
Softbot: Software-based Lead-Through for Rigid Servo Robots

Yackov Lubarsky1, Amit Wolf2, Lior Wolf1, Curime Batliner2, and Jake Newsum2

Abstract— In this paper, we present an interactive control
method for rigid robotics. The core of the method is a neural
network classifier that maps position and torque readings to a
force direction in 3D space. We show that running our method
online allows a human to move the robot along a desired
path by performing intuitive pushes and pulls on the robot’s
joints. The setup is sensorless: no additional sensors, other than
those already integral to the rigid joint itself, are added to the
manipulator or used in the process.

I. INTRODUCTION

Lead-through learning underlies the smooth, sweeping,
continuous motions of modern robots in many fields: from
arc welding to paint spraying to the cinematic camera
movement and control of Hollywood’s latest creations. Lead-
through learning involves a user that manually conducts
the robot through an intentioned path, similar to leading
someone by the hand. Conventionally, the method uses a
syntaxeur - a mock-up proxy of the manipulator - that carries
comparable joint position sensors but none of the actuators.
This limitation of the need for a secondary manipulator
towards programming has been increasingly overcome by
soft robotics. They are also termed compliant robotics. These
soft-jointed manipulators employ the mechanical elasticity of
spring series elastic actuators (SEAs) towards environmental
compliance and adoptability. The seven axes Baxter (by
Rethink Robotics), Universal Robots’ UR5 and UR10, and
Hocoma’s Lokomat exoskeleton, are a few examples of
current day SEA, with lead-through applications ranging
from straightforward programming of simple, everyday tasks,
to industrial CoBoting, to medical rehabilitation of limbs [1].

Soft robotics is making its chief strides in solving prob-
lems of human-robot interaction as well as addressing the
dynamic environments of material production. At the same
time, SEAs entail a significant reduction in both repeatability
and payload with respect to rigid joint robotics. The powers
and limitations of SEAs are balanced by a new breed of
joints offering doubly laid and opposing actuators. These
variable-stiffness actuators (VSAs) can be seen to regain
at least some of the performance benchmarks set by rigid
joint industrial robotics [1]. However, these technologies are
capital-intensive, requiring the incorporation of new robots.

In this work, we present an applied (add-on) AI software
system that is able to give existing rigid medium and heavy
payload robots soft capabilities. In the heart of our approach
to active compliance, lies an artificial neural network. A

1YL and LW are with the Blavatnik School of Computer Science, Tel
Aviv University, Tel Aviv, Israel

2AW, CB, and JN are with the Southern California Institute of Architec-
ture (SCI-Arc), Los Angeles, CA, USA

specially designed device is used to collect training data
easily and reliably.

Overall, our system holds the promise of versatility and
universality that is unavailable with current integral or ap-
plied solutions. While this approach was developed using
Stäubli’s medium payload arm (TX90), because our deep
neural networks are open-ended and allow for multiple forms
of data and training modules, it may potentially be applied
to any rigid joint, servo based manipulator.

II. RELATED WORK

In our work, we sense external force as it is applied to
the manipulator. Some collision-detection systems rely on
external sensing mechanisms. For example, in [2] a camera
captures the manipulator as it operates and uses image
analysis techniques to detect a collision state. Other works
aim for a simpler collision detection system, which does not
require external aids. These typically use only the available
readings such as link position, velocity and torque, and
apply rigid-robot dynamic equations [3] to detect differences
between sensed and actual torque. A discrepancy indicates
the existence of an external force.

An example of such a scheme for collision detection is [4].
Using the system’s dynamic equations, the reference torque
value is calculated based on the expected position, velocity
and other parameters and compared to the actual torque
signal which is calculated based on actual sensor readings.
The assumption at the base of this work is that in absence of
external interference, the actual and control torques should
be very similar. A significant difference between the two
triggers a collision report and some control tactic is being
deployed. Similarly, in [5], [6], [7] a residual-based method
is used for collision detection and avoidance.

In addition to the detection of a collision state, an esti-
mation of the external force acting on the robot links can
be estimated, as shown in [8]. In a more recent work [9],
the force estimation is augmented with an external Kinect
sensor. This 3D video sensor helps in determining the
exact contact point along the link on which the external
interference is detected. The approach in our contribution
differs significantly from these model based methods because
we do not use a priori knowledge of robot dynamics. In
particular, the above works require inertia parameters, such
as link mass, for calculating the dynamics of the manipulator
system. In contrast, in the work presented here, no external
parameters are required and all of the method’s parameters
(the neural network weights) are learned during the training
phase.



There are some additional works that aim to extract to
the exact location of interference. The work of [10] uses
a probabilistic approach in order to estimate where contact
occurs. In contrast, in [11] a tactile sensor network is used
to estimate the contact forces. In the work presented here,
we focus on applying contact force to the robot end effector.

In [12], Machine Learning classifiers are trained on par-
ticular tasks, e.g., to detect events where the end effector
reaches a barrier. Contrasting these results with those ob-
tained through the conventional use of predefined torque
thresholds for triggering identical state transitions, the re-
search finds clear advantages towards the former in terms
of execution speeds. The work therefore demonstrates the
effectiveness of classifier based on torque readings. How-
ever, the scope of work is constrained to controlled and
repetitive tasks. Our work goes a step further: the neural
networks classify user interaction events in which the torque
and manipulator positions are flexible, undetermined, and
continuously varied, reflecting material production dynamics.

Rozo et al. [13] use an Hidden Markov Model operating
on force/torque data alone to solve goal-driven manipulation
tasks, which vary between executions. Training is based on
demonstrations of the task using a haptic device. In our work,
the data is used to predict the user’s intention, using direct
supervision. The trajectories are then computed based on
these intentions.

The torque and position inputs that our method uses
are already an essential component of current day joint
mechanics since position and torque data feed the active
compliance software at the base of some light-weight robots.
For example, the DLR-KUKA Lightweight Robot and the
DLR-HIT-Schunk Hand, obtain soft behaviors with an in-
tegrated approach that seamlessly combines software-based
compliance, variable link stiffness, and joint mechanics [14].
In contrast to our work, the presented solutions are integrated
rather than applied, and cannot offer comparable soft behav-
iors for existing robots. At the same time, the methods were
not shown to be appropriate for heavy-weight, high payload
and precision driven applications.

Within the focus of the present article, that of a software
method for registering and acting upon external forces, Soft-
Move, by ABB Robotics, is of special interest [15]. Forgoing
mechanical compliance add-ons and related investment costs,
the software virtualizes soft robotics behaviors rather than
physically altering the rigid joint configuration. Detection
is torque based, with torque limits set for one distinct robot
axis at a time. Thus conceived, the compliance is constrained
to one Cartesian direction: detecting resistance along the
vector direction, the manipulator’s trajectory is terminated
at the surface of the obstruction. Still, while ABB Robotics
offers a software solution that softens the rigid joints of
ABB manipulators without losing its rigid joint performance
values, the setup is limited to one Cartesian direction, for
which the original stiffness is varied. As described below,
our approach achieves soft joint behaviors, and with it lead-
through learning capabilities, by simultaneously tracking and
predicting 10 direction vectors. In practice, these directions

Fig. 1. The control loop. A VAL3 program running on the controller sends
sensor readings to a PC program via TCP/IP. The signals are processed
by two deep neural networks that detect the presence and the direction of
external forces. The result is processed by an output module that produces
new direction and velocity commands which are sent back to the controller

are enough to lead the robot freely in space.
Deep neural networks are becoming increasingly popular

in the field of robotics. Early use of neural networks in the
field can be seen in [16], which uses neural networks in order
to learn to follow a pre-defined trajectory that was created by
an unknown set of control commands. In [17], a feedforward
neural network is applied in the field of robot dynamics, in
a specific system, where exact mechanical calculations are
difficult to obtain. A soft conic manipulator driven by three
cables is used. A neural network is trained to obtain seven
parameters of the inverse kinematic model that extracts the
forces acting on the robot’s cables.

III. OUR APPROACH

The control system that we present uses a neural network
classifier in order to map the robot sensor readings to force
vectors in 3D space. The basic setup includes Stäubli’s
medium payload arm TX90, with a CS8 controller running
VAL3. Data was streamed by the LIVE TCP streaming
platform [18]. The outline of this system is shown in Fig. 1.

The core of the system are two neural network classifiers.
Both classifiers are Multi-Layer Perceptrons (MLPs), i.e.,
fully connected feedforward neural networks. The first MLP
is trained to detect the presence of forces. It outputs a
boolean value indicating whether an outside force is applied
to the robot. The second MLP is trained to classify the
direction of the outside force, based on a predefined set
of direction vectors. During online classification, the force
MLP is queried first to determine if an external force is
being applied. If the answer is positive, the direction MLP
is queried for the force direction.

Both MLPs employ 5 fully connected hidden layers with
100 neurons each. The ReLU activation function [19] is used
for all layers. A subsequent output layer produces pseudo-
probabilities using the softmax function.

We use a time-window approach to obtain the networks’
input. The underlying assumption is that although some
classification accuracy can be achieved by training only on
the time frame for which prediction is requested, better
results could be obtained when using information from past
frames. Due to the nature of the classification task, the time-
window used was relatively small.

The two MLPs were trained on the same input data,
composed of the robot readings, available through the robot’s
API: (i) joint rotation values; (ii) torque values; (iii) flange



Fig. 2. The ten directions in space that are predicted by the second MLP.

position, orientation and velocity. Specifically, an input of
size 440, which is a concatenation of the 11 recent time
steps (including the current), is used at each time point. The
input data at each time step consists of the following:

• 6 Torque values - one for each joint
• 6 Joint rotation values - one for each joint
• 3 Flange location in world coordinates (x,y,z)
• 3 Flange rotation in world coordinates (rx,ry,rz)
• 1 Flange velocity
• 1 Whether the robot is settled or not
In addition to the 20 raw signals above, the difference in

values from the last time step was added to each data point.
There are therefore a total of 40 features, that are collected
at a rate of 25Hz.

The output of the first classifier is the probability of
an external force being applied. The output of the second
classifier is one of 10 direction vectors with respect to
the flange coordinate system as illustrated in Fig. 2. These
correspond to motion along the X,Y,Z axes in either a
positive or a negative direction, as well as motion in each
direction along the two diagonals of the XY plane.

A. Training the System

As is typical in machine learning approaches, large and
comprehensive data sets are necessary in order to obtain
good generalization from training data to test scenarios. In
our case, the training data was collected by applying force
by hand to a dedicated tool while moving the robot along
random trajectories in 3D space.

The tool, which is shown in Fig. 3, contains six buttons.
Instead of applying force directly to the flange, the force
was applied, at each time point, to one of the tool buttons.
This approach allowed rapid collection of sensor data points,
labeled with the approximate force direction based on the
button that was pushed. In order to move from six classes to
ten, the tool was rotated 45 degrees in the XY plane.

Since the data was collected by hand, in order to reduce the
time necessary for data collection, we constrained the data to
a subset of possible robot configurations, namely a 3D area
in front of the robot with the flange facing out. Fig. 4 depicts
the random locations in 3D space from which the training

Fig. 3. The apparatus used to collect the training data. The tool has six
buttons, four along the connection plane and two perpendicular.

Fig. 4. The point cloud from which training data was collected. At each
location, force readings at multiple directions were collected.

data are collected. Collection was also performed when the
flange was moving in between the 3D points. The entire
training data were collected in less than ten hours, and consist
of 747,000 data points. Note that each push action creates
multiple samples, and that data points are also collected when
no force is applied.

The neural networks were implemented using the keras
deep learning framework [20]. The training of the neural
networks was done using the Stochastic Gradient Descent
method with momentum. Learning rates of 0.1, 0.01, 0.001
were used, each for 40 epochs1. A batch size of 512 and a
momentum value of 0.9 were used. A random subset of 90%
of the data was used as the training set, and a well-separated
random subset of 10% was used as the validation set. The
same train/test split was used for testing multiple network
architectures, as detailed in Sec. IV-A.

B. Refinement of Classifier Output

While the MLPs provided reasonable predictions, we
found that added robustness can be gained by incorporating

1One pass over the entire training data is called an epoch.



TABLE I. Validation errors of alternative neural networks. LSTM1L400 is
an LSTM model with a single layer of size 400. LSTM2L200 is an LSTM
model with 2 layers of size 200. LSTM2L300 is a two layer LSTM with

layer size 300. LSTM5L100 - five layer LSTM with layer size 100.
MLP4L, MLP5L, and MLP6L are MLP networks with layer size 100 and

a total of 4,5 and 6 layers respectively (MLP5L is the network used
throughout this work). MLP5L ND is a five layer MLP with layer size

100 but trained without the signal difference features. Each network was
trained for two separate classification tasks, detecting external force

existence (’Force’ column) and classification of input signal to one of the
ten direction vectors (’Direction’ column). The ’Combined’ column shows

the error after combining the output from both networks to a single
11-class label. The values show mean error across the participating classes.

Method Force Direction Combined
LSTM1L400 (1 x 400) 0.128 0.070 0.141
LSTM2L200 (2 x 200) 0.125 0.085 0.153
LSTM2L300 (2 x 300) 0.140 0.064 0.136
LSTM5L100 (5 x 100) 0.200 0.072 0.196
MLP4L (4 x 100) 0.049 0.026 0.062
MLP5L (5 x 100) 0.038 0.016 0.045
MLP6L (6 x 100) 0.052 0.027 0.066
MLP5L ND (5 x 100) 0.049 0.022 0.062

two simple heuristics. These heuristics help to compensate
for the unavoidable gap between the data collected during
the training phase and the actual data seen at deployment.

First, the threshold of the force/no-force classifier was
lowered in order to allow a better action detection rate, at
the expense of increasing the number of false positives. This
considerably improves sensitivity to light touch.

Second, in order to reduce noise, we used a buffer storing
the five previous classifications. The actual classification is
taken to be the absolute majority label (if it exists) from
that buffer. In other words, if the first MLP predicted the
existence of an external force, the direction is recorded. Out
of the last five readings, if the same direction was obtained
three times, the system recognizes an external force in this
direction. Otherwise, the system reports no external force.

The two heuristics operate in different directions: while
the first supports more liberal predictions of force, the second
is more conservative. The obtained system is reliable with
respect to the direction of the motion and is responsive to
outside forces. Changing the above parameters controls the
system’s sensitivity and the output direction’s reliability.

Once a force is detected, the robot is programmed to move
in a constant velocity along the direction of the detected
force. Fig. 5 shows the typical behavior of the final online
system as the flange is being moved by a person.

IV. RESULTS

A. Classifier Training

We experimented with two types of neural networks: (i)
the feedforward MLPs described above, and (ii) recurrent
networks, which are designed for time series. Specifically,
we also tested the performance of LSTM (Long-Short Term
Memory) networks [21], which is a type of recurrent neural
network that has been shown to achieve good results in
many time-series tasks [22], [23]. In the past, it was demon-

strated [24] that a time-windowed MLP may perform better
than LSTM in some but not all cases.

We tested multiple architectures with varying depth and
number of hidden units per layer. Note that a hidden unit
in an LSTM network contains four times the number of
parameters of a hidden neuron in an MLP.

Table I depicts the results obtained for multiple network
configurations. In these results, the MLP networks seem to
outperform the LSTM ones by a large margin. The results
also indicate that detecting the presence of an external force
is a more difficult task than distinguishing the force vector.
This is despite the former being a binary classification task
while the latter is a multiclass one. Note, however, that the
error rates in both tasks are rather low, varying from 1.6%
to 4.5% for the best network, depending on the task. These
numbers are prior to the refinement described in Sec. III-B.

The proposed network of 5 MLP layers of size 100
outperforms the other architectures tested. As mentioned, it
has an input vector of size 440. Half of this consists of the
raw signals and half contains the difference in values from
the last time step. In order to demonstrate the contribution
of the second half, Table I also contains the results of a
network trained to predicted based solely on the 220 raw
signals. This network is significantly outperformed by the
network that employs the full input vector.

Below we focus on the deep MLP network with five
hidden layers. Fig. 6 (a) and (b) show the training and
validation results as a function of the training epoch. As
can be seen in Fig. 6(a), the binary network that captures
the existence of force somewhat overfits the training data.

Fig. 6(c) displays the ROC curves obtained for the force
classifier. The y-axis is scaled to start at a true classification
rate of 90%, and the overall performance is good. The plots
suggest that force detection with a static manipulator is
slightly easier than detection when in movement.

Table II displays a confusion analysis of the errors over
the eleven classes: the no-force case and the ten directions.
It is clear that the directions are mostly not confused among
themselves, and confusion mostly occurs with regards to the
presence of a force.

B. System behavior

With the online system in place, the robot exhibits much
of the desired properties: it is sensitive to touch and moves
in the direction of the applied force, up to the limitations
imposed by the ten direction vectors we used. The force
required to move the robot can be as light as a touch of a
hand resting on the flange. However, it seemed that due to a
slight response lag, a person would usually apply more force
than necessary to move the robot. The classifier gave good
results in various speed settings.

Fig. 7 shows an example of the torque signal data and the
classifier output. The joint torque signals vary substantially
regardless of whether the robot is stationary or moving
and whether force is applied or not on the robot. It does
seem, however, that the neural networks are able to properly
determine the force from the signal.



(a) (b)
Fig. 5. Example of flange trajectory while running the online control system. The robot is being moved by push-pull forces applied by hand to the flange.
In (a), some noise can be observed near points of direction change.

(a) (b) (c)
Fig. 6. (a) The train and validation accuracy for the external force MLP classifier as a function of the training epoch. The dashed line depicts the train
error; while the solid line depicts the validation error.(b) The train and validation accuracy for the direction MLP classifier as a function of the training
epoch. (c) An ROC curve for the MLP force classifier (false positive rate vs. true positive rate). The solid line shows the overall ROC, the dashed line is
for the force signal applied while the robot is in motion and the semi-dashed is for the force signal applied while the robot is stationary

TABLE II. The confusion matrix of the combined output of the MLP classifier networks. The row labels are the actual classes; the column headers
present the predicted classes. See Fig. 2 for an illustration of the ten direction labels.

No Force +X -Y -X +Y +X,-Y -X,-Y -X,+Y +X,+Y +Z -Z
No Force 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
+X 0.04 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-Y 0.04 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-X 0.04 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+Y 0.03 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00
+X,-Y 0.02 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00
-X,-Y 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00
-X,+Y 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.96 0.00 0.00 0.00
+X,+Y 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.00 0.00
+Z 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.01
-Z 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94

Fig. 8 shows a closer look at the classifier behavior when
the flange is being pushed in the positive X direction. The
classifier provides mostly correct predictions throughout the
movement. Small time lags can be seen at the start of force
application and at the end during which the classification
system is misclassifying the input. The two heuristics de-
scribed in Sec. III-B are being used here, and contribute to
the observed lag duration.

When at rest, the robot shows occasional random noise
related moves. This could be attributed to internal joint

forces or to misclassification of the sensor signals. In turn,
tasks requiring considerable precision may require a velocity
control. These velocity controls can be implemented either
manually or heuristically based on touch duration.

We also noticed that the classifier’s sensitivity and noise
behavior are closely related to the robot’s configuration.
These correlations are to be expected since different con-
figurations entail different rest torques in the robot joints. In
addition, it may indicate less than optimal generalization of
the classifier model in configurations lacking training data,



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Torque sensor readings when force is applied to the flange in
the X positive direction (a) Force signal: 1 when force is being applied
(b) Classifier output: 1 when the combined classifier returns the correct
direction label, 0 otherwise. (c)-(h) Torque readings for each of the 6 joints.

Fig. 8. The classifier output during a push event in the positive X direction.
The solid line depicts when a force is being applied to the robot flange; the
+ ticks depict the classifier output (correct/incorrect) during this period; the
dashed line shows the robot flange movement along the X axis. A small lag
appears between the actual force and the classifier detecting it, resulting in
a corresponding lag in movement response.

e.g., at the limits of the manipulator’s range of motion.

C. Sample tasks

We evaluated the online system on a few tasks involving
lead-through of the robot by a human towards some goal.
Each experiment was repeated by two human operators
interacting with the robot, and was conducted multiple times.

1) Moving the robot among predefined points in space: In
this experiment, four predefined points are randomly chosen
in space in front of the manipulator. The only constraint is
that all points are reachable by the robot end effector. We
used plastic cups hanging on threads to signify the point
locations. The goal of a human user is to guide the flange
by hand as close as possible to each of the points.

The results convincingly show that we were able to bring
the flange to the desired locations without difficulty, for any
set of points and regardless of the order of points. This

Fig. 9. Pick and place task. Metal disks are picked from A using a suction
cup tool attached to the end effector and moved to B where they are stacked
on top of each other. The human leads the suction tool by hand to the
marked positions and records the robot configuration at each point. The
robot is then switched to playback mode and instructed to move through
the recorded positions in order 1,2,1,3,4,3,1,2,1,3,5,... and so on, picking
the disks from A and stacking them at their corresponding heights at B. In
this setting, we assume that disks are fed to point A from an external source
rather than being stacked there. Thus, there is only one pick position (2).

Fig. 10. The pick and place experiment setup

was done by moving the arm by hand rather than using the
teaching pendant or any other additional means.

2) Teaching a pick and place task: In this setting, a
user guides the robot through the desired key positions
and records each key position as it is reached. Once the
entire sequence is recorded, the robot can be switched into
playback mode, moving throughout the predefined sequence
of positions as expected.

We chose a pick-and-place stacking task for this experi-
ment. For this task, two locations are arbitrarily selected in
the space in front of the robot - a pickup location and a
destination. The task involves moving items from the pickup
location and stacking them at the destination point. We used
five 70mm metal disks as the designated items to be moved
and an air-pressured suction cup was used as the gripping
mechanism. The suction cup was attached to the flange such
that it points down and can uplift the disks.

The experiment was conducted in two stages. In the
recording stage, a human guides the manipulator through a
series of predefined key positions. An outline of the positions
to be taught is shown in Fig. 9, and the experiment is depicted
in Fig. 10. As each position is reached, a record signal is sent
to the software control program, which records the current
configuration of the manipulator and assigns it a label. Once
all of the positions are recorded, the robot is switched to a
’playback’ mode in which the control program instructs it to
move through the recorded positions in the order appropriate
for completing the stacking task.

In this experiment, beyond the lead-through interface,
explicit signals had to be passed to the software control



program to record a position, switch the robot mode from
recording to playback, and repeat the recorded sequence
when in playback mode. In these cases, we used custom
buttons on the teaching pendant, which when pressed sent
the corresponding signal to the program. In addition, air
pressure of the suction cup was to be turned on and off at the
appropriate locations. Although it would be straightforward
to expand our control program to record turning the air
pressure on/off in recording mode, similar to how positions
were recorded, we chose not to implement this and rather
turned the air on and off manually during the experiments.

The setup allowed the user to train the robot to perform
the task with minimal effort, and the task was subsequently
performed with full success (see video supplementary).

V. DISCUSSION

We advocate for an AI (specifically Machine Learning)
solution for the inference of peripheral forces from internal
states. Perception capabilities, e.g., in the domain of video
analysis, are going through a phase of rapid development,
primarily due to the advent of deep learning. Using a similar
set of techniques, applied introspectively to the existing inner
sensors of a manipulator, we are able to empower existing
robots with new and desirable behaviors.

Basing our method on Machine Learning rather than
physical modeling, allows us to avoid the assumptions and
approximations associated with the latter. However, learning
algorithms require the collection of training data. We have
demonstrated that using an appropriate apparatus, we are able
to collect such data easily and efficiently.

The platform we rely on, namely Stäubli’s medium pay-
load TX 90 arm, did not offer any praticular advantage with
respect to comparable medium payload systems, and was
used solely due to its availability to the research team at the
SCI-Arc robotics lab. We conjecture that any system that
enables control and inner sensor reading through an API
would support the successful application of our methods.

VI. CONCLUSIONS AND FUTURE WORK

We presented an online method for detecting outside
forces and reacting in a way that provides compliant be-
havior. We show that Machine Learning techniques can
be successfully applied to the robot sensor data without
much preprocessing or feature engineering. A combination
of two neural networks provides us with accurate predictions.
Several network architectures are tested, and a time window
based approach seems preferable to a leading recurrent
neural network technique. Since we have used only the basic
internal readings from the robot sensors, our method may be
applicable to other rigid servo based robots.

As future work, we are interested in inferring the user’s
subsequent intentions and not just the current actions. For
example, the user might start reducing the amount of applied
force slightly before arriving at the desired manipulator
destination, allowing the software to anticipate the upcoming
event. As always with cobotting, safety concerns are to
be addressed. We are similarly interested in applying our

methods to the problem of collision detection, which would
allow for a safer human-robot interaction. Thus conceived,
the flexibility of software based solutions could lead to a
continuous collaborative environment of introduced work
flows that are always evolving, unrestricted by temporal
boundaries of task recording and playback.

REFERENCES

[1] E. Eitel, “The rise of soft robots and the actuators that drive them,”
Machine Design, 2013.

[2] D. Ebert and D. Henrich, “Safe human-robot-cooperation: Imagebased
collision detection for industrial robots,” in IEEE/RSJ Int Conf. on
Intelligent Robots and Systems, 2002, pp. 239–244.

[3] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots:
A tutorial,” Automatica, vol. 25, no. 6, pp. 877–888, 1989.

[4] S. Morinaga and K. Kosuge, “Collision detection system for manipu-
lator based on adaptive impedance control law,” in ICRA, 2003.

[5] A. D. Luca and R. Mattone, “Sensorless robot collision detection and
hybrid force/motion control,” in ICRA, 2005.

[6] A. D. Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Colli-
sion detection and safe reaction with the dlr-iii lightweight robot arm,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.

[7] S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2008, pp. 3356–3363.

[8] A. D. Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in IEEE Int. Conf.
on Biomedical Robotics and Biomechatronics, 2012, pp. 288–295.

[9] E. Magrini, F. Flacco, and A. De Luca, “Estimation of contact forces
using a virtual force sensor,” in IEEE/RSJ International Conference
on Intelligent Robots and and Systems, 2014, pp. 2126–2133.

[10] A. Petrovskaya, J. Park, and O. Khatib, “Probabilistic estimation of
whole body contacts for multi-contact robot control,” in ICRA, 2007.

[11] A. D. Prete, L. Natale, F. Nori, and G. Metta, “Contact force
estimations using tactile sensors and force/torque sensors,” in Human
Robot Interaction, 2012.

[12] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, “Detection
of contact force transients in robotic assembly,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 962–968.

[13] L. Rozo, P. Jiménez, and C. Torras, “Robot learning from demon-
stration of force-based tasks with multiple solution trajectories,” in
International Conference on Advanced Robotics (ICAR), 2011.

[14] A. Albu-Schäffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott,
T. Wimböck, S. Wolf, and G. Hirzinger, “Soft robotics: From torque
feedback controlled lightweight robots to intrinsically compliant sys-
tems,” in Int. Conf. on Control Automation and Systems, 2010.

[15] “SoftMove: cartesian soft servo,” https://library.e.abb.com/public/
74f4e5050f189f82c12573f00054efd0/Data%20sheet%20SoftMove%
20LR.pdf, accessed: 2015-09-13. ABB, Västerås, Sweden. 2008.

[16] T. D. Sanger, “Neural network learning control of robot manipulators
using gradually increasing task difficulty,” IEEE Transactions on
Robotics and Automation, vol. 10, no. 3, pp. 323–333, 1994.

[17] M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed-forward
neural network learning the inverse kinetics of a soft cable-driven
manipulator moving in three-dimensional space,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2013, pp. 5033–5039.

[18] C. Batliner, J. M. Newsum, and M. C. Rehm, “Live,” in Robotic
Futures. Tongji University Press, 2015.

[19] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Int. Conf. on Artificial Intelligence and Statistics, 2011.

[20] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[22] A. Graves and J. Schmidhuber, “Framewise phoneme classification

with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18.5, pp. 602–610, 2005.

[23] F. Gers, “Long Short-Term Memory in Recurrent Neural Networks,”
Ph.D. dissertation, Federal Polytechnic School of Lausanne, Depart-
ment of Computer Science, Lausanne, Switzerland, 2001.

[24] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying LSTM to time
series predictable through time-window approaches,” in Artificial
Neural Networks-ICANN. Springer, 2001, pp. 669–676.


