
Discrete Applied Mathematics 113 (2001) 109–128

Complexity classi�cation of some edge modi�cation
problems�

Assaf Natanzon, Ron Shamir ∗;1, Roded Sharan 2

School of Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv University,
69978 Tel Aviv, Israel

Abstract

In an edge modi�cation problem one has to change the edge set of a given graph as little
as possible so as to satisfy a certain property. We prove the NP-hardness of a variety of edge
modi�cation problems with respect to some well-studied classes of graphs. These include per-
fect, chordal, chain, comparability, split and asteroidal triple free. We show that some of these
problems become polynomial when the input graph has bounded degree. We also give a general
constant factor approximation algorithm for deletion and editing problems on bounded degree
graphs with respect to properties that can be characterized by a �nite set of forbidden induced
subgraphs. ? 2001 Elsevier Science B.V. All rights reserved.

Keywords: Graph algorithms; Edge modi�cation problems; Complexity; Approximation

1. Introduction

1.1. Problem de(nition

Edge modi�cation problems call for making small changes to the edge set of an input
graph in order to obtain a graph with a desired property. These include completion,
deletion and editing problems. Let � be a graph property. In the �-Editing problem
the input is a graph G = (V; E), and the goal is to �nd a minimum set F ⊆V × V
such that G′ = (V; E � F) satis�es �, where E � F denotes the symmetric di9erence
between E and F , i.e., E�F =(E\F)∪ (F\E). In the �-Deletion problem only edge

� Portions of this paper appeared in the Proceedings of the 25th International Workshop on Graph Theoretic
Concepts in Computer Science [33].

∗ Corresponding author.
E-mail addresses: natanzon@math.tau.ac.il (A. Natanzon), shamir@math.tau.ac.il (R. Shamir),

roded@math.tau.ac.il (R. Sharan).
1 Supported in part by the Israel Science Foundation formed by the Israel Academy of Sciences and

Humanities.
2 Supported by an Eshkol fellowship from the Ministry of Science, Israel.

0166-218X/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00391 -7

110 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

deletions are permitted, i.e., F ⊆E. The problem is equivalent to �nding a maximum
subgraph of G with property �. In the �-Completion problem one is only allowed to
add edges, i.e., F ∩ E = ∅. Equivalently, we seek a minimum supergraph of G with
property �. In this paper we analyze edge modi�cation problems with respect to some
well-studied graph properties.

1.2. Motivation

Graph modi�cation problems are fundamental in graph theory. Already in 1979,
Garey and Johnson mentioned 18 di9erent types of vertex and edge modi�cation prob-
lems [12, Section A1:2]. Edge modi�cation problems have applications in several �elds,
including molecular biology and numerical algebra. In many application areas a graph
is used to model experimental data, and then edge modi�cations correspond to correct-
ing errors in the data: Adding an edge corrects a false negative error, and deleting an
edge corrects a false positive error. We summarize below some of these applications.
De�nitions of the graph classes are given in Section 3.
Interval modi�cation problems have important applications in physical mapping of

DNA (see [5,9,14,17]). Depending on the technology used and the kind of experimental
errors, completion, deletion and editing problems arise, both for interval graphs and
for unit interval graphs.
The chordal completion problem, which is also called the minimum (ll-in problem,

arises when numerically performing a Gaussian elimination on a sparse symmetric
positive-de�nite matrix [35]. Since the time of the computation and its storage needs
depend on the sparseness of the matrix, it is desirable to �nd an elimination order such
that a minimum number of new non-zero elements is introduced into the matrix. Rose
[35] showed that this problems is equivalent to the minimum �ll-in problem.
The chordal deletion problem was proposed in trying to solve the CLIQUE problem.

Some heuristics for �nding a large clique (see, e.g., [39]) aim to �nd a maximum
chordal subgraph of the input graph, on which a maximum clique can be found in
polynomial time.

1.3. Previous results

Strong negative results are known for vertex deletion problems: Lewis and
Yannakakis [26] showed that for any property which is non-trivial and hereditary,
the maximum induced subgraph problem is NP-complete. Furthermore, Lund and Yan-
nakakis [28] proved that for any such property, and for every �¿ 0, the maximum in-
duced subgraph problem cannot be approximated with ratio 2log

1=2−� n in quasi-polynomial
time, unless P̃ = ÑP. (Throughout we use n and m to denote the number of vertices
and edges, respectively, in a graph.)
For edge modi�cation problems no such general results are known, although some

attempts have been made to go beyond speci�c graph properties [2,3,11]. Most of the
results obtained so far concerning edge modi�cation problems are NP-hardness ones.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 111

(For simplicity we shall often refer to the decision version of the optimization prob-
lems.) Chain Completion and Chordal Completion were shown to be NP-complete by
Yannakakis in [41]. As noted in [14], the NP-completeness of Interval Completion
and Unit Interval Completion also follows from [41]. Interval Completion was directly
shown to be NP-complete in [12, problem GT35] and [25]. Deletion problems on in-
terval graphs and unit interval graphs were proven to be NP-complete in [14]. Cograph
Completion and Cograph Deletion were shown to be NP-complete in [11]. Threshold
Completion and Threshold Deletion were shown to be NP-complete in [30]. Compa-
rability Completion was shown to be NP-complete in [19] and Comparability Deletion
was shown to be NP-complete in [40]. The NP-completeness of Bipartite Deletion and
Editing follows from the NP-completeness of the equivalent MAX-CUT problem [13].
Clique Deletion (deleting fewest edges in order to form a disjoint union of cliques)
was shown to be NP-complete in [31].
Much fewer results are known for editing problems: Chordal Editing was proven to

be NP-complete in [4]. The connected bipartite interval (caterpillar) editing problem
was proven to be NP-complete in [9]. Split Editing was shown to be polynomial in
[21]. Clique Editing was recently proven to be NP-complete in [36].
Several authors studied variants of the completion problem, motivated by DNA map-

ping, in which the input graph is pre-colored and the required supergraph also obeys
the coloring (see [5] and references therein). Other biologically motivated problems,
called sandwich problems, seek a supergraph satisfying a given property which does
not include (pre-de�ned) forbidden edges. Polynomial algorithms or NP-hardness re-
sults are known for many sandwich problems [15,18,20,23]. Results on the parametric
complexity of several completion problems were also obtained [8,24].
Approximation algorithms exist for several problems. In [32] an 8k approximation

algorithm is given for the minimum �ll-in problem and for Chain Completion, where
k denotes the size of an optimum solution. In [1] an O(m1=4 log3:5 n) approximation
algorithm is given for the minimum chordal supergraph problem (where one wishes to
minimize the total number of edges in the resulting graph). For the minimum interval
supergraph problem an O(log2 n) approximation algorithm was given in [34]. In [9]
it was shown that the minimum number of edge editions needed in order to convert
a graph into a caterpillar cannot be approximated in polynomial time to within an
additive term of O(n1−�), for 0¡�¡ 1, unless P = NP.

1.4. Contribution of this paper

In this paper we study the complexity of edge modi�cation problems on some
well-studied classes of graphs. We show, among other results, that deletion problems
are NP-hard for perfect, chain, chordal, split and asteroidal triple free graphs; and that
editing problems are NP-hard for perfect and comparability graphs. We also show that
it is NP-hard to approximate comparability modi�cation problems to within a factor of
18=17. The reader is referred to Fig. 1 which summarizes the complexity results for
the modi�cation problems that we considered.

112 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

Fig. 1. The complexity status of edge modi�cation problems for some graph classes. A → B indicates that
class A contains class B. The box to the left of each class contains the status of the completion (top), editing
(middle) and deletion (bottom) problems. (+) NP-hard, previously known; (++): NP-hard, new result; (P):
polynomial; (∗): not meaningful.

Positive complexity results are given for bounded degree input graphs: We give a
simple, general constant factor approximation algorithm for the deletion and editing
problems with respect to any hereditary property that can be characterized by a �nite
set of forbidden induced subgraphs. We also show that Chain Deletion and Editing,
Split Deletion and Threshold Deletion and Editing become polynomial when the input
degrees are bounded.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 113

1.5. Organization of the paper

Section 2 contains simple basic results that show connections between the complexity
of related modi�cation problems. Section 3 contains the main hardness results. Section
4 gives the positive results on bounded degree graphs.

2. Basic results

In this section we summarize some easy observations on edge modi�cation problems,
which will help us deduce complexity results from results on related graph families,
and concentrate on those modi�cation problems which are meaningful.

2.1. De(nitions and notation

All graphs in this paper are simple and contain no self-loops. Let G = (V; E) be a
graph. We denote its set of vertices also by V (G), and its set of edges also by E(G).
We denote by OG the complement graph of G, i.e., OG= (V; OE), where OE = (V × V)\E.
(Throughout, we abuse notation for the sake of brevity, and for a set S we use S × S
to denote {(s1; s2): s1; s2 ∈ S; s1
= s2}.) If G = (U; V; E) is a bipartite graph, then its
bipartite complement is the bipartite graph OG = (U; V; OE), where OE = (U × V)\E. For
a subset A⊆V we denote by GA the subgraph induced on the vertices of A. For a
vertex v ∈ V we denote by N (v) the set of vertices adjacent to v in G. We denote by
G ∪ H the union of the disjoint graphs G and H (with no edges connecting a vertex
of G with a vertex of H). Analogously, we denote by G + H the graph obtained by
forming the union of the disjoint graphs G and H and connecting every vertex of G
to every vertex of H . An r-path is a path with r edges. For a graph property � the
notation G ∈ � indicates that G satis�es �. For basic de�nitions of graph properties
and much more on the graph classes discussed here see, e.g., [7,16].
Let � be a graph property. If F is a set of non-edges such that G′=(V; E∪F) ∈ �

and |F |6k, then F is called a k-completion set with respect to �, or a � k-completion
set. (For example, we shall discuss perfect k-completion set.) � k-deletion set and
� k-editing set are similarly de�ned.

2.2. Basic results

A graph property � is called hereditary if when a graph G satis�es � every induced
subgraph of G satis�es �. � is called hereditary on subgraphs if when G satis�es �,
every subgraph of G satis�es �. � is called ancestral if when G satis�es �, every
supergraph of G satis�es �.

Proposition 1. If property � is hereditary on subgraphs then �-Deletion and �-
Editing are polynomially equivalent; and �-Completion is not meaningful.

114 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

Proposition 2. If � is an ancestral graph property then �-Completion and �-Editing
are polynomially equivalent; and �-Deletion is not meaningful.

Proposition 3. If � and �′ are graph properties such that for every graph G and
a disjoint independent set S; G satis(es �; if and only if; G ∪ S satis(es �′; then
�-Deletion is polynomially reducible to �′-Deletion. If in addition � is hereditary;
then �-Completion (�-Editing) is polynomially reducible to �′-Completion (�′-
Editing).

Proof. The �rst part of the proposition is obvious. To prove the second part we show
a reduction from �-Completion to �′-Completion. The reduction from �-Editing to
�′-Editing is identical. Let 〈G = (V; E); k〉 be an instance of �-Completion. We build
an instance 〈G′=(V ′; E); k〉 of �′-Completion by adding 2k+1 isolated vertices to G.
We now prove validity of the reduction. If F is a � k-completion set for G then it

is also a �′ k-completion set for G′, since the modi�ed graph (V ′; E ∪ F) is a union
of a graph which satis�es � and an independent set. On the other hand, suppose that
F is a �′ k-completion set for G′. Then (V ′; E ∪ F) contains an isolated vertex, and
removing that vertex results in a graph satisfying �. Since � is hereditary, it follows
that F ∩ (V × V) is a � k-completion set for G.

Corollary 4. The following problems are NP-complete: (1) Circular-Arc Comple-
tion and Deletion; (2) Proper Circular-Arc Completion and Deletion and (3) Unit
Circular-Arc Completion and Deletion.

Proof. By reduction from the corresponding interval or unit interval modi�cation prob-
lem.

Proposition 5. If � and �′ are graph properties such that for every graph G and a
clique K; G satis(es �; if and only if; G+K satis(es �′, then �-Completion is poly-
nomially reducible to �′-Completion. If in addition � is hereditary; then �-Deletion
(�-Editing) is polynomially reducible to �′-Deletion (�′-Editing).

Corollary 6. Permutation modi(cation problems are polynomially reducible to the
corresponding circle modi(cation problems.

For a graph property �, we de�ne the complementary property O� as follows: For
every graph G, G satis�es O� if and only if OG satis�es �. Some well-known examples
are co-chordality and co-comparability.

Proposition 7. For every graph property �; �-Deletion and O�-Completion are poly-
nomially equivalent.

Proposition 8. For every graph property �; �-Editing and O�-Editing are polynomi-
ally equivalent.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 115

Corollary 9. The following problems are NP-complete: (1) Co-Chordal Deletion and
Editing; (2) Co-Comparability Completion and Deletion and (3) Co-Interval Com-
pletion and Deletion.

3. NP-hard modi$cation problems

3.1. Chain graphs

A bipartite graph G = (P;Q; E) is called a chain graph if there is an ordering � of
the vertices in P, � : {1; : : : ; |P|} → P, such that N (�(1))⊆N (�(2))⊆ · · ·⊆N (�(|P|)).
Yannakakis introduced this class of graphs and proved that Chain Completion is
NP-complete [41]. He also showed that G is a chain graph, if and only if, it does
not contain an independent pair of edges (an induced 2K2). In this section we prove
that Chain Deletion is NP-complete. This result will be the starting point to many of
our subsequent reductions. Note, that in Chain Deletion (as in Chain Completion [41])
the bipartition of the input graph into P;Q is given as part of the input.

Lemma 10. The bipartite complement of a chain graph is a chain graph.

Proof. The claim follows from the observation that the chain containment order is
reversed for the bipartite complement of a chain graph. Formally, let G= (P;Q; E) be
a chain graph, and let � be an ordering of the vertices in P such that N (�(1))⊆N (�(2))
⊆ · · ·⊆N (�(|P|)). Then in OG we have N (�(|P|))⊆N (�(|P|−1))⊆ · · ·⊆N (�(1)).

Corollary 11. Chain Deletion is NP-complete.

Proof. Follows from the bipartite analog of Proposition 7.

3.2. Perfect graphs

A graph G is called perfect if for every induced subgraph H of G; �(H) = !(H),
where �(H) denotes the chromatic number of H , and !(H) denotes the clique number
of H [27]. It is easy to see that a perfect graph contains no induced cycle of odd
length.

Theorem 12. Perfect Completion is NP-hard.

Proof. By reduction from Chain Completion. Let 〈G = (P;Q; E); k〉 be an instance
of Chain Completion. We build the following instance 〈P(G) = (N; E′); k〉 of Perfect
Completion: De�ne N = P ∪ Q ∪ C, where

C = {v1q1 ;q2 ;i ; v2q1 ;q2 ;i ; v3q1 ;q2 ;i: (q1; q2) ∈ Q × Q; 16i6k + 1};

116 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

and E′ = E ∪ (P × P) ∪ E1, where

E1 = {(q1; v1q1 ;q2 ;i); (v1q1 ;q2 ;i ; v2q1 ;q2 ;i); (v2q1 ;q2 ;i ; v3q1 ;q2 ;i); (v3q1 ;q2 ;i ; q2):
(q1; q2) ∈ Q × Q; 16i6k + 1}:

In words, one side of G is transformed into a clique, and every two vertices on the
other side are connected by k + 1 disjoint 4-paths. We now prove validity of the
reduction.
(⇒) Suppose that F is a chain k-completion set for G, that is, G′ = (P;Q; E ∪ F)

is a chain graph and |F |6k. We claim that F is also a perfect k-completion set for
P(G). Let P(G)′ = (N; E′ ∪ F) and let H = (VH ; EH) be any induced subgraph of
P(G)′. We have to show that !(H) = �(H). If EH = ∅ then H is trivially perfect,
since �(H) = !(H) = 1. We therefore assume that EH
= ∅. Let V1 = P ∩ VH and let
V2 =VH\V1. If |V1|=0 we can color H with two colors and !(H)=�(H). Otherwise,
there are two cases to examine:
(1) Suppose there is a vertex in V2 which is adjacent to all vertices in V1. Then

w(H)¿|V1|+ 1. We can color H with |V1|+ 1 colors in the following way
(a) Color the vertices of V1 with |V1| colors.
(b) Color the vertices of Q with color number |V1|+ 1.
(c) Color all vertices of type v2q1 ;q2 ;i with color number |V1|+ 1.
(d) Color all vertices of types v1q1 ;q2 ;i and v

3
q1 ;q2 ;i with color number |V1|.

Hence, �(H)6!(H) and the claim follows (since clearly !(H)6�(H)).
(2) If no vertex in V2 is adjacent to all vertices in V1, then w(H)¿|V1| and since G′

is a chain graph, there is a vertex p ∈ V1 such that no vertex in V2∩Q is adjacent
to p. We can color the vertices of H using !(H) colors as follows:
(a) Color the vertices of V1 with |V1| colors. Let Cp denote the color of p.
(b) Color the vertices of V2 ∩ Q with Cp.
(c) Color the vertices of type v2q1 ;q2 ;i with Cp.
(d) Color the vertices of types v1q1 ;q2 ;i and v

3
q1 ;q2 ;i with any existing color di9erent

from Cp.
If |V1|¿ 1 we used |V1| colors. If |V1| = 1 we used at most two colors. In any
case, �(H) = !(H).

(⇐) Suppose that F is a perfect k-completion set for P(G). Let F ′ = F ∩ (P × Q).
We will show that G′ = (P;Q; E ∪ F ′) is a chain graph. Suppose to the contrary
that G′ contains a pair of independent edges (p1; q1); (p2; q2) such that p1; p2 ∈ P
and q1; q2 ∈ Q. Since |F |6k, there exists some 16i6k + 1 such that the edges
(q1; v2q1 ;q2 ;i); (q1; v

3
q1 ;q2 ;i); (v

1
q1 ;q2 ;i ; v

3
q1 ;q2 ;i); (v

1
q1 ;q2 ;i ; q2) and (v2q1 ;q2 ;i ; q2) are not in F . Hence,

(N; E′∪F) contains an induced cycle of odd length: If (q1; q2)∈F then {q1; v1q1 ;q2 ;i ; v2q1 ;q2 ;i ;
v3q1 ;q2 ;i ; q2} induce a cycle of length 5. Otherwise, {p1; q1; v1q1 ;q2 ;i ; v

2
q1 ;q2 ;i ; v

3
q1 ;q2 ;i ; q2; p2} in-

duce a cycle of length 7. In any case we arrive at a contradiction.

Theorem 13. Perfect Deletion is NP-hard.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 117

Proof. LovPasz’s Perfect Graph Theorem [27]: states that the complement of a perfect
graph is perfect. Hence, the theorem follows from Theorem 12 and Proposition 7.

Theorem 14. Perfect Editing is NP-hard.

Proof. Reduction from Chain Completion. Let 〈G=(P;Q; E); k〉 be an instance of Chain
Completion. We build the following instance 〈P(G) = (N; E′); k〉 of Perfect Editing:
De�ne N = P ∪ Q ∪ C ∪ D, where

C = {v1q1 ;q2 ;i ; v2q1 ;q2 ;i ; v3q1 ;q2 ;i: (q1; q2) ∈ Q × Q; 16i6k + 1};

D = {w1
p;q; i ; w

2
p;q; i ; w

3
p;q; i: (p; q) ∈ (P × P) ∪ E; 16i6k + 1}

and E′ = E ∪ (P × P) ∪ E1 ∪ E2, where

E1 = {(q1; v1q1 ;q2 ;i); (v1q1 ;q2 ;i ; v2q1 ;q2 ;i); (v2q1 ;q2 ;i ; v3q1 ;q2 ;i); (v3q1 ;q2 ;i ; q2):
(q1; q2) ∈ Q × Q; 16i6k + 1};

E2 = {(p;w1
p;q; i); (q; w

1
p;q; i); (p;w

2
p;q; i); (w

2
p;q; i ; w

3
p;q; i); (w

3
p;q; i ; q):

(p; q) ∈ E ∪ (P × P); 16i6k + 1}:
The reduction is similar to that of Theorem 12. The additional edges of E2 “protect”
the edges in E ∪ (P × P) and prevent their removal. We now show validity of the
reduction.
(⇒) Let F be a chain k-completion set for G. We claim that F is also a perfect

k-editing set for P(G). The proof is similar to the one in Theorem 12, and we shall
use the same notation. We show below how to color the vertices of D in the two
examined cases of that proof:
(1) We color all vertices of type w2

p′ ; q′ ; i with the color of q′, and all vertices of type
w3
p′ ; q′ ; i with the color of p′. (If p′
∈ VH or q′
∈ VH we use any existing legal

color.) Finally, we color all vertices of type w1
p′ ; q′ ; i with a color di9erent than those

assigned to p′ and q′. If |V1|¿2 then we used |V1|+16!(H) colors. Otherwise,
we used either 2 or 3 colors, and in any case at most !(H) colors.

(2) We color all vertices of type w2
p′ ; q′ ; i with the color of q′. We color all vertices of

type w3
p′ ; q′ ; i with the color of p′. Note, that this coloring is legal since for every

(p′; q′) ∈ E ∪ (P × P) the colors of p′ and q′ are di9erent. This follows from
the observation that p is not connected in H to any vertex in V2 ∩Q. Finally, we
color all vertices of type w1

p′ ; q′ ; i with a color di9erent than those assigned to p′

and q′.
(⇐) Let F be a perfect k-editing set for P(G), and let P(G)′=(N; E′�F). Since |F |6k,
we must have F ∩ (E ∪ (P × P)) = ∅, as otherwise, P(G)′ would contain an induced
cycle of length 5 of the form {p;w1

p;q; i ; q; w
3
p;q; i ; w

2
p;q; i}, where (p; q) ∈ E ∪ (P × P).

Let F ′=F ∩ (P×Q). By the above argument, F ′⊆(P×Q)\E. We claim that F ′ is a
k-completion set for G. Suppose to the contrary that (P;Q; E∪F ′) contains a pair of in-
dependent edges (p1; q1); (p2; q2), where p1; p2 ∈ P and q1; q2 ∈ Q. Since |F |6k, there

118 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

exists some 16i6k+1 such that the edges (q1; v1q1 ;q2 ;i); (v
1
q1 ;q2 ;i ; v

2
q1 ;q2 ;i); (v

2
q1 ;q2 ;i ; v

3
q1 ;q2 ;i);

(v3q1 ;q2 ;i ; q2); (q1; v
2
q1 ;q2 ;i); (q1; v

3
q1 ;q2 ;i); (v

1
q1 ;q2 ;i ; v

3
q1 ;q2 ;i); (v

1
q1 ;q2 ;i ; q2) and (v2q1 ;q2 ;i ; q2) are not

in F . Hence, P(G)′ contains an induced cycle of odd length: If (q1; q2) ∈ F then
{q1; v1q1 ;q2 ;i ; v2q1 ;q2 ;i ; v3q1 ;q2 ;i ; q2} induce a cycle of length 5. Otherwise, {p1; q1; v1q1 ;q2 ;i ;
v2q1 ;q2 ;i ; v

3
q1 ;q2 ;i ; q2; p2} induce a cycle of length 7. In any case we arrive at a contradic-

tion.

3.3. Chordal graphs

A graph is called chordal if it contains no induced cycle of length greater than 3
(cf. [35,37]). We show in this section that Chordal Deletion is NP-complete.

Theorem 15. Chordal Deletion is NP-complete.

Proof. The problem is in NP since chordal graphs can be recognized in linear time [37].
We prove NP-hardness by reduction from Chain Deletion. Let 〈G=(P;Q; E); k〉 be an
instance of Chain Deletion. Build the following instance 〈C(G)=(V ′; E′); k〉 of Chordal
Deletion: De�ne V ′=P∪Q∪VP∪VQ, where VP={v1; : : : ; vk} and VQ={vk+1; : : : ; v2k}.
De�ne E′ = E ∪ (P × P)∪ (Q×Q)∪ (P × VP)∪ (Q× VQ). We show that the Chordal
Deletion instance has a solution, if and only if, the Chain Deletion instance has a
solution.
(⇒) Suppose that F is a chain k-deletion set. We claim that F is also a chordal

k-deletion set. Let H=(V ′; E′\F). Suppose to the contrary that H is not chordal, and let
C be an induced cycle of length greater than 3 in H . If C contains any vertex v ∈ VP
then the two neighbors of v on C are vertices from P, a contradiction. The same holds
for VQ. Hence, V (C) ∩ VP = V (C) ∩ VQ = ∅. Since P and Q are cliques, C must be
of the form {p1; p2; q1; q2}, where p1; p2 ∈ P and q1; q2 ∈ Q. But then (p1; q2) and
(p2; q1) are independent edges in the chain graph (P;Q; E\F), a contradiction.
(⇐) Suppose that F is a chordal k-deletion set. We shall prove that F∩E is a chain

k-deletion set. Let G′=(P;Q; E\F). If G′ is not a chain graph then it contains a pair of
independent edges (p1; q1); (p2; q2), where p1; p2 ∈ P and q1; q2 ∈ Q. In C(G), p1; p2

and also q1; q2 were connected by an edge and k edge-disjoint paths of length 2. Hence,
each pair is still connected by a path of length at most 2 in H = (V ′; E′\F). Thus,
p1; q1; q2 and p2 are on an induced cycle of length at least 4 in H , a contradiction.

Corollary 16. Co-Chordal Completion is NP-complete.

3.4. Split graphs

A graph G is called a split graph if there is a partition (K; I) of its vertex set, so
that K induces a clique and I induces an independent set (cf. [16]). We prove that
Split Deletion is NP-complete. Since the complement of a split graph is a split graph,
this result implies that Split Completion is also NP-complete.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 119

Theorem 17. Split Deletion is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from CLIQUE.
Let 〈G = (V; E); k〉 be an instance of CLIQUE. Build the following instance 〈G′ =
(V ′; E′); k2 = n2(n − k + 1) − 1〉 of Split Deletion: De�ne V ′ = V ∪ W , where W =
{w1; : : : ; wn2+1}, and de�ne E′ = E ∪ (V ×W).
If G has a clique K of size at least k, then denote K ′=K∪{w1} and partition V ′ into

(K ′; V ′\K ′). The number of edges that should be deleted from G′ so that it becomes a
split graph with respect to this partition is at most n2(n− k) + (n−k2)¡n2(n− k + 1).

On the other hand, suppose that G′ has a k2-deletion set, resulting in a split partition
(K; I). If |K ∩ V |¡k then at least n2(n − (k − 1))¿k2 edges in (V \K) × (W \K)
should have been deleted from G′, a contradiction.

Corollary 18. Split Completion is NP-complete.

3.5. AT-free graphs

An asteroidal triple is a set of three independent vertices such that there is a path
between every two of them which avoids the neighborhood of the third vertex. G is
called asteroidal triple free, or AT-free, if G contains no asteroidal triple [10]. Several
families of graphs are asteroidal triple free, e.g., interval and co-comparability graphs.
We prove in this section that AT-free Deletion is NP-complete.

Theorem 19. AT-free Deletion is NP-complete.

Proof. The problem is clearly in NP. The hardness proof is by reduction from Chain
Deletion. Let 〈G = (U; V; E); k〉 be an instance of Chain Deletion. Build the following
instance 〈A(G) = (V ′; E′); k〉 of AT-free Deletion: De�ne

V ′ = U ∪ V ∪ Vq ∪ Vw ∪ Vz;

Vq = {q1; : : : ; qk}; Vw = {w1; : : : ; wk+1}; Vz = {z1; : : : ; zk+1};

E′ = E ∪ (U × U) ∪ (U × Vq) ∪ (U × Vw) ∪ ((Vw ∪ Vz)× (Vw ∪ Vz)):
We now prove validity of the reduction.
(⇒) Let F be a chain k-deletion set. We claim that F is also an AT-free k-deletion

set. Let G′ = (U; V; E \F) and let A(G)′ = (V ′; E′ \F). Suppose to the contrary that
S = {x; y; z} is an asteroidal triple in A(G)′. We observe the following:
• U and Vw ∪ Vz remain cliques in A(G)′. Therefore, S contains at most one vertex
from U and at most one vertex from Vw ∪ Vz.

• For any two vertices x; y ∈ Vq; N (x) = N (y). Therefore, S contains at most one
vertex from Vq.

• Since G′ is a chain graph, for every x; y ∈ V , N (x)⊆N (y) or N (y)⊆N (x). There-
fore S contains at most one vertex from V .

• If S contains a vertex u ∈ Vw then S cannot contain a vertex v ∈ Vq since
N (v)⊆N (u).

120 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

• If S ∩ V
= ∅ then S ∩ U = ∅, since every path from a vertex in V to a vertex in
V ′\V intersects the closed neighborhood of every vertex in U .
• If S contains a vertex v ∈ Vq ∪Vw then U ⊆N (v). Therefore, S ∩U = ∅ in this case.

These observations imply that S ∩ U = ∅, since otherwise S could not contain any
vertex from V or from Vq ∪ Vw, and would have therefore at most two vertices (one
from U and one from Vz), a contradiction.
The only remaining possibility is that S contains a vertex from V , a vertex from Vq

and a vertex from Vz, but every path from a vertex in Vz to a vertex in V intersects
U , and hence, intersects the neighborhood of every vertex in Vq, a contradiction.
(⇐) Let F be an AT-free k-deletion set. We show that F ∩ E is a chain k-deletion

set. Let G′ = (U; V; E\F) and let A(G)′ = (V ′; E′\F). Suppose to the contrary that G′

is not a chain graph. Thus, G′ contains two independent edges (u1; v1); (u2; v2) where
u1; u2 ∈ U and v1; v2 ∈ V . We shall prove that there is a vertex z ∈ Vz such that
{v1; v2; z} is an asteroidal triple in A(G)′.
In A(G), every vertex of U was adjacent to all k + 1 vertices of Vw. Hence, there

exist w1; w2 ∈ Vw, w1
= w2, such that (u1; w1) ∈ E′\F and (u2; w2) ∈ E′\F . Similarly,
there exists a vertex z ∈ Vz such that (w1; z); (w2; z) ∈ E′\F .
{v1; v2; z} is an asteroidal triple since:

(1) {z; w1; u1; v1} is a path from z to v1 avoiding the neighborhood of v2.
(2) {z; w2; u2; v2} is a path from z to v2 avoiding the neighborhood of v1.
(3) If (u1; u2) ∈ E′\F then {v1; u1; u2; v2} is a path from v1 to v2 avoiding the neighbor-

hood of z. Otherwise, there exists a vertex q ∈ Vq such that (u1; q); (u2; q) ∈ E′\F .
Thus, {v1; u1; q; u2; v2} is a path from v1 to v2 avoiding the neighborhood of z.

Hence, we arrive at a contradiction, implying that G′ is a chain graph.

3.6. Comparability graphs

A graph is called a comparability graph if it has a transitive orientation of its edges,
that is, an orientation F for which (a; b); (b; c) ∈ F implies (a; c) ∈ F (cf. [16]).
We show below that Comparability Editing is NP-complete. We also prove that it
is NP-hard to approximate comparability modi�cation problems to within a factor of
18=17.

Theorem 20. Comparability Editing is NP-complete.

Proof. Membership in NP is trivial. The hardness proof is by reduction from MAX-
CUT. Given a MAX-CUT instance 〈G = (V; E); k〉 we build a Comparability Editing
instance 〈C(G)=(N; E′); k2 = |E|−k〉 as follows: De�ne N =V ∪{e1u;v; e2u;v: (u; v) ∈ E}
∪W , where W = {wvi : v ∈ V; 16i62k2 + 1}. Also de�ne E′ = E1 ∪ E2, where

E1 = {(v; wvi): v ∈ V; wvi ∈ W};
E2 = {(v; e1v;w); (e1v;w; e2v;w); (e2v;w; w): (v; w) ∈ E}:

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 121

(for each (v; w) ∈ E the choice of which vertex to connect to e1v;w is arbitrary). In
words, we attach 2k2 + 1 private neighbors to each original vertex, and replace each
edge by a path of length three. The validity proof follows.
(⇒) Suppose that (V1; V2) is a cut of weight at least k in G, i.e., |E∩ (V1×V2)|¿k.

For each non-cut edge e = (v; w) ∈ ((V1 × V1) ∪ (V2 × V2)) ∩ E we remove the edge
(e1v;w; e

2
v;w) from its corresponding path in C(G). In total, we remove at most k2 edges.

We now give a transitive orientation to the resulting graph, thus proving that it is a
comparability graph: Orient each edge incident on v ∈ V1 out of v, and each edge
incident on w ∈ V2 into w. For each edge (v; w) ∈ (V1 × V2) ∩ E, orient (e1v;w; e2v;w)
from e2v;w to e1v;w.
(⇐) Suppose that F is a comparability k2-editing set, and let H = (N; E′ � F) be

the modi�ed comparability graph. Let R be a transitive orientation of H . For each
vertex v ∈ V its private neighbors in N (v) ∩ W ensure that either all edges incident
on v are directed in R into v, or they are all directed out of v. (This is true since the
number of private neighbors implies that at least one such neighbor a of v must remain
adjacent to v only in the modi�ed graph, and an orientation of the edge (a; v) forces
the orientation of all other edges.) De�ne a partition (V1; V2) of V , in which v ∈ V1 if
and only if all edges incident on v are directed into v. We shall prove that the weight
of this cut is at least k. Since we modi�ed at most |E| − k edges, there are at least
k paths in H of the form {v; e1v;w; e2v;w; w}, for some (v; w) ∈ E, such that no edge in
F has both its endpoints in any of those paths. For each such path, its corresponding
edge in G must be across the cut, as otherwise R could not have been transitive.

Corollary 21. Co-Comparability Editing is NP-complete.

We now prove that approximating Comparability Editing with ratio 18=17 is NP-hard,
by showing a relation between the approximability of Comparability Editing and the
approximability of MAX-CUT.

Lemma 22. If Comparability Editing can be approximated in polynomial time with
ratio 1 + . (.¡ 1) then MAX-CUT can be approximated in polynomial time with
ratio 1=(1− .).

Proof. Suppose there is a (1+.)-approximation algorithm A for Comparability Editing,
for some .¡ 1. To �nd an approximation for MAX-CUT on an input graph G=(V; E)
do the following: First, apply to G the reduction of Theorem 20 with k=0, and obtain
the graph C(G) = (N; E′). Second, apply algorithm A to C(G) and obtain a modi�ed
comparability graph C(G)′. Finally, compute a cut of G as shown below.
Let m = |E|. Let F be a transitive orientation of C(G)′. For each vertex v ∈ V its

private neighbors in N (v)∩W ensure that either all edges in F are oriented into v, or
all are oriented out of v. This is true since w.l.o.g. |E(C(G)′)� E′|6m.

De�ne a partition (V1; V2) of V , in which v ∈ V1, if and only if, all edges incident
on v are directed into v. It remains to show that this cut approximates the optimum

122 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

solution with ratio 1=(1 − .). Let k∗ be the weight of a maximum cut in G. Note,
that k∗¿m=2 since every graph has a cut which at least half of its edges cross. By
the proof of Theorem 20 there is an editing set for C(G) of size at most m− k∗, and
therefore |E(C(G)′)� E′|6(1 + .)(m − k∗). Thus, by the proof of Theorem 20 the
weight of the cut (V1; V2) is at least

m− (1 + .)(m− k∗) = k∗(1 + .)− m.¿k∗(1 + .)− 2k∗.= k∗(1− .):

Corollary 23. It is NP-hard to approximate Comparability Editing to within a factor
of 18=17.

Proof. In [22,38] it is shown that approximating MAX-CUT to within a factor of
17=16 is NP-hard. By Lemma 22 the claim follows.

We comment that our reduction from MAX-CUT applies also to Comparability Com-
pletion and Comparability Deletion. Hence, it is also NP-hard to approximate the com-
pletion and deletion problems to within a factor of 18=17.

4. Positive results on bounded degree graphs

4.1. An approximation algorithm for deletion and editing problems

We present below a constant factor approximation algorithm for edge deletion and
editing problems on bounded degree graphs. The result applies to any hereditary graph
family which can be characterized by a �nite set of forbidden induced subgraphs.
Examples of such families include cographs, claw-free graphs and numerous others
(cf. [7, Chapter 7:1]). An analogous result for vertex deletion problems was given by
Yannakakis and Lund [28].
Let � be a hereditary graph property that can be characterized by a �nite set F of

forbidden induced subgraphs. Let G= (V; E) be the input graph. We assume that each
forbidden subgraph contains at most t vertices and that G has maximum degree d. We
�rst handle the case in which no forbidden subgraph contains an isolated vertex. The
approximation algorithm follows:

Algorithm APPROX(G;F):
A← ∅
While = GV\A contains an induced subgraph H
isomorphic to some F ∈F, do:
A← A ∪ V (H).

Remove all edges {(v; w) ∈ E: v ∈ A; w ∈ V} from G.

The algorithm is clearly polynomial since �nding a forbidden induced subgraph with
at most t vertices can be done in O(nt) time, where testing isomorphism is done in
O(t!) = O(1) time.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 123

Theorem 24. The algorithm approximates both �-Deletion and �-Editing to within
a factor of td.

Proof. Correctness: After the ‘while’ loop is completed, GV\A contains no forbidden
induced subgraph. After the edge removal step is completed, all vertices in A become
isolated. Since no forbidden induced subgraph contains an isolated vertex, at the end
of the algorithm G satis�es �.

Approximation ratio: Let F be an optimum solution of size k. For any forbidden
induced subgraph H found by the algorithm, F must contain an edge with both end-
points in H . Hence, at the end of the algorithm |A|6kt, and at most ktd edges are
deleted from G.

Now suppose that F contains graphs with isolated vertices, but no forbidden sub-
graph is an independent set. For a graph F denote by T (F) the subgraph obtained
by removing all isolated vertices from F . In case n¡ 3t(d + 1), we can solve the
deletion and editing problems exactly in constant time by exhaustive search. Other-
wise, we de�ne a new set of forbidden induced subgraphs F′ = {T (F): F ∈F}. We
then apply algorithm APPROX(G;F′). The resulting graph clearly satis�es �, since
no F ∈F is an independent set. We analyze below the approximation ratio achieved
by the algorithm.

Theorem 25. The algorithm approximates �-Deletion to within a factor of td.

Proof. We claim that for any F ∈ F and for any d-degree bounded graph G with
at least 3t(d+ 1) vertices, either G contains an induced copy of F , or G contains no
induced copy of T (F). Suppose that H is an induced copy of T (F) in G, and T (F)
=
F . Let S ⊆V\V (H) denote the set of vertices which are not adjacent to any vertex of H .
Since |V (H)|6t−1, |S|¿n− (t−1)(d+1)¿ 2t(d+1). Since GS has degree bounded
by d, it contains an independent set of size at least 2t(d+1)=(d+1)¿t. Let S ′ be any
independent subset of S of size |V (F)| − |V (T (F))|. Then the vertices in V (H) ∪ S ′
induce a copy of F . This completes the proof of the claim. The approximation ratio
now follows from the same arguments as in the proof of Theorem 24.

To prove the same result for �-Editing we need the following lemma:

Lemma 26. A graph with a maximum independent set of size l has least (n − l) ·
(n− 2l)=2l edges.

Proof. Let G = (V; E) be a graph, and let S be a maximum independent set of G,
|S|6l. Necessarily, each vertex in V \S is adjacent to some vertex in S. Therefore,
there are at least n− l edges between S and V\S. The induced subgraph GV\S satis�es
the same property. By induction, the number of edges in G is at least

�n=l�∑
r=1

(n− rl)¿l
(�n=l�

2

)
¿
l(n=l− 1) · (n=l− 2)

2
=

(n− l) · (n− 2l)
2l

:

124 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

Theorem 27. The algorithm approximates �-Editing to within a factor of td.

Proof. Let G∗ be an optimally modi�ed graph. If G∗ contains no induced copy of any
T (F) ∈F′ then by Theorem 24 algorithm APPROX achieves an approximation ratio
of td. Otherwise, let H be an induced copy in G∗ of some T (F) ∈F′. We �rst show
that the size of an optimum �-editing set for G is least (n− t(d+ 1))=2.
Let S ⊆V \V (H) denote the set of vertices which are not adjacent to any vertex of

H . Since |V (H)|6t − 1, |S|¿n− (t − 1)(d+ 1)¿n− t(d+ 1)¿2t(d+ 1).
Since G∗ contains T (F) but no induced copy of F and |V (F)| − |V (T (F))|6t − 2,

the size of a maximum independent set in G∗
S is at most max{t − 3; 1}6t − 2. By

Lemma 26 we conclude that |E(G∗
S)|¿(|S| − (t − 2))(|S| − 2(t − 2))=2(t − 2). But

|E(GS)|6|S|d=2. Hence,

|E(G∗)� E|¿ |E(G∗
S)| −

|S|d
2

¿
(|S| − (t − 2))(2(t − 2)(d+ 1)− 2(t − 2))− d|S|(t − 2)

2(t − 2)

=
2d(|S| − (t − 2))− d|S|

2

¿
d(|S| − 2t)

2
¿
|S|
2
¿
n− t(d+ 1)

2
:

As algorithm APPROX only removes edges, the size of the editing set it produces is
at most |E|6nd=2. Hence, the approximation ratio it achieves is at most

st
nd=2

(n− t(d+ 1))=2
≤ nd

2n=3
=

3d
2
¡td:

The last remaining case is when F contains an independent set as a forbidden induced
subgraph. For the deletion problem, if n6(d + 1)t then it can be solved exactly in
constant time by exhaustive search, and otherwise, it has no solution since a d-degree
bounded graph with at least (d + 1)t vertices contains an independent set of size at
least t.
We now handle the editing problem in this case. w.l.o.g. n¿3(t − 1)(d + 1). Due

to Ramsey’s Theorem (cf. [6]), if F contains also a clique as a forbidden induced
subgraph, then the number of vertices in G is bounded by a constant, and we can solve
the problem exactly in constant time. Otherwise, we obtain a 3(t − 1)-approximation
algorithm for the �-Editing problem by simply transforming G into a clique. We prove
this approximation ratio below.

Theorem 28. The algorithm approximates �-Editing to within a factor of 3(t − 1).

Proof. Let G be the input d-degree bounded graph. Let G∗ be an optimally modi�ed
graph with maximum independent set of size at most t−1. By Lemma 26, G∗ contains
at least (n− (t − 1))(n− 2(t − 1))=2(t − 1) edges. Therefore, |E(G∗)� E(G)|¿(n−
(t−1)) · (n−2(t−1))=2(t−1)−nd=2. Since the approximation algorithm adds at most

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 125

(n2) edges, it achieves a ratio of at most

r =
n(n− 1)(t − 1)

(n− (t − 1))(n− 2(t − 1))− nd(t − 1)

6
n(n− 1)(t − 1)

2n=3(n− (t − 1))− nd(t − 1)

6
(n− 1)(t − 1)

2=3(n− 3=2(d+ 1)(t − 1))
6

(n− 1)(t − 1)
n=3

¡ 3(t − 1):

The algorithm computes a correct solution since by our assumption F contains no
clique as a forbidden induced subgraph.

The following theorem summarizes our results.

Theorem 29. For any graph property � which is characterized by a (nite set of for-
bidden induced subgraphs; there is a polynomial time constant factor approximation
algorithm for the �-Deletion and �-Editing problems on bounded degree graphs.

4.2. Polynomial algorithms

In the following we give polynomial algorithms for Chain Deletion and Editing,
Split Deletion and Threshold Deletion and Editing when restricted to bounded degree
graphs. These results are derived by observing that for these properties the search space
becomes bounded when the problem is restricted to bounded degree graphs.
For the results concerning editing problems we need the following lemma.

Lemma 30. Let � be a hereditary graph property such that if G=(V; E) satis(es �
then GV\{v} ∪ v satis�es � for every v ∈ V (i.e., the property remains satis(ed if we
remove all the edges incident on a vertex v). Then an optimum solution of �-Editing
on a d-degree bounded graph produces a graph with degree bounded by 2d.

Proof. The lemma follows by noting that it is never bene�cial to add more than d
edges incident on the same vertex, since one could instead make that vertex isolated
by modifying fewer edges.

Theorem 31. Chain Deletion and Chain Editing can be solved in polynomial time on
bounded degree graphs.

Proof. Let G be an input d-degree bounded graph. The proof follows from the ob-
servation that a chain graph with degree bounded by d has at most 2d vertices with
degree at least one. Hence, a maximum chain subgraph of G has at most 2d vertices
with degree at least one. This set of vertices can be found by complete enumeration in
polynomial time. Similarly, by Lemma 30 an optimum solution to the editing problem
produces a 2d-degree bounded graph, which therefore has at most 4d vertices with
degree at least one.

126 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

Theorem 32. Split Deletion can be solved in polynomial time on bounded degree
graphs.

Proof. The proof follows from the observation that a split graph with degree bounded
by d has maximum clique of size at most d + 1. Hence, one can enumerate all pos-
sible partitions of the vertex set of the graph into a clique and an independent set in
polynomial time.

A graph G = (V; E) is called a threshold graph, if there is a partition (K; I) of V
such that K induces a clique, I induces an independent set, and the bipartite graph
(K; I; E ∩ (K × I)) is a chain graph (cf. [29] for another equivalent de�nition of this
class).

Theorem 33. Threshold Deletion and Threshold Editing can be solved in polynomial
time on bounded degree graphs.

Proof. Let G = (V; E) be an input d-degree bounded graph. An optimum threshold
deletion set produces a graph with degree bounded by d. By Lemma 30, an optimum
threshold editing set produces a graph with degree bounded by 2d. Hence, one can
enumerate all partitions of V into a clique and an independent set in polynomial time,
and for each partition solve a chain modi�cation problem on the corresponding bipartite
graph using the result of Theorem 31.

5. Concluding remarks

Most of the results obtained here and previously on edge modi�cation problems are
hardness results. Proving a general hardness result similar to that obtained for vertex
deletion problems [26], is a challenging open problem.
The study of bounded-degree edge modi�cation problems is still very preliminary.

Such restriction is motivated by some real applications (see, e.g., [23]). Other realistic
restrictions may be appropriate for particular problems. Studying the parameterized
complexity of the NP-hard problems is also of interest.
Like every attempt to organize a body of results into a table or a diagram, Fig. 1

immediately identi�es numerous open problems. We conjecture that Chain Editing is
NP-complete. If true, this would imply, among other results, the NP-completeness of
Interval Editing and Unit Interval Editing.

References

[1] A. Agrawal, P. Klein, R. Ravi, Cutting down on �ll using nested dissection: provably good elimination
orderings, in: A. George, J.R. Gilbert, J.W.H. Liu (Eds.), Graph Theory and Sparse Matrix Computation,
Springer, Berlin, 1993, pp. 31–55.

A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128 127

[2] T. Asano, An application of duality to edge-deletion problems, SIAM J. Comput. 16 (2) (1987) 312–
331.

[3] T. Asano, T. Hirata, Edge-deletion and edge-contraction problems, Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, San Francisco, California, 1982, pp. 245–254.

[4] A. Ben-Dor, private communication, 1996.
[5] H. Bodlaender, B. de Fluiter, On intervalizing k-colored graphs for DNA physical mapping, Discrete

Appl. Math. 71 (1996) 55–77.
[6] B. BollobPas, Random Graphs, Academic Press, New York, 1985, (Chapter XII).
[7] A. BrandstWadt, V.B. Le, J.P. Spinrad, Graph Classes – a Survey, SIAM Monographs in Discrete

Mathematics and Applications, SIAM, Philadelphia, 1999.
[8] L. Cai, Fixed-parameter tractability of graph modi�cation problems for hereditary properties, Inform.

Process. Lett. 58 (1996) 171–176.
[9] K. Cirino, S. Muthukrishnan, N. Narayanaswamy, H. Ramesh, Graph editing to bipartite interval graphs:

exact and asymptotic bounds, Technical Report, Bell Laboratories Innovations, Lucent Technologies,
1996.

[10] D.G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, SIAM. J. Discrete Math. 10 (3)
(1997) 399–430.

[11] E.S. El-Mallah, C.J. Colbourn, The complexity of some edge deletion problems, IEEE Trans. Circuits
Systems 35 (3) (1988) 354–362.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Co., San Francisco, 1979.

[13] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simpli�ed, NP-complete problems, Theoret. Comput.
Sci. 1 (1976) 237–267.

[14] P.W. Goldberg, M.C. Golumbic, H. Kaplan, R. Shamir, Four strikes against physical mapping of DNA,
J. Comput. Biol. 2 (1) (1995) 139–152.

[15] M. Golumbic, H. Kaplan, R. Shamir, Graph sandwich problems, J. Algorithms 19 (1995) 449–473.
[16] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[17] M.C. Golumbic, H. Kaplan, R. Shamir, On the complexity of DNA physical mapping, Adv. Appl.

Math. 15 (1994) 251–261.
[18] M.C. Golumbic, R. Shamir, Complexity and algorithms for reasoning about time: A graph-theoretic

approach, J. ACM 40 (1993) 1108–1133.
[19] S.L. Hakimi, E.F. Schmeichel, N.E. Young, Orienting graphs to optimize reachability, Inform. Process.

Lett. 63 (5) (1997) 229–235.
[20] P.L. Hammer, T. Ibaraki, U.N. Peled, Threshold numbers and threshold completions, in: P. Hansen

(Ed.), Studies on Graphs and Discrete Programming, North-Holland, Amsterdam, 1981, pp. 125–145.
[21] P.L. Hammer, B. Simeone, The splittance of a graph, Combinatorica 1 (1981) 275–284.
[22] J. HXastad, Some optimal inapproximability results, Proceedings of 29th STOC, 1997, pp. 1–10, full

version: E-CCC Report number TR97-037.
[23] H. Kaplan, R. Shamir, Bounded degree interval sandwich problems, Algorithmica 24 (1999) 96–104.
[24] H. Kaplan, R. Shamir, R.E. Tarjan, Tractability of parameterized completion problems on chordal,

strongly chordal, and proper interval graphs, SIAM J. Comput. 28 (1999) 1906–1922.
[25] T. Kashiwabara, T. Fujisawa, An NP-complete problem on interval graphs, IEEE International

Symposium on Circuits and Systems (12th), 1979, pp. 82–83.
[26] J. Lewis, M. Yannakakis, The node deletion problem for hereditary properties is NP-complete,

J. Comput. Systems Sci. 20 (1980) 219–230.
[27] L. LovPas, A characterization of perfect graphs, J. Combin. Theory (1972) 95–98.
[28] C. Lund, M. Yannakakis, The approximation of maximum subgraph problems, in: A. Lingas,

R. Karlsson, S. Carlsson (Eds.), Proceedings of International Conference on Automata, Languages and
Programming (ICALP’91), Lecture Notes in Computer Science, Vol. 700, Springer, Berlin, Germany,
1993, pp. 40–51.

[29] N. Mahadev, U. Peled, Threshold Graphs and Related Topics, Annals of Discrete Mathematics, 49
(1994) 299–308.

[30] F. Margot, Some complexity results about threshold graphs, Discrete Appl. Math. 49.
[31] A. Natanzon, Complexity and approximation of some graph modi�cation problems, Master’s Thesis,

Department of Computer Science, Tel Aviv University, 1999.

128 A. Natanzon et al. / Discrete Applied Mathematics 113 (2001) 109–128

[32] A. Natanzon, R. Shamir, R. Sharan, A polynomial approximation algorithm for the minimum �ll-in
problem, SIAM J. Comput. 30 (2000) 1067–1079. A preliminary version appeared in: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing (STOC’98), ACM Press, New York, 1998,
pp. 41–47.

[33] A. Natanzon, R. Shamir, R. Sharan, Complexity classi�cation of some edge modi�cation problems,
Proceedings of 25th International Workshop (WG ’99), Graph-Theoretic Concepts in Computer Science,
Lecture Notes in Computer Science, Vol. 1665, Springer, Berlin, 1999, pp. 65–77.

[34] R. Ravi, A. Agrawal, P. Klein, Ordering problems approximated: single processor scheduling and
interval graph completion, Proceedings of ICALP 1991, Lecture Notes in Computer Science, Vol.
510, Springer, Berlin, 1991, pp. 751–762.

[35] J.D. Rose, A graph-theoretic study of the numerical solution of sparse positive de�nite systems of linear
equations, in: R.C. Reed (Ed.), Graph Theory and Computing, Academic Press, New York, 1972, pp.
183–217.

[36] R. Shamir, R. Sharan, Cluster graph modi�cation problems, manuscript, Tel-Aviv University, 2000.
[37] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity

of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (1984) 566–579.
[38] L. Trevisan, G. Sorkin, M. Sudan, D. Williamson, Gadgets, approximation, and linear programming,

Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS’96), 1996,
pp. 617–626.

[39] J. Xue, Edge-maximal triangulated subgraph and heuristics for the maximum clique problem, Technical
report, Graduate School of Management, Clark University, Worcester, MA, July 1993.

[40] M. Yannakakis, Edge deletion problems, SIAM J. Comput. 10 (2) (1981) 297–309.
[41] M. Yannakakis, Computing the minimum �ll-in is NP-complete, SIAM J. Algebrac Discrete

Methods 2 (1981) 77–79.

