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Abstract. One of the continuing challenges in abstract interpretation is the cre-
ation of abstractions that yield analyses that are bothtractableandprecise enough
to prove interesting properties about real-world programs. One source of diffi-
culty is the need to handle programs with different behaviors along different ex-
ecution paths. Disjunctive (powerset) abstractions capture such distinctions in a
natural way. However, in general, powerset abstractions increase space and time
costs by an exponential factor. Thus, powerset abstractions are generally per-
ceived as very costly.
In this paper, we partially address this challenge by presenting and empirically
evaluating a new heap abstraction. The new heap abstraction works by merging
shape descriptors according to a partial isomorphism similarity criteria, resulting
in a partially disjunctive abstraction.
We implemented this abstraction in TVLA—a generic system for implementing
program analyses.We conducted an empirical evaluation of the new abstraction
and compared it with the powerset heap abstraction. The experiments show that
analyses based on the partially disjunctive heap abstraction are as precise as the
ones based on the powerset heap abstraction. In terms of performance, analyses
based on the partially disjunctive heap abstraction are often superior to analyses
based on the powerset heap abstraction. The empirical results show consider-
able speedups, up to2 orders of magnitude, enabling previously non-terminating
analyses, such as verification of the Deutsch-Schorr-Waite scanning algorithm,
to terminate with no negative effect on the overall precision. Indeed, experience
indicates that the partially disjunctive shape abstraction improves performance
across all TVLA analyses uniformly, and in many cases is essential formaking
precise shape analysis feasible.

1 Introduction

One of the continuing challenges in abstract interpretation [3] is the creation of abstrac-
tions that yield analyses that are bothtractableandprecise enoughto prove interesting
properties about real-world programs. In this paper we partially address this challenge
by presenting and empirically evaluating a new heap abstraction, i.e., an abstraction for
the (potentially unbounded) dynamically allocated storage manipulated by programs
(e.g., see [7, 9, 2, 8, 16, 14, 15]). Heap abstractions are of fundamental importance to
static analysis and verification of programs written in modern languages. Heap abstrac-
tions have been used, for instance, in the context of shape analysis (e.g., for proving that
a program fragment preserves certain tree structure invariants), as well as in verifying
that a client program satisfies certain conformance constraints for the correct usage of
a library.



We present our abstraction in the context of the parametric abstract interpretation
framework of [15], which is based on the idea of representingprogram states using3-
valued logical structures. While it is very natural to view the abstraction we present as
a heap abstraction, it can be used for abstracting other domains as well.

The TVLA framework presented in [15] uses a disjunctive (powerset) heap abstrac-
tion: the abstract value at every program point is asetof shape descriptors (of bounded
size) and set union is used as the join operation. In particular, this abstraction does not
attempt to combine (or merge) different shape descriptors into one and relies on the fact
that there are only finitely many shape descriptors (as they are of bounded size). This
leads to powerful and sophisticated analyses for proving interesting program proper-
ties but is usually too expensive to be applied to real-worldprograms. (The number of
distinct shape descriptors is doubly exponential in the size of the program in the worst
case.)

The heap abstractions most commonly used in practice, especially when scalabil-
ity is important, tend to besingle-shapeheap abstractions, which use a single shape
descriptor to describe all possible program states at a program point [9, 2, 14]. The
current TVLA implementation provides options to utilize such single-shape heap ab-
stractions. However, our experience has been that for the kind of applications that we
have used TVLA for (mostly verification problems), the single-shape abstraction tends
to be imprecise and causes a number of “false alarms” (i.e., verification fails for cor-
rect programs). Hence, this abstraction is not widely used by TVLA users. (A detailed
discussion of the single-shape abstractions is beyond the scope of this paper, because
of the complexity of formalizing the single-shape abstractions within the framework of
3-valued-logic.)

This paper presents apartially disjunctiveheap abstraction which, in our experi-
ence, is significantly more efficient than the powerset heap abstraction, but has turned
out to be precise enough for all the applications we have experimented with. Indeed,
this abstraction has turned out to be the abstraction of choice for all TVLA users. The
main idea behind this abstraction is to reduce the set of shape descriptors arising at a
program point by merging “similar” shape descriptors but keeping “dissimilar” shape
descriptors apart.

1.1 Running Example

Figure 1 shows a method implementing the mark phase of a mark-and-sweep garbage
collector. The challenge here is to show that this procedureis partially correct, i.e., to
establish that “upon termination, an element is marked if and only if it is reachable from
the root.” This simple program serves as a running example inthis paper.

The partial correctness of this program was established using abstract interpretation
in [13]. This abstract interpretation was created using TVLA—a generic system for
implementing program analyses [10]. The default implementation of TVLA uses the
powerset heap abstraction. Verification of the above property using the powerset heap
abstraction took584 cpu seconds and generated189, 772 different shape descriptors—
definitely too many for such a simple program and simple property. The situation is
worse for verifying a similar property for an implementation of the Deutsch-Schorr-



// @Ensures marked == REACH(root)
void mark(Node root, NodeSet marked) {

Node x;
if (root != null) {

NodeSet pending = new NodeSet();
pending.add(root);
marked.clear();
while (!pending.isEmpty()) {

x = pending.selectAndRemove();
marked.add(x);
if (x.left != null)

if (!marked.contains(x.left))
pending.add(x.left);

if (x.right != null)
if (!marked.contains(x.right)

pending.add(x.right);
}

}
}

Fig. 1. A simple Java-like implementation of the mark phase of a mark-and-sweepgarbage col-
lector

Waite scanning procedure [11]. This verification took4 hours when the powerset heap
abstraction was used.

Powerset heap abstractions are costly since they may distinguish between too many
shape descriptors, which may not be necessary in order to verify program properties.
In this paper, we define a partially disjunctive heap abstraction, which is coarser than
the powerset heap abstraction. The main idea is to reduce theset of shape descriptors
arising at a program point by merging “similar” shape descriptors. In the mark ex-
ample, verification using the partially disjunctive heap abstraction took3 cpu seconds
and generated1, 133 shape descriptors—a two orders of magnitude improvement over
verification using the powerset heap abstraction—with the same precision. Similarly,
the verification of an implementation of the Deutsch-Schorr-Waite scanning procedure
terminated successfully in158 cpu seconds using the partially disjunctive heap abstrac-
tion.

1.2 Main Results

A New Abstraction. We define a new heap abstraction, which we refer to as the
partial-isomorphismheap abstraction. The new abstraction is coarser than the pow-
erset heap abstraction and yet keeps certain shape descriptors apart. Our abstraction is
parametric. It allows the user to specify which heap properties are of importance for a
given analysis, and this guides the abstraction in determining which shape descriptors
are merged together.



Robust Implementation. We implemented our abstraction in TVLA. This abstraction
has turned out to be the abstraction of choice for all TVLA users (e.g., see [19]). We
believe that it is simple enough to be implemented in other systems besides TVLA (e.g.,
[17]).

Empirical Evaluation. We empirically evaluated our abstraction by comparing it with
the powerset heap abstraction. In the largest benchmark,SQLExecuter, powerset
heap abstraction did not terminate within20, 000 cpu seconds. In contrast, the new
abstraction took9, 673 cpu seconds and proved correct usage of JDBC objects and
absence of null-dereferences.

1.3 Outline

In Section 2, we give an overview of 3-valued-logic based program analysis. In Sec-
tion 3, we describe the partial-isomorphism heap abstraction. In Section 4, we provide
an empirical evaluation of the partial-isomorphism heap abstraction and powerset heap
abstraction. In Section 5, we outline several other heap abstractions that we are investi-
gating as ongoing work. In Section 6, we discuss related work.

2 3-valued Shape Analysis Primer

We now present an overview offirst order transition systems(FOTS), the formalism
underlying the parametric analysis framework of [15]. FOTSmay be thought of as an
imperative language built around an expression sub-language based on first-order logic
with transitive closure.

Concrete Program Configurations

In FOTS, program states are represented using2-valued logical structures.

Definition 1. A 2-valued logical structure over a set of predicatesP is a pair C♮ =
〈U ♮, I♮〉 where:

– U ♮ is the universe of the2-valued structure.
– I♮ is the interpretation function mapping predicates to theirtruth-value in the struc-

ture: for every predicatep ∈ P of arity k, I♮(p) : U ♮k
→ {0, 1}.

In the context of shape analysis, a logical structure is usedas a shape descriptor, with
each individual corresponding to a heap-allocated object and predicates of the structure
corresponding to properties of heap-allocated objects.

In the following, we usepC♮

(v) as alternative notation forI♮(p)(v), omitting the
superscriptC♮, when no confusion is likely. We denote the set of all2-valued logical
structures over a set of predicatesP by 2-STRUCTP . We will mostly assume that the
set of predicatesP is fixed and abbreviate 2-STRUCTP to 2-STRUCT.



Table 1.Predicates used to verify the running example

Predicates Intended Meaning
x(v) Does reference variablex point to objectv?
root(v) Does reference variableroot point to objectv?
left(v1, v2) Does fieldleft of objectv1 point to objectv2?
right(v1, v2) Does fieldright of objectv1 point to objectv2?
r[root](v) Is objectv heap-reachable from reference variableroot?
set[marked](v) Is objectv a member of themarked set?
set[pending](v) Is objectv a member of thepending set?

Table 1 shows the predicates used to record properties of individuals for the analysis
of our running example. A unary predicateref(v) holds when the reference (or pointer)
variableref points to the objectv; in our exampleref ∈ {x, root}. Similarly, a binary
predicatefld(v1, v2) records the value of a reference (or pointer-valued) fieldfld;
in our examplefld ∈ {left,right}. A unary predicateset[s](v) holds when the
objectv belongs to the sets; in our examples ∈ {marked, pending}.

In this paper, program configurations (i.e.,2-valued logical structures) are depicted
as directed graphs. Each individual of the universe is drawnas a node. A unary pred-
icatep(u), which holds for a nodeu, is drawn inside the nodeu. If a unary predicate
represents a reference variables it is shown by having an arrow drawn from its name to
the node pointed by the variable. A binary predicatep(u1, u2) which evaluates to1 is
drawn as directed edge fromu1 to u2 labelled withp.

Figure 2(a) shows a concrete configuration arising at the exit label of the mark pro-
cedure, where all the individuals that are reachable fromroot are marked, as indicated
by the value of theset[marked] predicate. The individuals represented by the empty
nodes correspond to garbage objects.

Operational Semantics

In FOTS, program statements are modelled byactions that specify how statements
transform an incoming logical structure into an outgoing logical structure. This is done
primarily by defining the values of the predicates in the outgoing structure using first-
order logical formulae with transitive closure over the incoming structure [15].

Abstract Program Configurations

We now describe the abstractions used to create a finite (bounded) representation of
a potentially unbounded set of2-valued structures (representing heaps) of potentially
unbounded size. The abstractions we use are based on3-valued logic [15], which ex-
tends boolean logic by introducing a third value1/2, denoting values that may be0 or
1. In particular, we utilize the partially ordered set{0, 1, 1/2} with the join operation
⊔, defined byx ⊔ y = x if x = y and1/2 otherwise.

Definition 2. A 3-valued logical structure over a set of predicatesP is a pair C =
〈U, I〉 where:
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Fig. 2. (a) A concrete program configuration arising at the exit label of the mark procedure, where
all non-garbage nodes have been marked; (b) An abstract program configuration that approxi-
mates the concrete configuration in (a)

– U is the universe of the3-valued structure.
– I is the interpretation function mapping predicates to theirtruth-value in the struc-

ture: for every predicatep ∈ P of arity k, I(p) : Uk → {0, 1, 1/2}.

A 3-valued logical structure can be used as an abstraction of a larger2-valued logical
structure. This is achieved by letting an abstract configuration (i.e., a3-valued logical
structure) includesummary individuals, i.e., an individual which corresponds to one or
more individuals in a concrete configuration represented bythat abstract configuration.
In the rest of the paper, we assume that the set of predicatesP includes a distinguished
unary predicatesmto indicate if an individual is a summary individual.

In this paper,3-valued logical structures are also depicted as directed graphs, where
binary predicates with1/2 values are shown as dotted edges and summary individuals
are shown as double-circled nodes.

We denote the set of all3-valued logical structures over a set of predicatesP by
3-STRUCTP , usually abbreviating it to 3-STRUCT. We define a preorder onstructures,
denoted by⊑, based on the concept ofembedding.

Definition 3. Let S andS′ be two structures and letf : US → US′

be surjective. We
say thatf embedsS in S′ (denoted byS ⊑f S′) if (i) for every predicatep (including
sm) of arity k, and everyk − tuple of individualsu1, . . . , uk ∈ US ,

pS(u1, . . . , uk) ⊑ pS′

(f(u1), . . . , f(uk)) (1)



and (ii) for all u′ ∈ US′

(|{u | f(u) = u′}| > 1) ⊑ smS′

(u′) (2)

We say thatS can be embedded inS′ (denoted byS ⊑ S′) if there exists a function
f such thatS ⊑f S′.

Bounded Program Configurations

Note that the size of a3-valued structure is potentially unbounded and that 3-STRUCT
is infinite. The abstractions studied in this paper rely on a fundamental abstraction func-
tion for converting a potentially unbounded structure (either2-valued or3-valued) into
a bounded3-valued structure, which we define now. This abstraction function αblur[A]

is parameterized by a special set of unary predicatesA referred to as theabstraction
predicates.

Let A be a set of unary predicates. An individualu1 in a structureS1 is said to
be A-compatible to an individualu2 in a structureS2 iff for every predicatep ∈
A, pS1(u1) ⊑ pS2(u2) or pS2(u2) ⊑ pS1(u1). (Recall that the partial order⊑ on
{0, 1, 1/2} is defined byx ⊑ y iff x = y or y = 1/2.)

A 3-valued structure is said to beA-bounded if no two different individuals in its
universe areA-compatible. A structure that isA-bounded can have at most2|A| individ-
uals. We denote the set of all3-valuedA-bounded structures over a set of predicates by
B-STRUCTP,A, and, as usual, omit the subscripts when no confusion is likely.

The abstraction functionβblur : 3-STRUCT→ B-STRUCT, which converts a (po-
tentially unbounded)3-valued structure into a bounded3-valued structure, is defined
as follows: we obtain anA-bounded structure from a given structure by merging all
pairs of A-compatible individuals.βblur(〈U1, I〉) = 〈U2, J〉, whereU2 is the set of
A-compatible equivalence classes ofU1, and the interpretationJ is defined by:

pJ(c1, . . . , ck) = ⊔u1∈c1,... ,uk∈ck
pI(u1, . . . , uk) for p 6= sm

smJ(c) = 1/2 if |c| > 1
smJ(c) = smI(u) if c = {u} .

Figure 2(b) shows anA-bounded structure obtained from the structure in Figure 2(a)
with A = {x, root, r[root], set[marked], set[pending]}.

The abstraction functionβblur serves as the basis for abstract interpretation in TVLA.
In particular, it serves as the basis for defining various different abstractions for the (po-
tentially unbounded)set of2-valued logical structuresthat arise at a program point.

2.1 Powerset Heap Abstraction

This abstraction is based on the fact that there can only be a finite number of bounded
structures that are notisomorphicto one another. (Two structures are isomorphic when
there is a bijection between their universes that preservesall predicate values.) The
powerset abstraction function operates by bounding2-valued structures with respect to
a subset of the unary predicates, and removing duplicates (isomorphic structures).



For the sake of simplicity we will work withcanonicbounded structures. Note that
the individuals of anA-bounded structure are uniquely identified by the set of values of
the predicates inA; we refer to such a set of predicate values as the individual’scanon-
ical name. For example, the individual pointed byroot in Figure 2(b) has the canoni-
cal nameu{x=0,root=1,r[root]=1,set[marked]=1,set[pending]=0}. A canonic bounded struc-
ture is a bounded structure in which the individuals are identified by their canonical
names. We refer to the set of all canonic bounded structures by CB-STRUCTP,A. Note
that for a givenP andA, CB-STRUCTP,A is finite. Thecanonicabstraction function
βcanonic : 2-STRUCT→ CB-STRUCT is defined as follows:βcanonic(S) is obtained
by renaming the individuals ofβblur(S), giving them canonic names.

The powerset heap abstraction functionαpow : 22-STRUCT → 2CB-STRUCT is defined
by

αpow(XS) = {βcanonic(S) | S ∈ XS} .

3 The Partial-Isomorphism Heap Abstraction

The idea behind partial-isomorphism heap abstraction is fairly simple. The powerset
heap abstraction keeps all the canonic bounded structures that arise at a program point
separate. Single-shape heap abstraction merges all canonic bounded structures arising
at a program point into one structure. The partial-isomorphism heap abstraction, in
contrast, merges canonic bounded structures into one structure only when they have the
same universe.

We say that a pair of canonic bounded structures areuniverse congruentiff the two
structures have the same universe. Universe congruence induces an equivalence relation
over sets of canonic bounded structures. This equivalence relation lets us define an
abstraction functionαpi : 22-STRUCT → 2CB-STRUCT that merges all universe congruent
structures. Given a set of canonic bounded structuresXSwith the same universeU , we
define the merged structure

⊔

XS= 〈U, I〉 that has the same universe as all structures
in XSand the following interpretation of predicates. For every predicatep of arity k and
tuple of individuals〈u1, . . . , uk〉 ∈ Uk:

p
⊔

XS(u1, . . . , uk) =
⊔

S∈XS

pS(u1, . . . , uk) .

We are now ready to define the partial-isomorphism heap abstraction functionαpi:

αpi(XS) =
{

⊔

C | C ⊆ αpow(XS) is a universe congruence equivalence class
}

.

Thus, partial-isomorphism heap abstraction is less precise than the powerset heap
abstraction3. As the empirical results presented later show, the partial-isomorphism
heap abstraction seems to work as well as (i.e., is as preciseas) the powerset heap
abstraction,in practice. The following propositions may help explain why.

3 Here, precision is used in the sense of a Galois Connection between a pair of abstract domains.



Proposition 1. If a pair of bounded structuresS1 andS2 are universe congruent, then
the merged structureS1

⊔

S2 is the least bounded structure that approximates (embeds)
bothS1 andS2.

When partial-isomorphism abstraction is applied to a pair ofstructuresS1 andS2,
there are two possibilities:

– StructuresS1 and S2 are not universe congruent. In this case, the result of the
abstraction isαpi({S1, S2}) = {S1, S2}, which is the least upper-bound of the
powerset abstraction—the most precise approximation of both structures.

– StructuresS1 andS2 are universe congruent. In this case, the result of the abstrac-
tion isαpi({S1, S2}) = S1

⊔

S2, which is the most precise upper bound among all
(singleton sets of) bounded structures.

Proposition 2. Partial-isomorphism heap abstraction preserves the values of abstrac-
tion predicates.

In other words, partial-isomorphism heap abstraction onlyloses the same kind of dis-
tinctions that can also be lost byβblur—values of non-abstraction predicates.

In terms of worst-case complexity, partial-isomorphism heap abstraction has the
same complexity as powerset heap abstraction—doubly-exponential in the number of
abstraction predicates. This is due to the number of sets of canonical names, which is
the dominant factor in the worst-case complexity. However,partial-isomorphism heap
abstraction can save an exponential factor due to binary predicates, which is the domi-
nant factor in many cases, in practice.

3.1 Illustrating Example

To illustrate the operation of partial-isomorphism heap abstraction, consider the abstract
program configuration shown in Figure 2(b) and the abstract program configuration
shown in Figure 3(a). Both configurations represent cases where all of the non-garbage
nodes have been marked and non-garbage nodes have not been marked, i.e., the program
property we want to verify holds for those configurations. The difference between the
configurations is in the position of the node pointed byx in the part of the heap that
has been marked. In this case, the partial-isomorphism heapabstraction results in the
structure shown in Figure 3(b), which ignores the precise position of the node pointed
by x inside the part of the heap that was marked.

The mark program non-deterministically selects an object and removes it from the
pending set. This non-determinism allows many different ways of traversing the set of
objects reachable fromroot, which results in many different abstract program config-
urations that sustain the program property we want to verifyand only differ by values of
binary predicates. Partial-isomorphism heap abstractionignores the values of the binary
predicates, but keeps precise the overall property for an abstract configuration of having
sets of nodes with the same garbage/non-garbage and mark/unmarked properties. This
allows the analysis to merge many similar structures without losing the information
needed to prove the partial correctness of the mark program.
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Fig. 3.(a) An abstract program configuration arising at the exit label of the mark procedure, where
all non-garbage nodes have been marked andx points to a node adjacent toroot; (b) The result
of merging the structure in (a) and the structure in Figure 2(b)

4 Implementation and Empirical Evaluation

We implemented the partial-isomorphism abstraction described in the previous section
in TVLA, and the implementation is publicly available [10].We applied it to verify
various specification for the Java programs described in Table 2. To translate Java pro-
grams and their specifications to TVP (TVLA’s input language), we used a front-end
for Java, which is based on the Soot framework [18]. For all benchmarks, we checked
the absence of null dereferences in addition to the properties described in Table 2. Our
specifications include correct usage of JDBC objects, correct usage of Java I/O streams,
correct usage of Java collections and iterators, and additional small but interesting spec-
ifications.

The experiments were conducted using TVLA version 2, running with SUN’s JRE
1.4, on a1 GHZ Intel Pentium Processor machine with1.5 GB RAM. We optimized for
precision and simplicity by using TVLA’s Focus and Coerce operations in all bench-
marks. We compared partial isomorphism to the full powersetabstraction in terms of
time and space performance and precision.

The results of the analyses are shown in Table 3. In all the benchmarks the analysis
based on the partial-isomorphism heap abstraction achieved the same precision as the
analysis based on the powerset heap abstraction, and other TVLA users reported the
same phenomena. In all but one example, the analysis based onpartial-isomorphism
heap abstraction achieved significant performance improvements.



Table 2. Benchmarks and properties used for comparing the analysis based onpowerset heap
abstraction with the analysis based on partial-isomorphism heap abstraction. Treeness means
preservation of tree structure invariants

Benchmark Description Property
GC.mark Figure 1 Partial correctness
DSW Deutsch-Schorr-Waite Partial correctness of tree scanning + Treeness
ISPath Input streams Correct usage of Java IOStreams
InputStream5 Input stream holders Correct usage of Java IOStreams
InputStream5b Input stream holders with error Correct usage of Java IOStreams
InputStream6 Input stream holders Correct usage of Java IOStreams
SQLExecutor A JDBC framework Correct usage of JDBC objects
KernelBench.1 CMP benchmark [12] Absence of concurrent modification exceptions
InsertSorted Insertion into sorted trees Tree sortedness + Treeness
DeleteSorted Deletion from sorted trees Tree sortedness

Table 3. Time, space and number of errors measurements. Rep. Err. is the number of errors re-
ported by the analysis, and Act. Err. is the number of errors that indicatereal problems. Time and
space measurements for non-terminating benchmarks are prefixed with > to indicate the mea-
surements taken when the analysis timed out. The number of reported errors is the same for both
the analysis based on the powerset heap abstraction and the analysis based on partial-isomorphism
heap abstraction on all (terminating) benchmarks. For benchmarks that did not terminate with the
powerset heap abstraction, the numbers are taken from the analysis based on partial-isomorphism
heap abstraction

Benchmark Time in seconds Space in Mb. Rep. Err. / Act. Err.
PowersetPartial iso. PowersetPartial iso.

GC.mark 584 3 56 1.4 0/0
DSW 14,364 157 116.3 5.6 0/0
ISPath 79 79 2.8 2.9 0/0
InputStream5 4,530 1,706 14.0 11.9 1/0
InputStream5b 3,492 1,394 9.8 9.1 1/0
InputStream6 15,558 3,929 23.6 15.9 1/0
SQLExecutor >20,000 9,673 >109.3 104.8 0/0
KernelBench.1 7,393 5,355 13.3 10.8 1/1
InsertSorted 264 37 4.5 2.4 0/0
DeleteSorted >20,000 3,271 >62.6 21.8 0/0



4.1 Implementation Independent Results

Although the results shown in Table 3 measure the time and space consumption of anal-
yses using different abstractions, they are also influencedby the various implementation
details of the abstractions.

In Table 4, we supply implementation independent measurements. We measured the
total number of abstract configurations generated by the analysis and the maximal num-
ber of abstract configurations that exist in the transition system at any given time during
the analysis. The total number of abstract configurations and the maximal number of
abstract configurations are always the same with the powerset heap abstraction, since
structures are only accumulated in the transition system. For the partial-isomorphism
heap abstraction, the maximal number of abstract configurations is often lower than the
total number of abstract configurations, indicating that structures discovered in different
iterations were merged together.

The results show a consistency between the improvements in time and space per-
formance of the partial-isomorphism heap abstraction, relative to the powerset heap
abstraction, and the reduced number of abstract configurations.

Table 4.Implementation independent measurements. Total #structs is the total number of abstract
configurations that arose during the analysis, and Max #structs is the maximal number of abstract
configurations that existed in the transition system at any time during the analysis. The results of
non-terminating benchmarks are prefixed with> to indicate the measurements taken when the
analysis timed out

Benchmark Total #structs Max #structs
PowersetPartial iso. PowersetPartial iso.

GC.mark 189,772 1,133 189,772 748
DSW 320,387 6,480 320,387 2,986
ISPath 2,168 2,168 2,168 2,168
InputStream5 8,164 3,366 8,164 2,204
InputStream5b 5,973 2,598 5,973 1,729
InputStream6 24,461 6,678 24,461 4,411
SQLExecutor >8,824 4,107 >8,824 2,164
KernelBench.1 12,594 9,296 12,594 5,748
InsertSorted 7,487 1,318 7,487 905
DeleteSorted >158,780 30,386 >158,780 25,673

5 Extensions and Future Work

The partial-isomorphism heap abstraction has so far performed quite satisfactorily in
our experience with TVLA. However, we cannot assume that this will always be ad-
equate. Analysis and verification of larger programs may require more aggressive ab-
stractions, while in some cases we may require more precise abstractions. In this section



we describe various other abstractions that may be of value.We are currently in the pro-
cess of evaluating the effectiveness of some of the abstractions described below.

Parametric Partial Isomorphism

We now present a parametric abstraction that includes both the powerset heap abstrac-
tion and the partial-isomorphism heap abstraction as special cases.

Definition 4. We say that a pair of bounded structuresS1 = 〈U1, I1〉 and S2 =
〈U2, I2〉 are partially isomorphic with respect to a set of predicatesR, denoted by
S1 ≡R S2, iff there exists a bijectionfpi : U1 → U2, such that, for every predicate
p ∈ R of arity k and tuple of nodes〈u1, . . . , uk〉 ∈ Uk

1 , the following holds:

pS1(u1, . . . , uk) = pS2(fpi(u1), . . . , fpi(uk)) .

Note that≡R is an equivalence relation among3-valued structures. Given any set
of predicatesR that includes the set of all abstraction predicatesA, we define an ab-
straction functionαpi[R] : 22-STRUCT→ 2CB-STRUCTas follows:

αpi[R](XS) =
{

⊔

C | C ⊆ αpow(XS) is a≡R equivalence class
}

.

This function defines a whole family of abstractions. Further, αpow = αpi[P ] (whereP
is the set of all predicates) is the most precise among this family of abstractions, and
αpi = αpi[A] is the least precise among this family of abstractions.

The reason we restrict ourselves to setsR that contain the set of all abstraction
predicatesA is the following. IfR includesA, then for any two≡R-equivalent bounded
structures, the bijection between the universes of the two structures that preserves the
values of predicates inR is uniquely determined, and this bijection is used to determine
which individuals should be “merged” together.

This parametric definition allows users to choose abstractions in a more fine-grained
fashion, by specifying the set of predicatesR. The parametric abstraction could also be
used by an appropriate iterative refinement technique, which starts withR = A and
iteratively adds predicates toR, until a sufficiently precise abstraction is obtained or
R = P .

Deflating Reductions

Deflating reductions can potentially yield performance improvements without a loss
of precision. A very simple deflating reduction is the following: consider a set of 3-
valued structuresX containing structuresS1 andS2, such thatS1 ⊑ S2. Clearly, the
setX ′ = X − {S1} is semantically equivalent toX, and removingS1 involves no
loss of precision (even when the abstract transformer that is used is not the best). This
reduction is referred to as “non-redundancy” in [1]. Makingthis reduction feasible re-
quires testing for the partial order relation over 3-valuedstructures, which can be done



in polynomial time for bounded 3-valued structures. The keyquestion with this reduc-
tion is whether the subsequent (performance) benefits of doing the reduction outweigh
extra cost of performing the reduction. Our initial experience shows that this reduc-
tion is worth using. This reduction transforms TVLA’s preorder over sets of 3-valued
structures into a proper (Hoare powerdomain) partial ordering.

6 Related Work

A substantial body of literature exists on abstractions forvarious different domains and
for creating new abstractions from existing abstractions.The distinguishing aspect of
our work is its focus on heap abstractions and its focus on an empirical evaluation of
the effectiveness of the proposed heap abstraction.

Function Space Domain Construction. Function space domain construction is one
way of creating abstractions that are “partly disjunctive”. Examples of previous work
using such a domain construction include [5], where the abstraction is composed of two
components—a lattice of symbolic access paths and a parametric numerical lattice. In
this abstraction, abstract elements with the same symbolicaccess path component are
merged by joining the numerical lattice component. The ESP system [4] also utilizes a
similar function space domain construction, but not for heap abstractions.

Least Disjunctive Basis. In [6], a technique is defined for obtaining the “least disjunc-
tive basis”, which is the most abstract domain inducing the same disjunctive completion
as another domain. Unfortunately, this may result in largersets of abstract elements, as
abstract elements are substituted by sets of other abstractelements, causing inflation.

Deflating Operators and Widening Operators. In [1], different widening operators
and congruence relations are considered for the powerset polyhedra domain, and in
more general settings.
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