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ABSTRACT
We study in this paper the computation of skyline queries - a
popular tool for multicriteria data analysis - in the presence
of noisy input. Motivated by crowdsourcing applications,
we present the first algorithms for skyline evaluation in a
computation model where the input data items can only be
compared through noisy comparisons. In this model com-
parisons may return wrong answers with some probability,
and confidence can be increased through independent repe-
titions of a comparison. Our goal is to minimize the number
of comparisons required for computing or verifying a candi-
date skyline, while returning the correct answer with high
probability. We design output-sensitive algorithms, namely
algorithms that take advantage of the potentially small size
of the skyline, and analyze the number of comparison rounds
of our solutions. We also consider the problem of predicting
the most likely skyline given some partial information in the
form of noisy comparisons, and show that optimal prediction
is computationally intractable.

1. INTRODUCTION
The rapid expansion of data generated by web users, sen-

sor networks, and other noisy/uncertain data sources, raises
new challenges for decision support systems. We focus in
this paper on the computation of skyline queries - a popular
tool for multicriteria data analysis - in the presence of noisy
input. Given a set of data items, the skyline is the subset
of items (a.k.a. Pareto optima) that are not “dominated”,
where an item is dominated if there is another item that is
superior for every criterion. For instance, consider a scenario
in which we wish to identify which cities offer the highest
salaries together with high quality education. The skyline
and dominated items are as illustrated in Figure 1.

Skyline queries are traditionally viewed as a problem of
computing maximal vectors in a multidimensional space Rd;
data items correspond to points and each criterion corre-
sponds to one dimension. Much research has been devoted to
efficient skyline computation in the presence of exact data.
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Figure 1: Skyline example

For the noisy case, the main approaches so far deal with
the computational complexity of skyline queries when the
input is a set of points with uncertain location. In contrast,
we consider here a different setting where no information is
given a priori about point location and points can only be
compared, through noisy comparisons, along each dimen-
sion. We study the complexity of skyline computation here
in terms of the required number of such comparisons.

This setting is motivated by the processing of skyline
queries in crowdsourcing scenarios. In such settings, uncer-
tainty is inherent, numerical estimates are not always rele-
vant, and the focus lies in general on the cost of interaction
with the crowd rather than computational complexity. To
illustrate, let us consider a crowdsourcing scenario based on
the example from Figure 1. Information about the average
salary or schooling in different cities may be missing and peo-
ple may not be able to return numerical estimates. Instead,
comparing different cities may be more natural (Marcus et
al. [34], for instance, show that comparisons provide more
accurate rankings than ratings in certain Crowdsourcing ex-
periments). Therefore to compute the skyline with the help
of the crowd we can ask people questions of the form “is the
education system superior in city x or city y?” or “can I
expect a better salary in city x or city y”. Of course, people
are likely to make mistakes, and so each question is typically
posed to multiple people. Our objective is to minimize the
number of questions that need to be issued to the crowd,
while returning the correct skyline with high probability.

We refer to our computation model as the noisy compar-
ison model. We assume that items are fully ordered along
each dimension. The order is unknown but items can be
compared through oracles (<i)i≤d, where<i compares a pair
of items on dimension i. Each call to the comparison ora-
cle would intuitively be implemented in our crowd scenario
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by asking a new person to compare two items on a particu-
lar dimension. In order to take into account noisy answers,
we model queries to the comparison oracle as i.i.d. random
boolean variables that may return an erroneous answer with
probability bounded away from 1/2, e.g., p < 1/3. The as-
sumption here is that there is an underlying ground truth,
but the oracle may make mistakes. We thus design algo-
rithms to mitigate those mistakes. Our cost model reports
the number of oracle calls required for skyline computation,
rather than computational complexity. Our assumption that
error is bounded away from 1/2 makes sense for real-life sce-
narios as it is hard to distinguish error probabilities close to
1/2 from statistical noise.

Of course the model is a simplification of actual crowd be-
havior and evaluating skyline queries on a real crowd raises
many further issues which we leave for future work, such as
estimating the error rate of workers and dealing with vary-
ing error rates. Nevertheless the formal results in this paper
may serve as a yardstick on what could be expected from the
performance of algorithms in refined crowdsourcing models.

Contributions. In this paper, we provide the first algo-
rithms for skyline queries in the noisy comparison model,
and evaluate their performance with respect to the follow-
ing parameters:

- the number of input items n

- the dimension (number of criteria) d

- the error probability tolerated for the result δ

- the (unknown) skyline cardinality k

Specifically, we show that if we want our algorithms to return
the correct answer with probability at least 1− δ

• we can check if a candidate set of k items is the skyline
with O(dnk log 1

δ
) or O(dn log dk

δ
) comparisons,

• the skyline can be computed with O(dkn log(dk/δ)),
O(dk2n log(k/δ)) or O(dn log dn

δ
) comparisons.

• Ω(n log k
δ
) comparisons are necessary to check a candi-

date skyline in the worst case (hence also to compute
the skyline).

These algorithms rely on sorting, binary search, and maxima
procedures from the literature. The complexity of the corre-
sponding problems in presence of noisy comparisons has in-
deed been established in [16] as Θ(n log(n/δ)), Θ(log(n/δ)),
and Θ(n log(1/δ)). Our results thus show that näıvely sort-
ing the data along all dimensions and computing the skyline
based on the corresponding orders is optimal for constant
d when k = Ω(n), and we provide more efficient solutions
when this is not the case.

We also analyze the number of rounds #rounds required
by our algorithms when all comparisons whose execution has
been decided at some point of the algorithm are processed in
a single round in parallel. This measure is in particular rele-
vant for crowdsourcing scenarios where questions are issued
in batches, hence the number of successive batches provides
some measure on the time required to complete the sce-
nario. Obtaining low #rounds for sorting-based algorithms
proved challenging. The first (and so far unique) efficient
parallel sorting algorithm in presence of noise derives from

the notoriously complex AKS comparator circuit network,
which achieves an optimal #rounds of O(logn) rounds. We
also design a simpler algorithm that does not rely on the
AKS network, runs in (optimal) O(n log n

δ
) noisy compari-

son, and uses O(nα) rounds for any (arbitrarily small) con-
stant α > 0.

To achieve our results, this paper slightly extends several
results from the skyline [28] and fault-tolerant sorting [32]
literature to fit our arbitrary dimension and arbitrary pre-
cision setting. Finally, to complete the picture, we also con-
sider an incremental scenario where some noisy comparisons
were already performed, and the task is to process or com-
plement the collected information in order to compute the
most likely skyline. We thus prove that results from [19]
about maxima computation can be extended to show that
in presence of arbitrary sorting information (a multiset of
noisy comparison results), it is Θp

2-hard for every dimension
d to:

• compute the most likely skyline

• decide which additional comparison will most increase
our confidence on the skyline.

This setting may in particular be relevant for our Crowd-
sourcing scenario if one endeavours to make the best of the
comparison data available instead of computing this infor-
mation from scratch.

Organization. Section 2 introduces formally our model and
the problems we investigate. The results from the literature
that we exploit in this paper (e.g., sorting and searching with
noisy comparisons) are introduced in Section 2, whereas Sec-
tion 7 provides a broader overview of related work. Section 3
investigates the complexity of verifying a candidate skyline,
and those techniques are exploited in Section 4 to devise
algorithms for computing skylines. The latency of our algo-
rithms is analyzed in Section 5. Finally, Section 6 is devoted
to our hardness results for the optimal exploitation of avail-
able information in skyline computation.

2. TECHNICAL PRELIMINARIES
Comparison-based results for computing skylines in the

noiseless case typically rely on sorting and max algorithms
and bounds [31]. In this section we first present our compu-
tation model. Then we survey skyline problems in the noise-
less case. Finally we discuss sorting and max algorithms and
bounds with noisy comparisons.

2.1 Model and Notations
Let S denote a set of n items. We assume these items

admit a full (but not necessarily strict) order ≤i along d
dimensions i ∈ {1, . . . , d}. These implicit orders are not
known and can only be discovered through queries of the
form “is item v′ superior to item v along dimensions i; i.e.,
v ≤i v′?”. We also write v � v′ to denote that v ≤i v′ for
each i ≤ d. When v � v′ and there is some i ≤ d such
that v <i v

′, we say that v′ dominates v, which we denote
by v 4 v′. The notation extends to any set of items C:
v 4 C iff there exists some v′ ∈ C such that v 4 v′. Finally,
we denote the lexicographic order among items with <lex:
v <lex v

′ iff there is j ≤ d satisfying both (1) for all i < j,
v ≤i v′, and (2) v <j v

′.
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Definition 1. Given a set of d-dimensional items S, the
skyline of S is the set of items that are not dominated (we
assume that two items can not coincide):

Sky(S) = {v ∈ S | ∀v′ ∈ S \ {v},∃i ≤ d. v >i v′}.

Remark 1. Skylines are a generalization to multiple di-
mensions of the maximum problem: for d = 1, the skyline
Sky(S) is the maximal item of S. We therefore only consider
the case d ≥ 2 in the proofs.

Noisy comparison model. The noisy comparison model
assumes we are given access to an oracle that takes as input
a pair of items v, v′ together with a dimension i ≤ d, and
answers with probability at least1 1 − p whether v ≤i v′,
where p is a fixed constant p < 1/2 (say, p ≤ 1/3). We
assume that oracle queries are independent, so that repeat-
ing a query decreases the probability of error. The noiseless
comparison model corresponds to the particular case where
p = 0.

We shall also consider the more limited noisy boolean vari-
able model from [16] where the algorithm takes as input a
set of boolean variables and an oracle providing with error
probability p ≤ 1/3 the correct value of the variables. The
latter can be considered as a noisy comparison model where
each item can only be compared to a specific item represent-
ing variable “0”.

The problems we consider in these models take as input
a parameter δ called the tolerance, and the algorithms must
return the correct answer with error probability at most δ.
Henceforth we shall abbreviate error probability as err. pr.
and omit to mention that error probability is obviously al-
lowed to be smaller than δ.

Complexity measure. Our focus is on the worst case ora-
cle complexity ; the number of calls to the comparison ora-
cle. But at each step of their execution, our algorithms may
require extensive computation, based on previous compari-
son answers, to decide which comparisons should be asked
next or which answer should be returned. Unless specified
otherwise, our upper bounds will therefore deal with compu-
tational complexity. The latter of course bounds from above
oracle complexity.

Problems of interest. The problem that we wish to inves-
tigate is the following:

Skyline computation problem:
Input: S: set of n items, δ: tolerance
Objective: compute Sky(S) with error probability δ.

Before we tackle this Skyline computation problem, we
shall address the simpler problem of checking a candidate
skyline:

Skyline verification problem:
Input: S: set of n items, C: candidate set, δ: tolerance
Objective: CheckC=Sky(S) with error probability δ.

We shall in particular investigate output sensitive algo-
rithms, namely algorithms whose complexity depends on the

1The algorithms are robust to an adversary oracle that could
return a correct answer instead of an incorrect one.

number k of items in the skyline. Of course, we do not as-
sume prior knowledge of this number, so the algorithm has
to guess the value of k.

2.2 Complexity of noiseless skylines
Before going into the noisy model we first recall results

for the noiseless case. Most results in the literature analyze
the computational complexity of skyline queries rather than
oracle complexity. But the lower bounds generally count the
comparisons required to compute the skyline, and conversely
a few algorithms guarantee a low oracle complexity under
some restrictions.

Of course the oracle complexity is at most O(dn logn)
since sorting the input along all dimensions solves any prob-
lem w.r.t. oracle complexity. For d = 2 a tight lower bound
of fsort(n) + n − 1 on the oracle complexity was proved by
Yao [45], where fsort(n) denotes the number of comparisons
required to sort n items. For d = 3, an upper bound of
2n log2 n + O(n) comparisons follows from Kung et al’s al-
gorithm [31]; a lower constant factor than the näıve sort-
ing approach, but one checks easily that Kung et al’s algo-
rithm does not guarantee better constant factors for oracle
complexity than näıve sorting beyond d = 3. A bound of
n log2 k + O(n

√
log k) was recently established [11], match-

ing the information-theoretic lower bound of n log2 k com-
parisons [28].

We are not aware of results on the oracle complexity of
skyline for higher dimension. The question of computing an
asymptotic equivalent for the oracle complexity of skylines
beyond d = 2 is actually left open in [11]. For arbitrary
large d, a few algorithms nevertheless outperform the näıve
sorting approach in terms of computational and (thereby
also) oracle complexity when k is small enough.

A standard skyline algorithm allows to compute the sky-
line in O(dnk). For this we can for instance maintain a
partial skyline Si for i = 0, . . . , k containing the i greatest
skyline points for lexicographic order, together with the set
Ri of points that are not dominated by Si (S0 = ∅, R0 is
the whole input). At step i we compute Si+1 in O(dn) from
Si by adding the largest item of Ri for lexicographic order,
then compute Ri+1 from Ri, also in O(dn) by removing all
items that are dominated by this largest item. This algo-
rithm is essentially the one we shall adopt in presence of
noisy comparison, except that we will not maintain Ri due
to the higher cost of this screening operation in presence of
noise. When Ri is not available, the computation of Si+1

from Si and the set of all input items has a higher cost,
though.

A shrewder algorithm with low computational complexity
for small values of k and d has been proposed by Kirkpatrick
and Seidel [28], based on a Divide and Conquer paradigm.
The authors only investigate the complexity for constant d,
but we outline in the Appendix an analysis for arbitrary
dimensions:

Theorem 1 (adapted from [28]). The skyline can be
computed in O(d2n logd−2 k) (computational complexity)2.

2Throughout the paper, we abuse notations and write d− 2
for max(1, d− 2), d− 3 for max(1, d− 3), etc.
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2.3 Computing in the noisy comparison model
While skyline computation has not been previously stud-

ied (to the best of our knowledge) in the noisy comparison
model, several other operators were investigated: the OR
problem decides if one of n boolean input variables is true,
whereas MAX returns the maximum of the n items, SORT-
ING returns the input items in sorted order, and TOP-k
returns the k largest items (in arbitrary order). Finally, BI-
NARY SEARCH takes as input (1) an ordered list S of n
items and (2) another item v, and returns the successor of
v in S.

Lemma 1 ([16]). The problems above can be computed
within the following bounds for computational complexity,
which are tight even for oracle complexity:

OR Θ(n log 1
δ
)

MAX Θ(n log 1
δ
)

SORTING Θ(n log n
δ

)

Binary search Θ(log n
δ

)

TOP-k Θ(n log min(k,n−k)
δ

)

Actually, it is obvious that any algorithm for the noiseless
case with complexity f(n) can be turned into an algorithm
with tolerance δ in presence of noise by repeating each com-
parison requested by the algorithm log(f(n)/δ) times and
taking majority vote: each noiseless comparison will thus
be simulated by a comparison with tolerance δ/f(n), hence
an overall error of δ by union bound [16]. The bounds of
Lemma 1 show that for the problems considered we can do
better.

The algorithms above assume the input oracle has con-
stant error probability. While our access to data is limited
to noisy comparisons, we shall consider any procedure com-
puting some boolean condition (with the help of such com-
parisons) as an additional oracle that can be exploited by
other queries. Our algorithms thus compute compositions
of boolean queries, etc. In order to optimize the cost of such
compositions, we investigate the cost of trust-preserving al-
gorithms, whose tolerance is determined by that of the input
oracle(s): for all δ < 1/3 the output must be correct with
err. pr. at most δ if the input oracle(s) has err. pr. δ. Trust-
preserving algorithms can be pipelined; as observed in [36]
for the similar ε-fault-tolerant model: a trust-preserving al-
gorithm for the composition of functions (e.g. boolean func-
tions) can be obtained through the composition of trust-
preserving algorithms for these functions. In the case of
OR, Newman provided a simple trust-preserving algorithm
in linear time.

Lemma 2 ([36]). OR can be computed in O(n) with a
trust-preserving algorithm that returns the variable of mini-
mal index among the true ones (if any).

We can derive from this simple algorithm a trust-preserving
algorithm for MAX. Assume w.l.o.g. the input oracle has
err. pr. δ < 1/6. We observe that we can simulate a com-
parison with err. pr. δ/2 by majority of 3 comparisons hav-
ing err. pr. δ. Furthermore the maximum of 4 items can be
computed with err. pr. δ/2 in c = O(1).

Lemma 3. MAX can be computed in O(n) with a trust-
preserving algorithm, as illustrated in Algorithm 1.

Algorithm 1: Algorithm T (n, δ)

1 Partition input items into groups of 4
(last group may be smaller), AND compute
with err. pr. δ/2 the max within each group.

2 Apply recursively T (n/4, δ/2) to these
n/4 candidate maxima (if n > 4).

Proof. The cost of T (n, δ) satisfies the equation below:
C(n, δ) = c·dn/4e+C(n/4, δ/2) ≤ c·n+3·C(n/4, δ) = O(n).
We show by induction that T (n, δ) errs with probability at
most δ: the probability that the maximum has been unduly
eliminated in step 1 is δ/2, and the probability that it is
eliminated in step 2 is also δ/2 by induction hypothesis,
hence an overall tolerance δ.

Alternatively a slightly stronger result can be obtained as
follows: [18] shows that MAX can be computed with a deter-
ministic noisy tournament tree in O(log log n) rounds, with
O(n) comparisons. A simple analysis of their proof shows
the algorithm to be trust-preserving (we only need to main-
tain the dependency on ε throughout their proof).

In our skyline algorithm we repeatedly compute the max-
imal item (for <1) that is not dominated by larger items.
For this, we will use the following lemma:

Lemma 4. Let S denote a set of n items, P a boolean
property on S, and < a total order on S. Given an oracle
that decides P with tolerance δ in time α(δ), and a simi-
lar oracle with tolerance δ for < in β(δ), one can compute
max{v ∈ S | v satisfies P} with tolerance δ in O((α(δ) +
β(δ))n).

Proof. One can simply view the problem as the search
of the maximum for a modified total order; <P , defined from
P by:

• v <P v′ if v < v′ ∧ P (v′)

• v <P v′ if ¬P (v) ∧ P (v′)

• when ¬P (v) ∧ ¬P (v′), say v and v′ are ties (any arbi-
trary choice would do)

We can clearly simulate in O(α(δ)+β(δ)) an oracle with tol-
erance δ for <P , using the oracles for < and P . Furthermore,
the maximum for P is the item we are looking for, therefore
we can solve our problem by executing the max-algorithm
of Lemma 3 on order <P .

We show in the next two sections how our skyline prob-
lems can be solved using the results about sorting and com-
puting maxima with noisy comparisons.

3. SKYLINE VERIFICATION PROBLEM.
Dominance tests are a cornerstone of our skyline algo-

rithms. We therefore begin our exposition of skyline algo-
rithms with two procedures for dominance testing.

Lemma 5. Let C ⊆ S, v ∈ S.

1. We can check v � C with err. pr. δ in O(d|C| log 1
δ
)

2. When the order of C is known along each dimension,

we can check whether v � C in O(d log d|C|
δ

) oracle
complexity, with err. pr. δ .
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Proof. (1) The first procedure views dominance test-
ing as the composition of OR queries: v � C is equiva-
lent to

∨
w∈C

∧
i≤d v ≤i w. Each dominance test v � w =∧d

i=1 v ≤i w can be checked in O(d) with err. pr. 1/3 using
the OR algorithm from Lemma 1. Using these tests as the
basic oracle of the OR algorithm, we can check

∨
w∈C v � w

in O(d|C| log 1
δ
).

(2) Alternatively, assume we know the ordering <i for
C in every dimension i ≤ d. We can then compute with
err. pr. δ/d for each i ∈ {1, . . . , d} the successor for <i of v in
C. Using the binary search algorithm of Lemma 1, each suc-

cessor can be computed with err. pr. δ/d in O(log d|C|
δ

). We
then deduce whether v � C without further oracle compar-
isons (though with possibly large computational cost).

We are now ready to address the problem of checking a
candidate skyline. We develop two algorithms that mostly
differ on which procedure from Lemma 5 they adopt for dom-
inance queries. The algorithms simply check the two prop-
erties (1) C = Sky(C) and (2) Sky(S) ⊆ C with err. pr. δ/2.
Both properties can be viewed as boolean combinations of
dominance tests:

• C = Sky(C) iff
∧
v 6=v′∈C ¬(v � v′)

• C ⊇ Sky(S) iff
∧
v∈S v � C.

Our first algorithm uses the first procedure of Lemma 5 for
the dominance tests, whereas our second algorithm, pre-
sented below as Algorithm 2, first sorts C along all dimen-
sions and then relies on binary search to process dominance
queries

Theorem 2. Let C ⊆ S, we can check if C = Sky(S)

1. in O(dn|C| log 1
δ
) (computational complexity)

2. or with O(dn log d|C|
δ

) oracle complexity.

Proof. We first observe that the two conditions above
are necessary and sufficient to guarantee Sky(S) = C.
(1) Each dominance test v � C can be checked in O(d|C|)
with err. pr. 1/3 using the first procedure of Lemma 5. Using
these tests as the basic oracle for the OR algorithm, we
check C ⊇ Sky(S) in O(n|C| log 1

δ
) calls to this dominance

test, which yields O(dn|C| log 1
δ
). We use similarly the OR

algorithm to check C = Sky(Cs) with the same complexity.
Computational and Oracle complexity are the same for this
algorithm.

(2) Line 1 of Algorithm 2 runs in O(d|C| log(d|C|/δ))
according to Lemma 1 (which in turn summarizes results
from [16]). In line 2 we then check C = Sky(C) with-
out any further call to the comparison oracle. When the
orders computed in line 1 are correct, we can simulate in
O(d log(d|C|/δ)) (oracle complexity) an oracle that for each
item v ∈ S checks with err. pr. δ/2 if v is dominated by
C, according to Lemma 5. Using this oracle, we can then
check

∨
v∈S v � C with err. pr. δ/2 in O(n · d log(d|C|/δ)),

by Newman’s trust-preserving OR algorithm (see Lemma 2).
This yields an overall oracle complexity of O(dn log(d|C|/δ))
for the algorithm. The computational complexity, however,
may be higher due to the dominance tests and skyline com-
putation on C (see discussion in Section 7).

We do not have tight bounds for checking skylines in the
general case, but we next prove that the second bound in

Algorithm 2: Skyline verification(S,C, δ)

1 Sort C along each dimension with err. pr.δ/(2d)
2 if C 6= Sky(C) according to these orderings
3 return false

4 else Check
∧
v∈S v � C with err. pr. δ/2

Theorem 2 is optimal for constant d, whereas the first one
is optimal for constant |C|.

Proposition 1. Let C ⊆ S. Checking if C = Sky(S) has
oracle complexity Ω(n log |C|+ dn log(1/δ)).

Proof. The Ω(n log2 |C|) lower bound is actually a par-
ticular case of stronger bounds from the literature [4, 28].
We can also prove it directly from the information-theoretic
bound in the noiseless case with d = 2, adapting the argu-
ment of Yao: even when items can be dominated by at most
one item from C, there are at least |C|n−|C| · |C|! possible
ways to order items of C and assign each remaining items
to its dominating point in C. Any algorithm checking the
skyline must gather information sufficient to distinguish two
such configurations, and therefore performs Ω(n log2 |C|) or-
acle comparisons (details are left for the Appendix).

The Ω(dn log 1
δ
) lower bound derives from an immediate

reduction of OR: assume that we wish to compute the dis-
junction of d × n noisy variables xi,j (i ≤ n, j ≤ d). Let
C = {v0} denote the unique tuple with value 1 on dimen-
sion d+1 and 0 on the others. For each i ∈ {1, . . . , n}, let vi
denote the tuple (xi,1, . . . , xi,d, 0). The disjunction is true if
and only if C 6= Sky(S), which concludes our reduction.

4. COMPUTING SKYLINE.
After the last section discussing skyline candidate verifi-

cation, we now investigate the complexity of skyline com-
putation. The oracle complexity of skyline computation (or
actually any problem) is bounded from above by the com-
plexity of sorting.

Algorithm 3: Full sort skyline algorithm(S, δ)

1 Sort C along each dimension with err. pr.δ/d
2 Deduce the skyline, assuming all orders are correct.

Theorem 3. Algorithm 3 computes Sky(S) with oracle
complexity O(dn log(dn/δ)).

Proof. Each dimension can be sorted with err. pr. δ/d
in O(n log(dn/δ)) according to Lemma 1. By union bound,
all orders are then correct with err. pr. δ, so that any stan-
dard algorithm for noiseless skylines can compute the skyline
based on these orders without further oracle calls.

By reduction from skyline verification (Proposition 1), this
is again optimal for constant d when the skyline contains k =
Ω(nc) (c > 0) items. We next turn our attention to output-
sensitive algorithms, namely algorithms that perform better
when k is small. Recall that k denotes the number of items
belonging to the skyline. Our output-sensitive algorithms
for computing the skyline rely on the following auxiliary
procedure:
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Algorithm 4: Skysample(S, k̂, δ)

1 S0 ← ∅
2 for i in 0, . . . , k̂ − 1
3 Compute z ← max<lex{v | v 6� Si} with

err. pr. δ/k̂
4 if z = ∅ return Si
5 else Si+1 ← Si ∪ z
6 return Sk̂

Oracle for <lex(v, v′, δ):
7 Find l← min{i | v <i v′} with err. pr. δ/2
8 Find L← min{i | v >i v′} with err. pr. δ/2
9 if (L = Null or l 4 L)

10 return true

11 else
12 return false

Proposition 2. Depending on the procedure adopted for
dominance testing in line 3, Algorithm 4 computes the first
min(|Sky(S)|, k̂) points of the skyline in decreasing lexico-
graphic order

1. in O(dk2n log(k̂/δ)) (computational complexity)

2. or with O(dkn log(dk̂/δ)) oracle complexity.

Proof. Let Si denote the set comprising the i items of
Sky(S) having the highest rank for <lex. Lines 7 to 12 show
how an oracle for lexicographic comparison can be simulated
in O(d) with err. pr. 1/3, using Newman’s OR algorithm (see
Lemma 2). Using this oracle for lexicographic order and the
oracle for dominance testing of Lemma 5 as basic oracles
for the max-algorithm of Lemma 4, lines 3 to 5 compute
iteratively Si+1 from Si with the requested complexity:

(1) Using the first procedure for dominance testing of

Lemma 5 we get the new skyline item with err. pr. δ/k̂ in

O(d ·i ·n log(k̂/δ)). Overall, we thus get k skyline items with

err. pr. δ in O(
∑
i<k d · i · n log(k̂/δ)) = O(dk2n log(k̂/δ)).

(2) Using the second procedure of Lemma 5 yields the new

skyline item with err. pr. δ/k̂ in O(dn log(dk̂/δ)). Overall,
we can thus get with err. pr. δ a set of k skyline items in
O(
∑
i<k dn log(dk̂/δ)) = O(dkn log(dk̂/δ)).

Remark: For d = 2, dominance tests are essentially trivial,
so the problem can be solved in a simpler way in the sense
that the algorithm needs only use MAX/OR algorithms and
not binary insertion. The complexity of the first algorithm
is lowered to O(kn log(k̂/δ)).

We next present our main algorithm for computing sky-
lines with noisy comparisons. The idea is to exploit the
SkySample algorithm from Proposition 2, but since the value
of k is not known in advance, we must be careful to set a
small enough value of k̂ ≥ k in order to guarantee low com-
plexity. We thus use Chan’s trick [9] to “guess” k by bi-
nary search with increasing candidate values: the ith call to

SkySample uses ki = 22i instead of k, and δ/2i instead of δ.

Theorem 4. Algorithm 5 computes Sky(S)

1. in O(dk2n log(k/δ)) (computational complexity)

2. or with O(dkn log(dk/δ)) oracle complexity.

Algorithm 5: Skyline computation(S, δ)

1 i← 1; ki ← 4; compl←false

2 while compl= false

3 R← SkySample(S, ki, δ/2
i)

4 if |R| < ki
5 compl←true

6 else
7 i← i+ 1

8 ki ← 22i

9 return R

Proof. The probability of returning a wrong answer at
round i is δ/2i. By union bound, the error probability sums
up to at most

∑
i≤blog log kc δ/2

i ≤ δ overall.

(1) Using the first procedure for dominance testing in
Proposition 2, the computational (hence oracle) complex-

ity of the algorithm is at most O(dn
∑blog log kc
i=1 k2

i log(ki ·
2i/δ)) +O(dk2n log(k/δ)) = O(dk2n log(k/δ)).

(2) Alternatively, if we use the second procedure for dom-
inance testing instead, the oracle complexity of Algorithm 5

is in O(dn
∑blog log kc
i=1 ki log(dki · 2i/δ)) + O(dkn log(dk/δ)),

which amounts to O(dkn log(dk/δ)).

5. DELAY IN TERMS OF ROUNDS
In the algorithms above, some oracle calls depend on the

result of previous calls. This may become an issue in, e.g.,
crowdsourcing scenarios where tasks involve substantial de-
lays. We therefore analyze the number of rounds required
by each algorithm when all comparisons are processed si-
multaneously in a same round, unless their execution is de-
termined by the outcome of some comparison that has not
been processed yet, in which case it is left for future rounds.
A formal definition of this number of rounds #rounds can
be found in [18].

Before presenting our results we survey some previous
work on #rounds for binary search and sorting, and im-
prove some of these results, then use the improved bounds
to analyze our skyline algorithms.

5.1 Parallel algorithms with noise: sorting
Feige et al. [16] already investigate the question of paral-

lelism for MAX and Sorting with noisy comparisons when
using a maximum of n processors. In our setting we in-
stead focus on the model of Newman [36] and Goyal and
Saks [18]. This model, which they apply to the MAX and
OR problems, does not restrict the number of simultaneous
comparisons. This model seems more relevant for our crowd
scenario as we can recruit additional workers when needed.
In particular, Newman [36] shows a trust-preserving OR al-
gorithm in O(n log(1/δ)) with O(log∗ n) rounds. Goyal and
Saks [18] prove a corresponding Ω(log∗ n) lower bound and
also propose a trust-preserving MAX algorithm in O(n) with
O(log logn) rounds (the algorithm is presented for constant
tolerance, but a careful analysis of their proof shows it is
error preserving). The O(n logn) sorting algorithm of Feige
et al. [16] mentioned in Lemma 1 relies on binary search to
sort items incrementally by insertion, and therefore requires
Ω(n log(n/δ)) rounds as their binary search algorithm re-
quires O(log(n/δ)). We first show that #rounds of binary
search can be lowered to O(logn).
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Theorem 5. Binary Search can be solved with err. pr. δ
in time O(log(n/δ)) and with O(logn) rounds.

Lemma 6 (Chernoff bound). Let X1, . . . , Xk denote
i.i.d. 0-1 variables with Pr(Xi = 1) = ρ, where ρ < 1/2.
Then we have

Pr(

k∑
i=1

Xi ≥ k/2) ≤ (2ρe)k/2e−ρk

Proof. This is the standard Chernoff bound with µ =
ρk, 1 + δ = 1/(2ρ).

Pr(

k∑
i=1

Xi ≥ (1 + δ)µ) ≤
(
eδ/(1 + δ)1+δ

)µ
≤ eδµ(2ρ)k/2

≤ ek/2−ρk(2ρ)k/2

We next prove the theorem.
Proof (Adapted from [16]). When δ ≥ 1/n the re-

sult is obvious since the O(log(n/δ)) rounds of [16] satisfies
our bound. We therefore restrict our attention to the case
δ < 1/n. Given a comparison oracle with error probability
p < 1/3, we can use majority vote to simulate a comparison

oracle with error probability at most 2− log(1/δ)/ logn/(2e), in
O(log(1/δ)/ logn) and with constant number of rounds. We
then process all comparisons of the binary search algorithm
described in [16] with this oracle.

This algorithm interprets a binary search as a random
walk down the binary search tree. In short, let x1 ≤ x2 ≤
· · · ≤ xn denote the n input items in sorted order. We fix
x0 = −∞ and xn+1 = ∞. For each i ≤ n, the ith leaf
of the tree is associated to the interval [xi, xi + 1) and the
interval of an internal node is the union of both children
intervals. The random walk starts at the root of the tree.
Each step of the algorithm compares the value of the item
searched with the bounds of the children intervals and pro-
ceeds to the corresponding child. In case of a contradiction
(the node appears to be outside both children intervals) the
walk backtracks to the parent of the current node. Finally,
when a leaf is reached, since there are no children to move
to, a counter is incremented instead when the comparisons
confirm the interval, and decremented if the comparisons
contradict the interval.

Using our comparison oracle, we make sure the probability
that each step of the random walk moves toward the correct
destination with err. pr. at most ρ = 2− log(1/δ)/ logn/(2e).
By the Chernoff bound therefore, after k = 2 logn steps
the probability that the walk does not terminate at the cor-
rect leaf is at most (2ρe)k/2 = (2− log(1/δ)/ logn)logn = δ.
The cost of the whole algorithm is clearly O(log(1/δ)) and
#rounds is O(logn).

The next results show that very efficient parallel algo-
rithms can be obtained while maintaining the number of
comparisons within the optimal O(n log(n/δ)) bound.

Theorem 6. SORTING can be solved with err. pr. δ in
time O(n log(n/δ)) and with O(logn) rounds.

Proof (adapted from [32]). The proof almost literally
follows the proof of [32], replacing error 1/n2 by δ (we as-
sume δ < 1/n2). Their sorting algorithm relies on a recur-
sive application of some AKS partial-sorting network whose
properties are described in the following lemma.

Lemma 7 (Corollary 2.1 in [32]). Let X be a set of
size m and let β = 1 − 1/(8 log 6). Given a comparison
oracle with err. pr. ρ for any (not necessarily constant)

ρ < 1/3, we can compute with err. pr. at most ρΘ(logm), in
time3 O(m logm) and with O(logm) rounds, a partition of
X into disjoint sets {S,X1, . . . , Xm} where m = Θ(m1−β),

|S| = O(m3/4), and |X1| = · · · = |Xm| = Θ(mβ) such that
the items in Xi are smaller than items in Xj for all i < j.

Step 1- Using Lemma 7, we compute with err. pr δ/10 a
partition X = S ∪X1∪X2∪ · · ·∪Xn such that all the items
in Xi are smaller than all the items in Xj for i < j, where
n = Θ(n1−β). To obtain such accuracy we need for some
constant c to make sure that ρc logn ≤ δ/10. This can be
guaranteed via majority vote by repeating each comparison
O(log δ/ logn) times, thus lowering ρ to 2log(δ/10)/(c logn).
The cost of applying this step is at most O(n log(1/δ)), and
#rounds remains O(logn).

Step 2 and 3- Using Lemma 3 we compute in parallel
for all i ≤ n the maximum item Mi of Xi with tolerance
δ/(10n). We then sort P = S ∪{M1, . . . ,Mn} using parallel
MergeSort [13], repeating each comparison via majority vote
so that P is sorted with err. pr δ/10. Based on the sorted
order of P , we can derive the approximately correct position
for each item in S. In particular, we partition X as

X =
⋃

1≤i≤n

Yi

where Yi = Xi ∪ {s ∈ S | Mi−1 < s ≤ Mi} for i < n and
Yn = Xn ∪ {s ∈ S | s > Mn−1} (and M0 is assumed to be

−∞). One checks easily |Yi| = Θ(nβ). Since |P | = O(n3/4)
the cost of computing maxima and sorting P , thus building
the partition, is O(n log(n/δ)) and #rounds is O(logn).

Step 4- To sort the items within Yi recursively, we use an
adaptive approach. In parallel, we recursively sort Yi with
tolerance δβ . Let p0 denote the probability that there are 2
or more unsorted groups.

p0 ≤

(
n

2

)
δ2β

≤ 0.5n2(1−β) · δ2β

≤ δ/2

The last derivation is justified by 2β−1 > 2(1−β) together
with δ < 1/n. Observe that δ decreases at the same rate as
n so δ < 1/n is maintained through the recursive calls.

Step 5 and 6- We now detect which groups of the form
Yi remain unsorted. We check the correctness of the order
reported by the recursive sorting algorithm for each i in par-
allel. This is achieved with err. pr. δ/10 by comparing each
pair of adjacent items O(log(n/δ)) times. With probability
at least 1 − δ/10, we will detect the (probably) unique un-
sorted group, with constant number of rounds. We then sort
this group using MergeSort, repeating each comparison via
majority vote so that the group is sorted with err. pr δ/10.
The number of items contained in the unsorted group is at
most O(nβ), so the cost of this sorting step is O(n log(n/δ))
and #rounds is O(logn).

3It’s not clear to me how the AKS (i.e., the expanders) are
computed efficiently. But it must be feasible otherwise their
Theorem 5.1 would not hold
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Summing over all steps, we check immediately that the
algorithm has error probability at most δ. The cost C(n, δ)
and number of rounds T (n, δ) of the algorithm satisfy:

C(n, δ) = n1−βC(nβ , δβ) +O(n log(n/δ))

T (n, δ) = T (nβ , δβ) +O(logn)

This gives C(n, δ) ∈ O(n log(n/δ)) and T (n) ∈ O(logn).

As the AKS network [5] on which this algorithm is based
is notoriously complex [42], we propose another sorting al-
gorithm in O(n log(n/δ)) that requires more rounds asymp-
totically but is based on a much simpler binary insertion
merging procedure and therefore may be more practical. We
decompose our algorithm into β stages, as illustrated in Fig-
ure 2. At stage k ∈ {0, . . . , β − 1}, the algorithm receives

a partition of the input into sorted groups of size n
k
β (in-

put sets at stage 0 are singletons, and the last group may
be smaller). During this stage, the algorithm computes a

partition into sorted groups of size n
k+1
β by merging j = n

1
β

groups one by one. Let S1, . . . , Sj denote the groups to be
merged. In order to merge Si into

⋃
h<i Sh, we execute in

parallel n
k
β binary searches with err. pr. δ/(βn); one for each

item in Si.

. . .

. .
.

. . .

. . .

. . .

...

stage k

stage k + 1

n
1
β groups n

k
β items

Group merging: n
k
β simultaneous

binary searches

Figure 2: Parallel sort with noisy comparisons

Theorem 7. For every α > 0, SORTING can be solved
in O(n log n

δ
) with O(nα) rounds with a simple merging ap-

proach based on parallel insertion.

Proof. The binary searches within each stage can be
processed in parallel because the order of items in Sh is
already known, and will not be contradicted as long as the
binary searches return correct answers. Over the whole exe-
cution of the algorithm, at most βn binary searches are exe-
cuted (β per item), hence (1) by union bound all insertions
are correct with err. pr. at most δ, and (2) the complexity of
the algorithm is in O(βn log(n/δ)). The number of rounds

during each stage is O(n
1
β logn) according to Theorem 5.

Taking β = 1 + b1/αc thus concludes the proof.

5.2 Parallel algorithms with noise: skylines
We next analyze the number of rounds required by each

of our skyline algorithms, when multiple comparisons can

be processed simultaneously. The maximal number of com-
parisons in a round is roughly equal to the average number
of comparisons per round (number of comparisons divided
by number of rounds), as detailed in the proof (deferred to
the Appendix).

Theorem 8. Analyzing #rounds for our algorithms yields
the following results:

• One can check a candidate skyline C in:

Oracle complexity Rounds

dn|C| log(1/δ) log∗(d) · log∗(n) · log∗(|C|)
dn log(d|C|/δ) log∗ n · log |C|

• One can compute the skyline in:

Oracle complexity Rounds

dn log(dn/δ) logn
dk2n log(k/δ) k · log logn · log∗(d) · log∗(k)
dkn log(dk/δ) k · log logn · log k

where every entry is implicitly an asymptotic O(), and
complexity refers to oracle complexity.

We can similarly analyze the number of simultaneous com-
parisons per round. We omit exact expressions.

6. EXPLOITING AVAILABLE DATA
Up until now we studied algorithms that query a compar-

ison oracle to find the correct skyline (with a low probability
of error a priori). We next turn our attention to the setting
where some comparison information is already available and
the objective is to exploit this information in an optimal
way with respect to computational complexity. In this new
approach, we now assume that on each dimension all orders
have equal probability a priori, but the (noisy) compari-
son information adds to our knowledge on the hidden order,
which raises the question of computing the most likely sky-
lines given the information available. This fits for instance
a scenario where the computation may be interrupted after
it runs out of time or resources. It is also justified in [19]
as a model of CrowdSourcing that is simpler to implement
when human workers do not behave as predicted and fail to
answer some of the questions due to unacceptable response
time or lack of knowledge.

We henceforth call the result of a comparison a vote; for
instance: “v <i v

′”. Two questions of interest in our model
are (1) how can we compute the most likely skyline given
a multiset of votes (without executing any further compar-
ison), and (2) given a multiset of votes, which pairs of ob-
jects should we compare next with the oracle (and on which
dimension) to maximize our information on Sky(S). For-
mally, we first define problem MLsky and show it is com-
putationally intractable in general. We then do the same
for NVsky. Those two problems, standing respectively for
Maximum Likelihood and Next Vote, generalize to multiple
dimensions problems from [19] about maxima computation.
Those problems were proved hard when d = 1 [19] but the
case d = 1 is somewhat particular and it does not seem easy
to cast it as a particular case of higher dimension skylines:
the nature of the problem changes a bit from d ≥ 2, with
the number of possible skylines raising from n to 2n. . . So we
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next explain how those hardness results extend to arbitrary
dimension.

Maximum Likelihood Skyline (MLsky):
Input: p: err. pr., M ∈ (NS×S)d: input votes
Objective: compute the most likely skyline; P ⊆ S that
maximizes Pr(Sky(S) = P |M).

We first detail our setting and conventions. To simplify
the proofs we assume that objects admit a full and strict
ordering along each dimension, and we also assume that all
(n!)d d-tuples of orders are equally likely a priori (before any
votes are known). The proofs generalize however to the case
where ties would be allowed.

The comparison oracle again errs with probability at most
p on each execution independently, for some p ≤ 1/3. Given
any d-tuple v and k ≤ d, v.k shall denote the kth entry of
v. The entries of M.k count the answers of the oracle for
the corresponding comparisons on dimension k: (M.k)i,j is
the number of times the oracle answered “i <k j”. Using
Bayes rule we can determine the probability a posteriori of
a possible world, given the list M of vote matrices. The
possible worlds are all d-tuples specifying an order for each
dimension. To each possible world π corresponds a sky-
line, denoted Sky(π), which can be computed in polynomial
time using skyline algorithms on noiseless comparisons. The
probability Pr(Sky(S) = P | M) can thus be derived by
summing possible worlds in which P is the skyline:

Pr(Sky(S) = P |M) =
∑

π:Sky(π)=P

Pr(π |M)

=
∑

π:Sky(π)=P

Pr(M | π) · Pr(π)/Pr(M)

Pr(π)/Pr(M) does not depend on π, so the most likely sky-
line P is obtained by maximizing∑

π:Sky(π)=P

Pr(M | π) =
∑

π:Sky(π)=P

d∏
i=1

Pr(M.i | π.i).

The probabilities Pr(M.i | π.i) can easily be computed [19].
The number of possible worlds, however, is exponential, even
for d = 1, so this only provides an exponential algorithm
(though in polynomial space) for computing Pr(Sky(S) =
P ). We next show that a polynomial algorithm is unlikely.

When d = 1, the problem MLsky is actually the problem
of computing the most likely maximum in elections. When
p is small enough, the most likely maximum coincides with
the winner elected by the Kemeny voting rule [19]. The
determination of the Kemeny winner is Θp

2-complete [23],
where Θp

2 is the class of problems solvable by a polynomial
Turing machine with a logarithmic number of calls to an NP
oracle. The hardness result even holds when the input votes
are guaranteed to elect a single Kemeny winner. We exploit
this to show that MLsky is Θp

2 hard for every dimension d.

Proposition 3. MLsky is Θp
2-hard for every d.

Proof. The proof works by reduction from the unique
Kemeny winner problem. We assume that votes are the
same along all dimensions and guarantee a unique Kemeny
winner x (obviously the same in all dimensions). We then
show in the Appendix that when p is small enough, the most
likely skyline consists of a single item, corresponding to the
Kemeny winner x.

We next turn our attention to the Next vote problem which
decides“which comparison should be asked next”as specified
in [19]. The Next vote problem computes which comparison
should be executed next to maximize the expected proba-
bility that the maximum-likelihood skyline is correct. More
formally, the probability that we can compute correctly the
skyline after asking the additional comparison between x
and y on dimension i is given by:

max
P0

∑
π:Sky(π)=P0

Pr(π |M ∧ x >i y) Pr(x >i y |M)

+ max
P0

∑
π:Sky(π)=P0

Pr(π |M ∧ x <i y) Pr(x <i y |M)

Applying Baye’s Rule and removing irrelevant factors, one
checks easily that to maximize this probability we need to
maximize

Fx,y,i = max
P0

∑
π:Sky(π)=P0

Pr(M ∧ x >i y | π)

+ max
P0

∑
π:Sky(π)=P0

Pr(M ∧ x <i y | π)

We can now formally define the Next Vote problem and
claim it is computationally intractable (the proof is deferred
to the Appendix).

Next Vote for Skyline (NVsky):
Input: p: err. pr., M ∈ (NS×S)d: input votes
Objective: compute the next comparison to ask;
(x, y, i) ∈ S2 × {1, . . . , d} that maximizes Fx,y,i.

Proposition 4. NVsky is Θp
2-hard for every d.

The proofs generalize to the case when ties are allowed be-
cause both hardness results rely on a reduction from the
(unique) Kemeny winner problem, the complexity of which
is not affected by ties [23, 22]. The fact that the two prob-
lems studied above are computationally hard motivates fu-
ture study of possible approximation schemes that would be
computable in polynomial time and yet provide reasonable
quality guarantees.

Similarly, the other hardness results from [19] about com-
puting the maximum imply hardness of the corresponding
problems for skylines. For instance, they show that com-
puting the associated probabilities for those two problems
(computing the probability that the most likely skyline is
indeed the skyline - resp., will be the skyline after the next
vote is processed) is #P -hard.

7. RELATED WORK

Skyline algorithms. As mentioned in the introduction, sky-
line queries (a.k.a. maximal vectors or Pareto maxima) have
been the subject of extensive study in databases, computa-
tional geometry and multicriteria optimization. Almost all
results focus on the computational complexity in the absence
of noise, although lower bounds are proved through oracle
complexity.

The history of worst-case-oriented comparison-based al-
gorithms is interwoven with the history of convex hull al-
gorithms [31, 28, 4, 11]. Kung et al. [31] proposed a Di-
vide and Conquer algorithm with worst case complexity
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O(d2n logd−2 n). Kirkpatrick and Seidel then adapted the
algorithm into an output-sensitive algorithm with complex-
ity O(d2n logd−2 k), and with even better complexity when
k �

√
n. These results are optimal when d ∈ {2, 3} in the

comparison model [31, 45], and even in the algebraic deci-
sion tree model [28]. For d = 2 and d = 3 the results were
recently strengthened with instance-optimal algorithms [4].
Chan and Lee [11] raised the question of determining the or-
acle complexity of skyline queries, and investigate the con-
stant factors in the O(n log k) complexity for d = 2 and
d = 3. For arbitrary values of d, Sheng and Tao recently
showed that skylines can be computed in O(n logd−2 n) com-
putational complexity with a minor adaptation of Kung et
al’s algorithm [31], thus removing a d2 factor.

Skylines can be computed faster in the RAM model [10,
2] or when the dimension is very large [47]. In particu-
lar, the skyline can be computed in O(n logd−3 n) expected
time [10] on RAM. For d = n, an O(n2.684) algorithm can be
obtained through matrix multiplication techniques [35, 47].
These approaches do not seem to lower oracle-complexity
because the first step of the matrix-multiplication approach
is actually to sort all items along each dimension, and the
RAM algorithms similarly assume rank-space reduction of
the input.

After the skyline was suggested as a new operator to ex-
press preferences [7], the database community investigated
the integration of this operator in database systems [12],
and the performance of skyline algorithms in theory and
practice in various settings [7, 30, 17]. Further from our
purpose, other related problems (sampling, datastructures
for subspace skyline or dominance reporting, layers of sky-
line), computational models and evaluation criteria have
been considered, such as I/O efficient algorithms in external
memory [43, 24], average-case analysis [6, 17] or progressive
computation [37].

Parallel sort and parallel skyline. The number of rounds
necessary to compute OR and MAX queries with optimal
(linear) complexity was recently proven to be respectively
Θ(log∗ n) and Θ(log logn) [18, 36]. Minimizing latency to
compute with noisy comparisons more complex queries such
as selection [18], top-k [15] or sorting [16] was formulated
as an open question. The only parallel sorting algorithms
in O(n log(n/δ)) with noisy comparisons we are aware of
are a randomized algorithm [16] and an EREW-PRAM al-
gorithm [32] with tolerance δ = 1/nc for constant c. The
deterministic PRAM algorithm is based on a fault-tolerant
adaptation of the AKS circuits [5]. This is in sharp con-
trast with the noiseless case where several sorting algorithms
with optimal O(logn) latency have been proposed [39, 13,
14]. Several algorithms have been suggested to leverage par-
allelism in (noiseless) skyline computation, see [1] and ref-
erences therein, though again they generally partition the
data according to the rank of items, hence seem to be of
little help in our setting.

Maximum Likelihood for maxima. The problem of com-
puting winners in elections has been investigated under a
maximum likelihood perspective since -at least- the works
of Condorcet [46]. When the probability of error is low, the
maximum corresponds to the Kemeny winner and is there-
fore hard to compute [19].

Skyline algorithms with noisy information. The prob-
lem of computing skylines under noisy information was only
investigated recently, though related results appeared ear-
lier in the literature about multicriteria optimization, where
the number of points needs not be finite. For instance, Pa-
padimitriou and Yannakakis [38] show that any –possibly
infinite– set of Pareto-optimal points in Qd can be approx-
imated up to any multiplicative factor ε > 0 with a “small”
set of solution points, and subsequent work [44] investi-
gates algorithms and bounds when the objective is to mini-
mize the size of the approximated solution. Similar bounds
and results were established for the approximation of sky-
lines, where the instance is a finite set of n points [29]: a
smallest ε-approximation (cover) of the skyline can be com-
puted greedily in two dimensions, but this problem becomes
NP-hard from d = 3. However one can always find an ε-
approximation of the skyline that is larger than the minimal
one by a factor at most logn, or even by a constant factor
when d = 3.

Pei et al. [40] introduce the ρ-skyline as the set of points
that have probability at least ρ to belong to the skyline, and
propose heuristics for their computation. The ρ-skyline has
mostly been investigated in the “locational” model where
the location of each of the n uncertain points is indepen-
dently defined by a discrete probability distribution over k
possible points: each uncertain point P is thus defined as
(1) a k-tuple of probabilities summing up to one, together
with (2) a k-tuple of vectors in Rd representing the corre-
sponding locations. The ρ-skyline can then be computed
in (nk)2−1/d, or alternatively in O(min(n, k)nk log(nk)) [3].
Afshani et al. [3] also devise some approximation algorithms
for ρ-skylines. More heuristic approaches have also been sug-
gested for skyline computation on incomplete or imprecise
data [27, 33].

Alternative noisy comparison model. Multiple models
have been developed that aim to guarantee some form of
fault-tolerance in computation. Variations of the noisy com-
parison model have been investigated in particular on deci-
sion trees [16, 18, 26] and broadcast networks [36] for sort-
ing problems [16], maxima computation [16, 18] and boolean
function evaluation [16, 26, 36, 18].

Sorting and selection problems were also considered in
other noise models; some assume for instance an upper bound
k on the number of errors instead of random errors [41]. An-
other extends the noisy comparison model in the context of
clustering and top-k query processing through Crowdsourc-
ing [15], so that the probability of error depends on some dis-
tance function between the items compared: the motivation
for this extension being that crowd workers are more likely
to make mistakes when two items are similar. Many results
also deal with the particular case where the algorithm must
be implemented as a network of comparators. The questions
and techniques considered in Section 6 are connected to op-
timization problems such as minimum feedback-arc set on
graphs, and related voting theory questions [8]. Hardness
results and heuristics have recently been suggested for those
problems in the framework of crowdsourcing [19].

8. CONCLUSION AND FUTURE WORK
We introduced several algorithms and bounds for skyline

queries with noisy comparisons. We showed that sorting the
full dataset is asymptotically optimal when the dimension
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is fixed and the skyline contains at least a constant fraction
of the input. But efficient algorithms can be obtained when
the skyline cardinality is small.

The quadratic or cubic number of comparisons required
by our algorithms may surprise in view of the traditionally
lower complexity claimed for noiseless skylines. To explain
this gap, we point out that (1) traditional skyline bounds
generally hide constants depending on d as d is generally
fixed (and often limited to d ≤ 3), and (2) most skyline algo-
rithms rely on Divide and Conquer schemes that do not work
well in presence of noisy comparisons. Specifically, two bot-
tlenecks here are the accurate computation of the screening
(identifying all dominated points) and sorting procedures:
identifying all dominated items or sorting accurately a large
number of non-trivial subsets both have the same complex-
ity as sorting the whole input set.

Our algorithms and bounds on the number of comparisons
mostly build upon the literature of sorting and searching
with noisy comparisons. The gap between those algorithms
and lower bounds highlight numerous open questions, in
both the output-sensitive and general cases. First of all, can
skylines be computed with cost o(nk) in the planar case, or
even for any constant d? How does the number of compar-
ison vary with d? Can we establish some tradeoff between
rounds and questions similar to the one observed for maxima
queries?

Getting the right value of error parameters is a typical
issue, e.g., in probabilistic databases. In crowdsourcing sce-
narios for example, the simplest approach adopted by prac-
titioners is to sample users on a set of questions for which
the answers are known. Of course there are more sophisti-
cated schemes and this is an interesting question but outside
the scope of this paper. Other possible directions for future
works include the analysis of average-case and other models
of computations, for instance restricting the comparisons au-
thorized to a subset of all item pairs and dimensions [20, 21,
25], hybrid models allowing both comparisons and numerical
values, etc. The model should also be extended in several
directions to address issues of real-world crowdsourcing sce-
narios: taking into account varying error rates among users,
dependencies between dimensions and correlation between
errors, etc.
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Appendix
Proof of Theorem 1
We next evaluate the dependence on d of the output-sensitive
algorithm of Kirpatrick and Seidel. We recall that most re-
sults in [28] only hold for constant d. In particular, the
proofs of their Lemma 3.1 and Theorem 3.1 are not valid for
non-constant d in spite of the deceptive d factors maintained
along these proofs.

We follow closely the proof of [28] and only highlight the
results on which we depart from the original proof. Adopt-
ing the notations of [28], let Cd(k, n) denote the complexity
of computing the skyline of n items when the (unknown)
number of skyline items4 is k, and let Fd(r, s) denote the
complexity of determining which items of S are dominated
by some item(s) of R when S,R ⊆ Rd, |S| = s, |R| = r. Let
also Gd(r, s, t) denote the complexity of Algorithm SCREEN
as defined in [28].

The algorithm Max1 in [28] proceeds as follows to compute
the skyline of a d-dimensional n-items set T :

• partition T around the median for lexicographic order
into S and R such that x <lex y for all (x, y) ∈ S ×R
• compute recursively M(R) = Max1(R)

• remove from S the items dominated by Max1(R)

• compute M(S) = Max1(S)

• return M(R) ∪M(S).

The partition can be computed in O(nd) using a linear selec-
tion algorithm, with lexicographic comparisons of cost O(d)
each. We thus deduce, by setting r = |M(R)|:

Lemma 8 (from Lemma 2.2 in [28]). When parameter
r ranges over {1, . . . ,min(k − 1, n/2)},

Cd(k, n) ≤max
r

(Cd(r, n/2) + Fd−1(r, n/2)

+ Cd(k − r, n/2) +O(dn))

Following the proof in [28] and taking care of the cost O(d)
for lexicographic comparisons, we also show easily that:

Lemma 9 (from Lemma 3.1 in [28]). For all values of
d we have:

(i) Gd(1, s, t) ∈ O(ds)

(ii) For d ≥ 3 and 2 ≤ t ≤ r:

Gd(r, s, t) ∈ O(d2(s+ r(t− 1)d−3)(log r)(logt r)
d−3).

We imediately deduce:

Lemma 10 (from Corollary 3.1 in [28]). For all val-
ues of d we have:

Fd(r, s) ∈ O(d2(r + s)(log r)d−2).

We next turn to the proof of the theorem, which is where we
differ most from the original proof. For d = 2, 3 the complex-
ity of skyline computation is Cd(k, n) = O(n log k) [28], and
we next prove the theorem for d ≥ 4 by induction. By Lem-
mas 8 and 9, when r ranges over {1, . . . ,min(k − 1, n/2)},

Cd(k, n) ≤max
r

(Cd(r, n/2) + Cd(k − r, n/2)

+O(d2n logd−3 r))

We distinguish two cases:
4for consistency with our paper we denote this variable by
k instead of v.
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Case 1: d− 3 ≥ log r. Then by induction there are constants
c, c′ > c such that

Cd(k, n) ≤ max
r

(c′d2n(logd−2 r + logd−2(k − r))/2

+ c(d2n logd−3 r))

≤ c′d2n(1 + logd−2(k − 1))/2

+ c(d2n logd−3 k)

≤ c′d2n(logd−2 k)

The middle step is justified because r 7→ logd−2 r is convex
and increasing, hence r 7→ logd−2 r + logd−2(k − r) reaches
its maximum in our range for r = 1.

Case 2: d− 3 ≤ log r. Then by induction there are constants
c, c′ > c such that

Cd(k, n) ≤ max
r

(c′d2n(logd−2 r + logd−2(k − r))/2

+ c(d2n logd−3 r))

≤ c′d2n(logd−2(k/2))

+ c(d2n logd−3 k)

≤ c′d2n(logd−2 k)

The middle step is justified because r 7→ logd−2 r is concave.

We have thus shown that for some constant c′, Cd(k, n) ≤
c′d2n(logd−2 k) which concludes our proof.

Proof of Proposition 1
The Ω(n log2 |C|) lower bound is actually a particular case
of stronger bounds from the literature: Kirkpatrick and Sei-
del [28] show a Ω(n log2 |C|) lower bound for the stronger
algebraic decision tree model by reduction from the multiset
size verification problem. Afshani et al [4] prove a refined
nH(S) bound in the comparison tree model for d = 2, where
H(S) is the entropy-like expression defined as follows. H(S)
is the minimal value of

∑
k(|Sk|/n) log(n/|Sk|) for a parti-

tion (Sk)k of S such that each subset Sk is either a singleton
or an axis-aligned box. But the weaker bound that we need
can be proved directly through an information-theoretic ar-
gument adapting the proof of Yao [45]: There are at least

|C|n−|C| · |C|! possible ways to order items of C and assign
each remaining items to its dominating point in C such that
each item is dominated by at most one item from C. Any
deterministic algorithm that given an arbitrary input S,C
checks if C is the skyline of S must gather information suf-
ficient to distinguish two such configurations, and therefore
performs Ω(n log2 |C|) oracle comparisons. To see why two
configurations as above must be distinguished: let <1, <2 be
some orderings of S such that C = Sky(S) and each item is
dominated by at most one item from C. We next show that

1. for every v′ /∈ Sky(S) the comparisons of any skyline
verification algorithm must allow to determine some
v ∈ C such that v′ ≺ v

2. the comparisons must order all items of Sky(S) on both
<1 and <2.

For each v ∈ C let Dv be the set of items v′ ≺ v such that
the comparisons performed by the algorithm do not allow
to determine v′ <1 v. If Dv 6= ∅ then we can shift all items
v′ of Dv so that v′ >1 without falsifying the results of any
comparison performed, to the effect that Dv now contributes

to Sky(S). This provides an instance which the algorithm
cannot distinguish from S, whose skyline differs from C. A
contradiction. The same is true on <2 which concludes the
proof of the first property. The second property is estab-
lished similarly.

Proof of Theorem 8
The only part of our algorithms that we actually parallelize
are essentially the dominance checking and sorting proce-
dures. We therefore revisit the procedures for dominance
checking and then deduce #rounds for our algorithms. The
first procedure for dominance checking in Lemma 5 can
clearly be executed in O(log∗(d) · log∗(|C|)) rounds each
involving at most O(d|C| log 1

δ
) simultaneous comparisons.

The second procedure requires log d|C|
δ

rounds, each involv-

ing at most O(d log d
δ
/ log |C|) simultaneous comparisons.

Skyline candidate verification:

1. The composition of the 3 applications of the OR algo-
rithm presented in Theorem 2 can clearly be executed
in O(log∗(d) · log∗(n) · log∗(|C|)) rounds.

2. We can sort C along all dimensions with O(log |C|)
rounds, according to Theorem 6. Each oracle call can
then be processed in O(log∗ n · log |C|) rounds.

Skyline computation: The first item below discusses the triv-
ial approach that sorts the whole dataset whereas the sec-
ond and third items analyze #rounds for the procedures in
Proposition 2 and thereby Theorem 4. The oracle for lexico-
graphic order can be implemented in O(log∗ d) rounds, and
therefore has no impact on cost since both procedures for
domination oracles require more.

1. We can sort the whole dataset along all dimensions with
O(logn) rounds, according to Theorem 6.

2. The procedure for dominance testing through composi-
tion of OR queries requires O(log∗(d) · log∗(k)) rounds.
Thus, each new point can be computed in O(log log n ·
log∗(d) · log∗(k)) rounds. This yields a total of O(k ·
log logn · log∗(d) · log∗(k)) rounds for SkySample, hence
for the computation of skylines too.

3. To minimize the number of rounds we compute the or-
dering of Si+1 from that of Si, inserting the new point
through binary search, hence #rounds = k log(dk/δ)
for sorting partial skylines. Then each oracle call for
dominance test can be processed in O(log(k̂)) rounds.

This yields a total of O(k · log logn · log k̂) rounds for
SkySample, hence the result.

Proof of Proposition 3
Before we discuss the proof, we first present the Kemeny
Winner problem. The input consists of an n × n vote ma-
trix M with Mi,j counting the number of votes for i < j.
As in our noisy comparison problems, votes can contradict
each others, but in contrast to our problems, there are no
probabilities involved. The rankings that contradict the
fewest votes are called Kemeny permutations, and the Ke-
meny Winner problem is the problem of deciding whether
there is some Kemeny permutation in which the given object
is ranked first. The unique Kemeny Winner problem is the
same problem restricted to instances for which the Kemeny
Winner is unique. Both the Kemeny Winner [23] and the
unique Kemeny Winner [22, Appendix] problems are Θp

2-
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hard (and actually Θp
2-complete when votes are given as a

list of preference rankings [23, 22]).

Proof (adapted from [19]). We adapt to arbitrary d
the proof from [19]. As already mentioned, for d = 1 the
result is immediate from [19] which proves that by setting
p < 1 − 1/(1 + 1

n!
), any most likely maximum is a Kemeny

winner. To the best of our knowledge, our extension of this
hardness result to skylines in arbitrary dimension is new.

To extend the proof to arbitrary values of d, we use instead
a reduction from the unique Kemeny Winner problem and
set p < 1 − 1/(1 + 1

n!(2d+1)
). From the vote matrix MKem

that guarantees a unique Kemeny winner, we build a tuple
of d identical matrices M.1 = · · · = M.d = MKem. From
the argument in [19, Theorem 2], one deduces easily that
the most likely skyline consists of a single item; the Kemeny
winner. We say that a possible world π is Kemeny if for all
i ≤ d π.i is a Kemeny permutation. We wish to prove that
the probability of Kemeny possible worlds exceeds that of
non-Kemeny worlds when p is small enough.

On each dimension i, for any Kemeny permutation π′ and
non-Kemeny π′′,

Pr(π.i = π′ |M) · p

1− p ≥ Pr(π.i = π′′ |M)

Summing over non-Kemeny permutations, we deduce:

Pr(π.i = π′ |M) · n! · p

1− p ≥
∑

π′′not Kemeny

Pr(π.i = π′′ |M)

Consequently, when p < 1 − 1/(1 + 1
n!(2d)

), the probability

that π.i is not Kemeny is strictly less than 1/(2d). Hence a
probability greater than 1/2 that π is Kemeny. By construc-
tion of M , when π is Kemeny, the skyline Sky(π) consists of
a single item; the Kemeny winner of MKem. Therefore, the
most likely skyline is the Kemeny winner of MKem.

Proof of Proposition 4 (adapted from [19])

The proof for arbitrary d exploits exactly the same ideas as
the one for d = 1 in [19], but considering several dimensions
opens more possibilities for the choice of the next compar-
ison, and our proof also fixes some imprecisions5. In order
to generalize the result to higher dimensions, we again re-
place the reduction from the Kemeny winner problem with
a reduction from the unique Kemeny winner problem, and
replicate the vote matrix along all dimensions.

We are given an n × n vote matrix W for which we are
guaranteed there exists a unique Kemeny winner. We first
replicate along all dimensions this matrix to create a new
matrix W ′, then add an additional item v to W ′, such that
for all dimensions i ≤ d − 1, W ′[i] contains a vote v >i w
for every item w. Finally, we replicate 3 times each vote in
W ′ so that adding a new vote will never turn a non-Kemeny
permutation into a Kemeny one. Note that this replica-
tion step preserves Kemeny permutations, and thereby the
Kemeny winner. By definition, v is the Kemeny winner in
W ′[j] for all j < d, and one of the two Kemeny winners in
W ′[d]. Recall, however, that our goal is to return a Kemeny
winner in W , not in W ′[d].

Let us show that the Next Vote problem on W ′ returns
the comparison on dimension d of v and v′ where v′ is the

5in particular, we insist that W ∧ a is the conjunction of
events W and a, not a vote matrix obtained by combining
the vote multisets W and a.

Kemeny winner in W . We first observe that Pr(W ′∧x >i y |
π) = Pr(W ′ | π) Pr(x >i y | π) for all x, y and i. Let (x, y, i)
be the comparison returned by the next vote problem on W ′,
comparing x and y on dimension i. We want to show that
{x, y} = {v, v′} and i = d. We assume that the probability
of error p is small enough that the probabilities associated to
non-Kemeny possible worlds are negligible. More formally,
let P1 = {π | ∃j ≤ d. π.i is not Kemeny for W ′[i]} and let
πKem /∈ P1. Then we assume p is small enough that Pr(W ′ |
πKem) >

∑
π∈P1

Pr(W ′ | π). We also assume that Pr(W ′ |
πKem)(1−p) >

∑
π(W ′ | πKem)np. Let i = d, x = v, y = v′,

let c be the number of Kemeny permutations in W , and let
π0 be an arbitrary Kemeny permutation ofW . Let π1 denote
the possible world such that π1.j is obtained by placing v
on top of π0 for all j ≤ d. Let also πj (2 ≤ j ≤ n + 1) be
the possible world that only differs from π1 on dimension d,
such that πj .d is obtained from π0 by inserting v on the jth

position.
For the values of i, x, y specified above we thus obtain

Fv,v′,d ≥
∑

π:Sky(π)={v}

Pr(W ′ ∧ v >d v′ | π)

+
∑

π:Sky(π)={v,v′}

Pr(W ′ ∧ v <d v′ | π)

≥
∑

π:Sky(π)={v}

Pr(W ′ | π)(1− p)

+
∑

π:Sky(π)={v,v′}

Pr(W ′ | π)(1− p)

≥ (c+ cn)cd−1 Pr(W ′ | π1)(1− p)

Let us justify the derivation. By construction, the most
likely skyline in W can either be {v, v′} or {v}, depending
on whether v <d v

′. In every Kemeny possible world π for
W ′ ∧ v >d v′, v is the maximal item in every dimension so
Sky(π) = {v}; the most likely skyline is P0 = Sky(π). In
every Kemeny possible world π for W ′ ∧ v <d v′, v is the
maximal and v′ the second item in every dimension except in
dimension d where v′ is first and the position of v is arbitrary.
In this case the most likely skyline is P0 = {v, v′}. Consider
the left term first: there are cd Kemeny possible worlds π
such that Sky(π) = {v}. The probability of getting votes W ′

and vote x >i y given any such possible world equals Pr(W ′ |
π1)(1−p). Now, we observe that Pr(W ′ | πj) = Pr(W ′ | π1)
for all j ≥ 2 so the second term,

∑
π:Sky(π)={v,v′} Pr(W ′ |

π)(1 − p), is at least ncd Pr(W ′ | π1)(1 − p). This justifies
the derivation above.

On the other hand, we next show that Fx,y,i is smaller for
every other value of {x, y} and i. We first recall that by con-
struction any additional vote can only reduce or preserve the
set of Kemeny permutations and observe that P0 = {v, v′}
becomes a most likely skyline for both W ′ ∧ x <i y and
W ′ ∧ x >i y. This is because for both comparison out-
comes there are as many Kemeny possible worlds consistent
with the outcome that satisfy v′ >d v as there are that
satisfy v′ <d v. Then it is clear that every Kemeny per-
mutation for W [i] (hence every Kemeny possible world) is
contradicted by one of x <i y or x >i y. As a consequence
Fx,y,i is equal to ncd Pr(W ′ | π1)((1 − p) + p) plus negligi-
ble contributions from non-Kemeny possible worlds. This is
smaller than Fv,v′,d since np� 1− p.
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