The app is already being used in the
field (Anichini et al. 2020) and involves a simple capturing
process, as depicted in Fig 2.

The evaluation of the second phase was done on the same
ceramic family used for developing the method, as well as on
three unseen families, using the same method, with exactly
the same training pipeline and (hyper-) parameters. With the
Phase I dataset, out of 65 different classes, we are able to
identify almost 74% within the top-10 results. With three
additional datasets received after the completion of the re-
search phase, and without any tweaking of the pipeline, we
reached 81%, 68%, and 60% top-10 accuracy for 65, 98, and
94 classes, respectively. Thus, our network can serve as the
basis of a reliable reference tool for the use of archeologists
in the field, one that significantly narrows down the list of
relevant classes to be considered for each unearthed sherd.

2 Related work
Automated pottery classification. In the absence of or-
ganic material to allow for carbon dating, pottery classifi-
cation provides an indispensable tool for dating excavated
objects. Much of the work on automated identification of
sherds is based on 3D scanning or multi-view reconstruction
technologies (Kampel and Sablatnig 2006; Karasik 2010;
Calin et al. 2012; Barreau et al. 2014). However, the adop-
tion of such methods is very limited due to the practi-
cal difficulties of 3D acquisition in the field. In addition,
the challenges of analyzing 3D shapes have only been par-
tially solved. The automatic analysis of profiles of potsherds
has been studied using classical computer vision methods,
such as the Hough transform (Durham, Lewis, and Shennan
1995), various morphological features (Karasik and Smi-
lansky 2011; Lucena et al. 2014), and curvature descrip-
tions (Gilboa et al. 2004). None of these is robust enough to
be applied automatically on a varied set of excavated sherds,
and much of it has only been applied to complete profiles. As
mentioned, appearance-based methods (Makridis and Daras
2013; Poblome, Bes, and Piccoli 2013) are not relevant for
the kind of sherds under consideration here.
Generating potsherds from profile drawings. Recon-
struction from line drawing or sketches is a classical prob-
lem (e.g. Malik (1987); Tian, Masry, and Lipson (2009);
Wang et al. (2009); Xu et al. (2014)). Architects, like
archeologists, use semi-structured sketches, which can aid



in reconstruction; see (Yin, Wonka, and Razdan 2009). A
pipeline for extracting synthetic sherds based on catalog
sketches was presented in (Banterle et al. 2017), where it
was suggested to reconstruct the 3D model of a class by
rotating the inner and outer profiles. To make it computa-
tionally feasible to generate a model from an outline with
thousands of points, outline-simplification algorithms were
used to narrow down the number of points. Such simplifi-
cations are detrimental, however, since some pottery present
delicate details, and the discriminative parts are sometimes
only 1–2 cm long. Since the size of the rotational model is
quadratic in the number of profile points (typically several
thousand), without simplification, the generation of millions
of training samples is infeasible.
Sim2Real. We bridge the large semantic gap between
sketches and excavated potsherds by training on synthetic
data. Simulation to real world (sim2real) is used to over-
come the sample complexity of reinforcement learning (RL)
methods, e.g., (Andrychowicz et al. 2018; Tan et al. 2018;
Peng et al. 2018). Computer graphics animations and images
are used extensively to train and evaluate deep optical flow
networks (Fischer et al. 2015), detect text (Gupta, Vedaldi,
and Zisserman 2016) or object instances (Hodan et al. 2019)
in images, understand indoor scenes (Handa et al. 2016),
and estimate the pose of humans (Varol et al. 2017) or ob-
jects (Tremblay et al. 2018), among other tasks.
PointNets and similar architectures. The architecture of
our classifier relates to an emerging body of work, encoding
inputs that are given as sets (Qi et al. 2017a; Zaheer et al.
2017). Similarly to PointNet (Qi et al. 2017a), it employs
pooling in order to obtain a representation that is invariant
to the order of the elements, following a local computation
at each element. It has previously been shown in (Qi et al.
2017a; Zaheer et al. 2017) that, under mild conditions, such
pooling is the only way to achieve this invariance. Other con-
tributions in the area of shape classification include Point-
Net++ (Qi et al. 2017b), which employs local spatial rela-
tions, and PointCNN (Hua, Tran, and Yeung 2018), which
applies spatial information in order to group the points prior
to aligning them spatially to a grid where a convolution can
be applied. While previous work mostly focused on the iden-
tification of 3D point clouds, we encode a 2D outline and
benefit from information that arises from the order of points
along the outline. In addition, projected profiles of 3D ob-
jects have an inner profile and an outer profile, and the sep-
aration between the two carries valuable information.
Data reweighting schemes. Boosting techniques often iter-
atively weight harder samples, which are misclassified dur-
ing training, more than other samples (Freund and Schapire
1997). In detection, such hard negatives are of great impor-
tance (Viola and Jones 2001), and, as suggested more re-
cently by the focal loss method of (Lin et al. 2020), assign-
ing different weights to the loss of different examples can
significantly improve training. Another common reason for
introducing weights into the loss function is class imbalance
of the available samples, and it is common to assign higher
weights to less frequent classes. The reweighting scheme
that we propose here addresses both the difficulty of cor-
rectly classifying a sample from a given class, as well as the

frequency of the current classification of a sample. While
the classification difficulty component is somewhat similar
to other methods, the other component is—as far as we can
ascertain—completely novel.

Our reweighting scheme improves, not just the top-1 re-
sult, but also the top-k and is, accordingly, related to re-
cent methods in this field. While it has been proven that
the softmax-based cross entropy loss is optimal for every
k under i.i.d. sampling and infinite data assumptions (Lapin,
Hein, and Schiele 2018), these assumptions do not hold in
our case in which there is a significant domain shift between
train and test data. Recently, a method was proposed to over-
come the infinite data assumption by employing a smoothed
variant of a novel top-k SVM formulation (Berrada, Zis-
serman, and Kumar 2018). This method, however, does
not account for domain shift. Unsupervised domain adap-
tion (Mansour, Mohri, and Rostamizadeh 2009) techniques
are designed to overcome such shifts. However, these meth-
ods, including the recent adversarial-training-based ones fol-
lowing (Ganin et al. 2016), are likewise unsuitable for our
case since we do not possess a significant unsupervised set
from the target domain.

3 Method
To generate synthetic training data using the sketches ex-
tracted from the catalogs, our process follows the following
four steps: (I) Extraction of sketch lines from catalogs; (II)
efficient generation of synthetic fracture faces; (III) point
sampling; (IV) data augmentation. Performing steps II–IV
effectively is non-trivial; see supplementary.

3.1 Network architecture
Our OutlineNet is based on PointNet with several improve-
ments. Unlike PointCNN and PointNet++, we do not attempt
to cluster points together dynamically, but rather use the nat-
ural ordering of points along the outline to enrich the infor-
mation at each point with more than just its spatial location.

In PointNet, the vector of each point goes through a se-
ries of 1D convolutions to generate a per-point feature. The
network then applies a max-pooling layer to obtain a fixed-
size feature vector, in a manner agnostic of the order of input
points. We add two important items of information to each
point: (1) annotation of inside/outside; (2) the angle of the
outline at that point, which gives a rotation-invariant repre-
sentation of the context around the point. Instead of repre-
senting this information as a quadruple (x, y, side, angle),
which we found empirically to be ineffective, we suggest in
what follows a novel approach, changing both the architec-
ture and data representation throughout the network.
Group-hot encoding for side information. The side infor-
mation is a categorical value; as such, it would typically be
represented using a one-hot encoding. However, using one-
hot encoding with inputs taking continuous values can cause
problems when it differs significantly from the rest of the
values. While the network can theoretically learn the proper
weights to compensate for any scale, in practice this does not
always work. Instead, we suggest the following approach for
combining categorical and continuous values—an approach



we call group-hot encoding. To represent d continuous val-
ues coupled with one categorical value with c options, create
a vector v ∈ Rcd, representing c groups of d values. To rep-
resent group i, zero out the values of all but the ith group and
store the d values in that group. For our two-value categor-
ical information (inside/outside), the (x, y) location values
would be represented as (xin, yin, xout, yout), where only one
pair is nonzero each time.
Multi-feature and angle information. To encode the spa-
tial context for each point, previous works construct hierar-
chies between points (Qi et al. 2017b; Hua, Tran, and Yeung
2018). In our case, the points are ordered, and we instead en-
code the immediate context around each point using angular
information by considering, for every point, the cosine and
sine of the angle formed at this point along the outline (en-
coding angle information directly suffers from the disconti-
nuity at 0 and 2π). Angular information is secondary to the
spatial information, and employing representations such as
(xin, yin, sin θin, cos θin, xout, yout, sin θout, cos θout) showed
little to no benefit in network performance. Instead, we em-
ploy a multi-pathway architecture to enable learning sepa-
rate features for spatial- and angular-information.

This architecture (Fig 3) begins with two branches of mul-
tilayer perceptrons (MLPs), one for angles and one for posi-
tions. Both branches have the same shape: four hidden lay-
ers, with 64, 128, 128, 256 units, respectively. The outputs
of these branches are then concatenated (per point) and fed
into two perceptron layers of 512 and 1024 hidden units,
respectively, to obtain a feature vector of length 1024 per
point. Max pooling is then performed over all points to ob-
tain a global feature vector of the same size. Going through
an additional MLP (512, 256 and c hidden units) and a final
softmax layer, we obtain the output scores for the c classes.
All MLPs, except for the one producing the output score,
employ ReLU activations. The MLP after max pooling em-
ploys a dropout with a rate of 0.7 after each layer, except
for the last one. A batch size of 128 and an Adam opti-
mizer (Kingma and Ba 2014) with an initial learning rate
of 1× 10−6 are used for training.

3.2 Loss reweighting
Most common techniques for combating low class-accuracy
introduce weights on the loss expressions of individual sam-
ples, with higher weights assigned to inputs low-accuracy
classes. While the rationale is clear, there is no actual guar-
antee that it will cause the classifier to learn anything “mean-
ingful” about these classes. For example, one way to push
the accuracy of a given class upwards is to increase the bias
of the logit to this class. While this uniformly increases the
chance of all inputs to be classified in the class (including
correct inputs, thus increasing the accuracy), this new clas-
sifier does not contain any new information compared to
the previous one. This phenomenon, which can be identi-
fied by an accuracy increase accompanied by an increase in
the number of false positives that are predicted to be in this
class, was encountered numerous times during our research.

To mitigate this issue, we propose a new loss function,
one that weights samples not just by their true label but also
by predicted label. For each sample, the loss has one weight

by the true label (assigning higher weights for classes with
low accuracy) and another weight by the predicted label, as-
signing higher weights to misclassifications into classes with
higher false-positive rates. The second weight is aimed at
tackling an increase in class accuracy, accompanied by an
increase in the number of misclassifications into the same
class. As it turns out, the proposed new loss not only in-
creases the uniformity of the accuracy among the classes,
but also increases the overall performance on the test set.
We attribute this to the fact that, during testing, the same
types of confusions that occur in the training data are likely
to occur, only more frequently.

Let X = (x1, x2, . . . , xn) be the set of inputs to a
specific batch, and let Y = (y1, y2, . . . , yn) be their re-
spective labels, where yi ∈ {1, 2, . . . , c}. Let f(xi) =
(f1(xi), . . . , f

c(xi)) be the probability vector predicted by
the model f , and let ŷi = argmax f(xi) be the class pre-
dicted by the network for input sample xi. As the under-
lying loss, we employ the conventional cross entropy loss
`i(f) = − log fyi(xi) for classifier f and input sample i.
The new per-sample loss function, called CareLoss as an
antonym of “neglecting” some classes, is denoted ˜̀

i(f). It
is created by weighting `i(f) by two weights u and v, which
are associated with its ground truth label and the predicted
label, respectively:

û(f, yi) = exp(−αuψ(f, yi)) (1)
v̂(f, ŷi) = exp(+αvρ(f, ŷi)) (2)

u(f, yi) =
û(f, yi)∑
j û(f, j)

(3)

v(f, yi, ŷi) =
1

η

(
1 + [yi 6= ŷi]

v̂(f, ŷi)∑
j v̂(f, j)

)
(4)

˜̀
i(f) := ˜̀(f, yi, ŷi) = u(f, yi)v(f, yi, ŷi)`i(f) (5)

Here, αu and αv are positive parameters, ψ(f, j) is the accu-
racy of the classifier f over the inputs originating from class
j, ρ(f, j) is the false-positive rate of the classifier f into
class j (the ratio between the number of samples that are
classified falsely into class j and the total number of mis-
classified samples), and η is a normalization parameter en-
suring that, per batch, the v terms sum to one. In other words,
we define unnormalized weights û and v̂ based on the accu-
racy of the true label and the prevalence of the false positive
cases that result in the predicted label and then convert these
to pseudo-probabilities u and v. The indicator [yi 6= ŷi] is
1 for a sample that is classified incorrectly, 0 otherwise, and
the weight v 6= η−1 only for misclassified samples.

Note that the signs are such that we up the weight of sam-
ples from classes with low accuracy and samples that are
falsely predicted to be of classes with high false-positive
rate. We especially pay attention to samples of neglected
classes that are mapped to one of the classes that are often
predicted.

Values ψ(f, j) and ρ(f, j) are computed empirically:
ψ(f, j) is the ratio of training samples from class j classified
as class j, and ρ(f, j) is the ratio of misclassified training
samples that were incorrectly classified as class j. During



Figure 3: Network architecture, consisting of two pathlines: location and angle.

training, the weights u, v are updated periodically every b
batches, using a moving average with momentum γ to avoid
sharp changes in the loss. The underlying class accuracies
are recorded over the b batches, and the counters are reset
after every weight update, to reflect an updated state of the
classification confusion. The parameters used are b = 50,
γ = 0.8, αu = 6, and αv = 5.

4 Experiments and results
While most reported methods in the literature employ test
data that is available during the development stages, this may
cause overly optimistic results due to multiple hypothesis
testing and other biases. This poses an increased danger in
domains in which the datasets are not always large, includ-
ing archaeology. The development of the reference tool was,
therefore, planned as a two phase process, which includes
a lengthy validation process. In the first phase, the meth-
ods were developed on potsherds of one family, collected
from the same geographical region. In the second phase,
additional datasets were provided, each with its own set of
classes and defined train and test splits.
Phase I experiments. In the first phase, the classification
task is to classify potsherds of terra sigillata italica (TSI)
into one of 65 standardized top-level classes defined in the
Conspectus catalog (Ettlinger 2002). These top-level classes
are defined by 435 sketches. Each class has 1–8 associated
sketches, from which class-balanced synthetic data is gener-
ated. The outlines of the real-world sherds, used exclusively
for testing, were extracted from images collected across Eu-
rope using a dedicated mobile app. As part of the outline
extraction, the user annotates outline segments as inner or
outer, which is easily inferred by archeologists.

The real-world test dataset contains 240 extracted outlines
from 29 different top-level classes. Nevertheless, we train
our classifier on all 65 classes. Since the real-world test set
is unbalanced, we report mean accuracy across classes. We
also report results on a synthetic test set, which is obtained
without the augmentation we apply to the training set, mak-
ing it “easier” in this sense than the training data. Unless
otherwise mentioned, all runs use our CareLoss function.

Table 1 reports the experimental results. As may be noted,
our OutlineNet’s real-world top-2 classification rate is 1.5
times the top-1 classification rate. This indicates that the
classes are easily confused, as can be seen in Fig 4.

We compare our OutlineNet to various baselines. Point-

Net (Qi et al. 2017a) and PointCNN (Hua, Tran, and Ye-
ung 2018) results are given for the 8D feature vector
(xin, yin, sin θin, cos θin, xout, yout, sin θout, cos θout) described
in Sect. Network Architecture, or to the 2D points, as these
methods were originally conceived. When applied to 8D in-
puts, we enlarge the capacity of these methods, and use the
same number of parameters for PointNet as for OutlineNet.
Data augmentation was used in all the experiments unless
specified otherwise.

In the first set of comparisons, CareLoss is used through-
out. As can be seen, PointNet does well on synthetic data.
However, it is not competitive with OutlineNet on real-world
data when using the 8D features. With the 2D points, Point-
Net is slightly better in top-1 accuracy than OutlineNet, but
not on other top-k accuracies. PointCNN is not competitive
in these experiments, showing lower training accuracies than
other methods and complete failure in generalization to both
test and real-world data. PointCNN implicitly requires nor-
malized data, and we therefore retrained it with normalized
data, where the sherd outline radius is scaled to fit the unit
circle. As shown in the table, this did not provide any signif-
icant improvement. Another possible factor for the failure of
PointCNN is the fixed sample counts that it requires, which
prevent the application of the adaptation to sampling resolu-
tion we gave (Supplementary).

These experiments were repeated without CareLoss. The
results for OutlineNet deteriorate along all real-world mea-
surements, excluding the top-2 result. A similar effect is
seen for PointNet on the real-world test data for both the 2D
and 8D configurations. For PointCNN, which is performing
almost at random for the real-world data, the results are sim-
ilar without CareLoss and are omitted.

To further study the effect of CareLoss, we also compare
it to variants where either u or v was set to 1 (so there is only
one weight) and to focal loss reweighting (Lin et al. 2020)
with the recommended parameter of γ = 2. The results show
that dual weighting is important for real-world top-k results,
and especially for the top-5 and top-10 ones. Focal Loss is
consistently ineffective for our problem, and it also does not
seem beneficial to combine it with CareLoss.

Another group of ablations tests architectural modifica-
tions: (i) The row “OutlineNet w/o separation of in/out (in-
ner and outer outlines)” skips the group hot encoding of
points and angles (effectively discarding the group informa-
tion); (ii) “OutlineNet w/o angle information” denotes drop-
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Figure 4: Example sherds and their top-5 results with our model. (*) indicates correct.

Synthetic data Real-world test data

Method Train Test Top 1 Top 2 Top 5 Top 10
OutlineNet 60.9 70.0 22.0 32.7 57.9 73.7
PointNet 8D features 54.4 71.3 16.4 26.9 44.5 65.2
PointNet 2D points 50.5 71.1 23.1 31.3 52.4 72.9
PointCNN 8D features 23.8 2.9 0.0 1.3 2.2 7.1
PointCNN 2D points 45.4 2.8 0.0 3.8 9.7 19.4
PointCNN 2D points, unit radius 23.7 2.8 2.2 2.7 9.6 14.8
OutlineNet w/o CareLoss 63.6 74.1 21.8 33.5 51.5 70.3
PointNet w/o CareLoss, 8D features 57.9 72.9 12.8 22.6 41.9 61.3
PointNet w/o CareLoss, 2D points 49.9 68.7 19.0 28.4 50.8 71.1
OutlineNet w/ CareLoss reweighting with u 57.6 67.3 21.6 31.4 50.0 68.2
OutlineNet w/ CareLoss reweighting with v 60.0 70.8 21.5 31.0 49.4 67.5
OutlineNet w/ Focal Loss (Lin et al. 2020) 57.2 69.6 17.3 28.3 48.2 61.1
OutlineNet w/ Focal Loss + CareLoss 57.1 67.3 20.2 28.1 46.3 66.5
OutlineNet w/o separation of in/out 52.9 69.6 22.8 32.0 50.4 65.7
OutlineNet w/o angle information 46.8 69.4 20.3 30.1 49.5 66.7
OutlineNet w/o group-hot encoding 53.0 66.3 19.7 28.5 47.9 65.0
OutlineNet w/ a single pipeline 49.1 68.8 18.6 27.6 48.9 66.4
OutlineNet w/o data augmentation 86.0 84.6 22.9 32.7 53.1 67.3

Table 1: Mean classification accuracy (in %) across classes on the TSI dataset.

ping the pipeline of processing angles; (iii) “OutlineNet w/o
group-hot encoding” appends the group id as a one-hot vec-
tor of size 2; and (iv) “OutlineNet w/ a single pipeline” is
similar to PointNet working on 8D vectors but also incorpo-
rates adaptive sampling. As can be seen, all those modifica-
tions add to the overall performance when considering top-
k. This is consistent with our finding for the 2D PointNet:
the OutlineNet architecture presents its largest advantage af-
ter the top result. This befits the use as a reference tool for
domain experts who would be happy to consider a short list
of results as part of the mandatory expert verification, but
would be discouraged by a tool that often completely omits
the correct answer.

A similar phenomenon can be observed when training
without augmentation. As expected, performance on the
synthetic data is increased. Performance for top-1 and top-
2 results on the real data is at least as good. However, go-

ing beyond k = 2, the advantage of augmentation becomes
very clear. A plausible reason is that augmentation helps less
with samples that are carefully curated and informative than
it helps with the lower-quality ones.

In addition to mean performance, we also observe the
standard deviation (SD) between classes of the performance
to test if the overall mean success comes at the expense of
classes whose performance is left behind. These results are
reported in Table 2. As expected, training without augmen-
tation reduces the SD on the synthetic data but not on real
data. OutlineNet without CareLoss, the PointNet 8D and
the focal loss methods enjoys a relatively low SD on the
top-1 result, but these methods have a relatively low per-
formance there. OutlineNet presents a better SD for top-1
than the other effective methods. In the top-2 ranking, the
only methods to show less variance between classes than
OutlineNet are the ones using Focal Loss with OutlineNet.



Synthetic data Real-world test data

Method Train Test Top 1 Top 2 Top 5 Top 10
OutlineNet 11.8 21.7 25.1 29.4 30.9 28.7
OutlineNet w/o CareLoss 15.5 23.8 23.4 31.8 35.1 31.1
OutlineNet w/o data augmentation 7.4 16.3 25.9 31.6 34.2 32.3
PointNet 8D features 11.4 19.1 22.6 30.7 34.5 33.8
PointNet 8D features w/o CareLoss 16.9 24.6 19.9 29.4 34.0 35.7
PointNet 2D points 10.4 20.2 27.7 31.8 30.7 28.8
PointNet 2D points w/o CareLoss 17.1 25.1 27.7 31.2 30.3 29.6
OutlineNet w/ CareLoss reweighting with u 11.3 20.4 26.8 31.9 32.6 33.3
OutlineNet w/ CareLoss reweighting with v 15.7 24.8 25.1 30.3 34.1 29.9
OutlineNet w/ Focal Loss 17.1 25.7 23.4 27.9 35.1 34.1
OutlineNet w/ Focal Loss + CareLoss 11.5 21.7 23.5 27.6 32.3 31.8

Table 2: Standard deviation (in %) of classification accuracy on the TSI dataset.

Synthetic data Real-world test data

Dataset Train Test Top-1 Top-2 Top-5 Top-10
TSI (Phase I) – 65 classes (29 in eval), 240 samples 60.9 70.0 22.0 32.7 57.9 73.7
TSI (Phase II, only test) – 65 classes (11 in eval), 96 samples " " 30.5 43.6 62.8 81.3
TSH – 98 classes (24 in eval), 218 samples 60.3 78.6 27.6 40.6 58.4 68.1
TSSG – 94 classes (34 in eval), 185 samples 57.7 76.6 14.5 25.0 41.9 59.9

Table 3: Mean classification accuracy (in %) across all classes for OutlineNet.

However, these methods are not competitive in their mean
performance. Finally, in the top-5 and top-10 measures, the
SD of our method is better than all other methods, with the
exception of the PointNet 2D variants at top-5, which are
not competitive in this measure. To summarize: no method
with a relatively good performance in a top-k measure also
displays larger equality among classes than OutlineNet with
CareLoss.

We set the parameters of the CareLoss early during de-
velopment, before the architecture was finalized. However,
analysis of the method’s stability to its parameters shows
similar results for a wide range of values (Supplementary).
Phase II datasets. Following the development of the com-
plete method on the TSI dataset detailed above, we received
three additional datasets. The first was an additional test set,
also of TSI, collected with the aid of the app. It included
outlines of a further 96 actual sherds not included in the pre-
vious dataset of real data and belonging to 11 classes pre-
viously unseen during testing. Two additional datasets, terra
sigillata hispanica (TSH) and South Gaulish terra sigillata
(TSSG), were from different geographical origins and man-
ufacturers, and belong to a different set of classes with dif-
ferent typologies.

Table 3 presents our model’s results on the new TSI set,
without performing any retraining or adaptation, using the
same complete OutlineNet model from the previous experi-
ments. The accuracy obtained is even better than the statis-
tics for the prior real-world test set that was employed in
Phase I. This further supports the claim of robustness for
our methodology and its applicability as a genuine refer-
ence tool for archeologists. Table 3 also reports the results
on the two additional datasets using our complete method

(OutlineNet with CareLoss and data augmentation) with the
same methodology and parameters. No tweaking whatso-
ever was performed for these datasets on any part of the
training or classification processes. As can be seen, the
pipeline generalizes well to TSH. While it also succeeds in
learning for TSSG with similar train/test results on synthetic
data, these evaluation results are a bit lower than for the other
datasets. It seems that in many of the outlines of the TSSG
dataset, the inner and the outer labels are incorrectly marked.

5 Conclusion
To tackle a real-world cross-modality matching problem
that presents a large set of compounding challenges, we
have conceived multiple innovations, including the novel
data generation techniques, a new shape representation
scheme, and a new re-weighting method. Our work also
provides—beyond multiple technical novelties and a work-
ing application—a case study of deep learning applied to
real-world data in a situation where most of the conventional
assumptions are grossly violated. The reality gap (sim2real
domain shift) is wide, and simulation must be performed
with significant care. This is likely to be the case with many
other historical and artistic classification problems. As some
potsherd classes are visually identical and can only be dis-
tinguished using metadata from the excavation, the accu-
racy obtained in this paper is promising. An expert would
then use such additional information to filter the algorithmic
results. The method described here is already deployed in
the field as the main component of an archeological refer-
ence tool. Source code for models and training is available
at https://github.com/barak-itkin/archaide-software.



Ethical impact and broad societal implications
Humankind’s cultural heritage is an essential component of
our identity as individuals and communities. As technology
is precipitating societal changes at an accelerating pace, well
preserved and properly identified archeological relics pro-
vide an anchor to a shared past. However, very often sherds
that are excavated in emergency digs during development
work are misidentified or incompletely classified, leading to
a loss of cultural knowledge.

More broadly, the application of AI in the humanities is
still in its infancy. The tools that exist today are frequently
criticized for neglecting the research culture of the applica-
tion field, for being myopic regarding their hidden assump-
tions, and for overstating the uniqueness and significance of
computational outcomes. There is, accordingly, a dire need
for tools that are developed hand-in-hand with the relevant
humanities scholars and for their own use. Moreover, most
AI in the humanities deals with texts, and some concerns art,
whereas, to date, there has been very little research regard-
ing other artifacts as they are reflected in archeology and
anthropology.

Indeed, there are precious few examples of real-world AI
tools that are in actual use for the humanities. The method-
ologies used to develop expert systems in medicine or self-
driving cars, for example, are only partially applicable to hu-
manities research.

Our work is exemplary in its multiple aspects of lever-
aging minimal training data for state-of-the-art deep learn-
ing, including three with far-reaching impact: (1) develop-
ing a network for one test dataset and applying it as is to
other datasets without the need to re-tune any parameters;
(2) working with a far removed description of the categories
in order to make real-world identification of artifacts that
contain little characteristic information; and (3) providing a
new methodology for avoiding the misclassification of un-
derrepresented classes. This last item epitomizes the differ-
ence between AI researchers, who often optimize accuracy,
and humanities researchers, who are more concerned with
avoiding the neglect of concealed knowledge.
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