
Interprocedural Shape Analysis
for Cutpoint-Free Programs

Technical Report TAU-CS-104/05

Noam Rinetzky∗

Tel Aviv University
maon@tau.ac.il

Mooly Sagiv∗

Tel Aviv University
msagiv@tau.ac.il

Eran Yahav
IBM T.J. Watson

eyahav@us.ibm.com

Abstract

We present a framework for interprocedural shape analysis, which is context-
and flow-sensitive with the ability to perform destructive pointer updates. We limit
our attention to cutpoint-free programs—programs in which reasoning on a proce-
dure call only requires consideration of context reachable from the actual param-
eters. For such programs, we show that our framework is able to perform an effi-
cient modular analysis. Technically, our analysis computes procedure summaries
as transformers from inputs to outputs while ignoring parts of the heap not rele-
vant to the procedure. This makes the analysis modular in the heap and thus allows
reusing the effect of a procedure at different call-sites and even between different
contexts occurring at the same call-site. We have implemented a prototype of our
framework and used it to verify interesting properties of cutpoint-free programs,
including partial correctness of a recursive quicksort implementation.

∗This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 304/03).

1

Contents
1 Introduction 3

1.1 Main Results . 4
1.2 Motivating Example . 5
1.3 Local heaps, Relevant Objects, Cutpoints, and Cutpoint-freedom . . . 5
1.4 Outline . 7

2 Concrete Semantics 7
2.1 Concrete Memory States . 7

2.1.1 Admissible Memory States 8
2.2 Inference Rules . 9

2.2.1 Verifying Cutpoint-freedom. 9
2.2.2 Computing The Memory State at the Entry Site. 11
2.2.3 Computing The Memory State at the Return Site. 11

3 Abstract Semantics 12
3.1 Abstract Memory States . 12
3.2 Inference Rules . 14
3.3 Interprocedural Functional Analysis via Tabulation of Abstract Local

Heaps . 14

4 Prototype Implementation 15

5 Related Work 17

6 Conclusions and Future Work 18

A Formal Specification of the Operational Semantics 22
A.1 Operational Semantics for Atomic Statements 22
A.2 Predicate Update Formulae for Instrumentation Predicates 22

B Semantics Equivalence 23
B.1 Observable Properties . 24
B.2 Observable Properties in GSB . 25
B.3 Observable Properties in LCPF . 25
B.4 Observable Equivalence . 25

C Tabulation Algorithm 26
C.1 Program Model . 27
C.2 Tabulation Algorithm . 27

D Analyzing Sorting Programs 29

2

1 Introduction
Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [6]. However, performing
strong pointer updates requires flow-sensitive context-sensitive analysis and expensive
heap abstractions that may be doubly-exponential in the program size [36]. The pres-
ence of procedures escalates the problem because of interactions between the program
stack and the heap [34] and because recursive calls may introduce exponential factors
in the analysis. This makes interprocedural shape analysis a challenging problem.

This paper introduces a new approach for shape analysis for a class of imperative
programs. The main idea is to restrict the “sharing patterns” occurring in procedure
calls. This allows procedures to be analyzed ignoring the part of the heap not reachable
from actual parameters. Moreover, shape analysis can conservatively detect violations
of the above restrictions, thus allowing to treat existing programs. A prototype of this
approach was implemented and used to verify properties that could not be automat-
ically verified before, including the partial correctness of a recursive quicksort [16]
implementation (i.e., show that it returns an ordered permutation of its input).

Our restriction on programs is inspired by [33]. There, Rinetzky et. al. present
a non-standard semantics for arbitrary programs in which procedures operate on local
heaps containing only the objects reachable from actual parameters. The most complex
aspect of [33] is the treatment of sharing between the local heap and the rest of the
heap. The problem is that the local heap can be accessed via access paths which bypass
actual parameters. Therefore, objects in the local heap are treated differently when they
separate the local heap (that can be accessed by a procedure) from the rest of the heap
(which—from the viewpoint of that procedure—is non-accessible and immutable). We
call these objects cutpoints [33]. We refer to an invocation in which no such cutpoint
object exists as a cutpoint-free invocation. We refer to an execution of a program in
which all invocations are cutpoint-free as a cutpoint-free execution, and to a program
in which all executions are cutpoint-free as a cutpoint-free program. (We define these
notions more formally in the following sections).

While many programs are not cutpoint-free, we observe that a reasonable number
of programs, including all examples used in [13, 19, 34] are cutpoint-free, as well as
many of the programs in [12, 37]. One of the key observations in this paper, is that we
can exploit cutpoint-freedom to construct an interprocedural shape analysis algorithm
that efficiently reuses procedure summaries.

In this paper, we present LCPF , an operational semantics that efficiently handles
cutpoint-free programs. This semantics is interesting because procedures operate on
local heaps, thus supporting the notion of heap-modularity while permitting the usage
of a global heap and destructive updates. Moreover, the absence of cutpoints drastically
simplifies the meaning of procedure calls. LCPF checks that a program execution is
indeed cutpoint-free and halts otherwise. As a result, it is applicable to any arbitrary
program, and does not require an a priori classification of a program as cutpoint-free.
We show that for cutpoint-free programs, LCPF is observationally equivalent to the
standard global-heap semantics.

LCPF gives rise to an efficient interprocedural shape-analysis for cutpoint-free
programs. Our interprocedural shape-analysis is a functional interprocedural analy-
sis [2, 10, 11, 19, 20, 29, 38]. It tabulates abstractions of memory states before and after
procedure calls. However, memory states are represented in a non-standard way ignor-

3

ing parts of the heap not relevant to the procedure. This reduces the complexity of the
analysis because the analysis of procedures does not represent information on refer-
ences and on the heap from calling contexts. Indeed, this makes the analysis modular
in the heap and thus allows reusing the summarized effect of a procedure at different
calling contexts. Finally, this reduces the asymptotic complexity of the interprocedural
shape analysis. For programs without global variables, the worst case time complex-
ity of the analysis is doubly-exponential in the maximum number of local variables
in a procedure, instead of being doubly-exponential in the total number of local vari-
ables [34].

Technically, our algorithm is built on top of the 3-valued logical framework for
program analysis of [23, 36]. Thus, it is parametric in the heap abstraction and in the
concrete effects of program statements, allowing to experiment with different instances
of interprocedural shape analyzers. For example, we can employ different abstractions
for singly-, doubly-linked lists, and trees. Also, a combination of theorems in Ap-
pendix B and [36] guarantees that every instance of our interprocedural framework is
sound (see Section 3).

This paper also provides an initial empirical evaluation of our algorithm. Our em-
pirical evaluation indicates that the analysis is precise enough to prove properties such
as the absence of null dereferences, preservation of data structure invariants such as
list-ness, tree-ness, and sorted-ness for iterative and recursive programs with deep ref-
erences into the heap and destructive updates. We observe that the cost of analyzing
recursive procedures is comparable to the cost of analyzing their iterative counterparts.
Moreover, the cost of analyzing a program with procedures is smaller than the cost of
analyzing the same program with procedure bodies inlined.

1.1 Main Results
The contributions of this paper can be summarized as follows:

1. We define the notion of cutpoint-free programs, in which reasoning about a pro-
cedure allows ignoring the context not reachable from its actual parameters.

2. We show that interesting cutpoint-free programs can be written naturally, e.g.,
programs manipulating unshared trees and a recursive implementation of quick-
sort. We also show that some interesting existing programs are cutpoint-free,
e.g., all programs verified using shape analysis in [13,19,34], and many of those
in [12, 37].

3. We define an operational semantics for arbitrary Java-like programs that verifies
that a program execution is cutpoint free. In this semantics, procedures operate
on local heaps, thus supporting the notion of heap-modularity while permitting
the usage of a global heap and destructive updates.

4. We present an interprocedural shape analysis for cutpoint-free programs. Our
analysis is modular in the heap and thus allows reusing the effect of a proce-
dure at different calling contexts and at different call-sites. Our analysis goes
beyond the limits of existing approaches and was used to verify a recursive
quicksort implementation.

5. We implemented a prototype of our approach. Preliminary experimental results
indicate that: (i) the cost of analyzing recursive procedures is similar to the cost
of analyzing their iterative versions; (ii) our analysis benefits from procedural
abstraction; (iii) our approach compares favorably with [19, 34].

4

public class List{
List n = null;
int data;
public List(int d){

this.data = d;
}
static public List create3(int k) {

List t1 = new List(k), t2 = new List(k+1), t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}
public static List splice(List p, List q) {

List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}
public static void main(String[] argv) {

List x = create3(1), y = create3(4), z = create3(7);
List t = splice(x, y);
List s = splice(y, z);

}
}

Figure 1: A Java program recursively splicing three singly-linked lists using destructive
updates.

1.2 Motivating Example
Figure 1 shows a simple Java program that splices three unshared, disjoint, acyclic
singly-linked lists using a recursive splice procedure. This program serves as a
running example in this paper.

For each invocation of splice, our analyzer verifies that the returned list is acyclic
and not heap-shared;1 that the first parameter is aliased with the returned reference; and
that the second parameter points to the second element in the returned list.

For this example, our algorithm effectively reuses procedure summaries, and only
analyzes splice(p,q) once for every possible abstract input. As shown in Sec-
tion 3.3, this means that splice(p,q) will be only analyzed a total number of 9
times. This should be contrasted with [34], in which no summaries are computed, and
the procedure is analyzed 66 times. Compared to [19], our algorithm can summarize
procedures in a more compact way (see Section 5).

1.3 Local heaps, Relevant Objects, Cutpoints, and Cutpoint-freedom
In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked
on local heaps containing only objects reachable from actual parameters. We refer to
these objects as the relevant objects for the invocation.

Example 1.1 Figure 2 shows the concrete memory states that occur at the
call t=splice(x,y). Sc

2 shows the state at the point of the call, and Se
2

1An object is heap-shared if it is pointed-to by a field of more than one object.

5

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

p,w

q n n
n n n

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

(Sc
2) (Se

2) (Sx
2) (Sr

2)

Figure 2: Concrete states for the invocation t = splice(x, y) in the running
example.

call splice(y,z) return s=splice(y,z) call splice(t,z) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

x,t

s,y
n

n
n n n

987z
n nn

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4y n
n

987z
nn

x,s,
n

n

n

n

t

(Sc
3) (Sr

3) (Sccp

3) (Srcp

3)

(a) (b)

Figure 3: Concrete states for: (a) the invocation s=splice(y,z) in the program of
Figure 1; (b) a variant of this program with an invocation s=splice(t,z).

shows the state on entry to splice. Here, splice is invoked on local
heap containing the (relevant) objects reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the
lists referenced by x and y, guarantees that destructive updates performed by splice
can only affect access paths that pass through an object referenced by either x or y.
Similarly, the invocation s=splice(y,z) in the concrete memory state Sc

3, shown
in Figure 3(a), can only affect access paths that pass through an object referenced by
either y or z.

Obviously, this is not always the case. For example, consider a variant of the
example program in which the second call s=splice(y,z) is replaced by a call
s=splice(t,z). S

ccp

3 and S
rcp

3 , depicted in Figure 3(b), show the concrete states
when s=splice(t,z) is invoked and when it returns, respectively. As shown in the
figure, the destructive updates of the splice procedure change not only paths from t
and z, but also change the access paths from y.

A cutpoint for an invocation is an object which is: (i) reachable from an actual
parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without going
through an object which is pointed-to by an actual parameter (that is, it is either pointed-
to by a variable or by an object not reachable from the parameters). In other words,
a cutpoint is a relevant object that separates the part of the heap which is passed to
the callee from the rest of the heap, but which is not pointed-to by a parameter. The
object pointed-to by y at the call s=splice(t,z) (Figure 3(b)) is a cutpoint, and
this invocation is not cutpoint-free. In contrast, the call t=splice(x,y) (Figure 2)
does not have any cutpoints and is therefore cutpoint-free. In fact, all invocations in the

6

program of Figure 1, including recursive ones, are cutpoint-free, and the program is a
cutpoint-free program.

Our analyzer verifies that the running example is a cutpoint-free program. It also
detects that in the variant of our running example, the call s=splice(t,z) is not a
cutpoint-free invocation.

1.4 Outline
The rest of the paper is organized as follows. Section 2 defines our local heap concrete
semantics. Section 3 conservatively abstracts this semantics, providing a heap-modular
interprocedural shape analysis algorithm. Section 4 describes our implementation and
experimental results. Section 5 describes related work, and Section 6 concludes.

2 Concrete Semantics
In this section, we present LCPF , a large-step concrete semantics that serves as the
basis for our abstraction. In LCPF , an invoked procedure is passed only relevant ob-
jects. LCPF has two novel aspects: (i) it verifies that the execution is cutpoint-free;
(ii) it has a simple rule for procedure calls that exploits (the verified) cutpoint-freedom.
Nevertheless, in Appendix B, we show that for cutpoint-free programs LCPF is obser-
vationally equivalent to a standard store-based global-heap semantics. For simplicity,
LCPF only keeps track of pointer-valued variables and fields.

2.1 Concrete Memory States
We represent memory states using 2-valued logical structures. A 2-valued logical struc-
ture over a set of predicates P is a pair S = 〈US , ιS〉 where:

• US is the universe of the 2-valued structure. Each individual in US represents a
heap-allocated object.

• ιS is an interpretation function mapping predicates to their truth-value in the
structure: for every predicate p ∈ P of arity k, ιS(p) : USk → {0, 1}. Predicates
correspond to tracked properties of heap-allocated objects.

The set of 2-valued logical structures is denoted by 2Struct .
In the rest of the paper, we assume to be working with a fixed arbitrary program P .

The program P consists of a collection of types, denoted by TypeId?. The set of all
reference fields defined in P is denoted by FieldId?. For a procedure p, Vp denotes
the set of its local reference variables, including its formal parameters. The set of all
the local (reference) variables in P is denoted by Local?. For simplicity, we assume
formal parameters are not assigned and that p always returns a value using a designated
variable retp ∈ Vp. For example, retsplice = w.

Table 1 shows the core predicates used in this paper. A unary predicate T (v)
holds for heap-allocated objects of type T ∈ TypeId?. A binary predicate f(v1, v2)
holds when the f ∈ FieldId? field of v1 points-to v2. The designated binary predicate
eq(v1, v2) is the equality predicate recording equality between v1 and v2. A unary pred-
icate x(v) holds for an object that is pointed-to by the reference variable x ∈ Local?

of the current procedure.2 The role of the predicates inUc and inUx is explained in
Section 2.2.

2For simplicity, we use the same set of predicates for all procedures. Thus, our semantics ensures that
ιS(x) = λu.0 for every local variable x that does not belong to the current call.

7

Table 1: Predicates used in the concrete semantics.
Predicate Intended Meaning
T (v) v is an object of type T
f(v1, v2) the f-field of object v1 points to object v2

eq(v1, v2) v1 and v2 are the same object
x(v) reference variable x points to the object v

inUc(v) v originates from the caller’s memory state at the call site
inUx (v) v originated from the callee’s memory state at the exit site

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a pointer variable x by drawing an edge from x to the
individual that represent the object that x points-to. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
unary List predicate, and the binary equality predicate eq .

Example 2.1 The structure Sc
2 of Figure 2 shows a 2-valued logical struc-

ture that represents the memory state of the program at the call t=splice(x,
y). The depicted numerical values are only shown for presentation rea-
sons, and have no meaning in the logical representation.

2.1.1 Admissible Memory States

Not all 2-valued logical structures represent memory states that are compatible with
the semantics of Java. For example, in Java each pointer variable points to at most
one heap-allocated element. To exclude states that cannot arise in any program, we
now define the notion of admissible structures. This notion is similar to the notion
of admissible states in [33] and to the notion of structures that are compatible with
hygiene conditions in [36]. We note that LCPF preserves states admissibility.

Definition 2.2 (Admissible 2-Valued Logical Structures) A 2-valued logical struc-
ture S = 〈U, ι〉 representing a local-heap for a procedure p at a given point in an
execution is admissible iff

(i) Only the local variables of the current call are represented, i.e., ιS(x) def= λu.0
for every x ∈ Local? \ Vp.

(ii) An object has at most one type, i.e., for every individual u ∈ U there is exactly
one type T ∈ TypeId? such that ιS(T)(u) = 1.

(iii) A variable points-to at most one node, i.e., for every x ∈ Vp, there exists at most
one individual such that ιS(x)(u) = 1.

(iv) A field is a partial function, i.e., for every individual u1 and every field f ∈
FieldId?, there exists at most one individual u2 ∈ U such that ιS(f)(u1, u2) = 1.

(v) The predicate eq record equality, i.e., for every u1, u2 ∈ U , ιS(eq)(u1, u2) = 1
iff u1 = u2.

8

Table 2: Formulae shorthands and their intended meaning.
Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈FieldId?

P
f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2)

R{x1,...,xk}(v)
∨

x∈{x1,...,xk} ∃v1 : x(v1) ∧ F ∗(v1, v) v is reachable from x1 or . . . or xk

isCPq,{x1,...,xk}(v) R{x1,...,xk}(v) ∧ v is a cutpoint
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

2.2 Inference Rules

The meaning of statements is described by a transition relation
lcpfÃ⊆ (2Struct × st)×

2Struct that specifies how a statement st transforms an incoming logical structure into
an outgoing logical structure. For assignments, this is done primarily by defining the
values of the predicates in the outgoing structure using first-order logic formulae with
transitive closure over the incoming structure [36]. The inference rules for assignments
are rather straightforward and can be found in Appendix A. For control statements, we
use the standard rules of natural semantics, e.g., see [26].

Our treatment of procedure call and return could be briefly described as follows:
(i) the call rule is applied, first checking that the invocation is cutpoint-free (by evaluat-
ing the side condition), and (ii) proceeding to construct the memory state at the callee’s
entry site (Se) if the side condition holds; (iii) the caller’s memory state at the call site
(Sc) and the callee’s memory state at the exit site (Sx) are used to construct the caller’s
memory state at the return site (Sr). We now formally define and explain these steps.

Figure 4 specifies the procedure call rule for an arbitrary call statement y = p(x1, . . . , xk)
by an arbitrary function q. The rule is instantiated for each call statement in the pro-
gram.

2.2.1 Verifying Cutpoint-freedom.

The semantics uses the side condition of the procedure call rule to ensure that the
execution is cutpoint-free. The side condition asserts that no object is a cutpoint. This is
achieved by verifying that the formula isCPq,{x1,...,xk}(v), defined in Table 2, does not
hold for any object at Sc, the memory state that arises when p(x1, . . . , xk) is invoked
by q.

The formula isCPq,{x1,...,xk}(v), holding when v is a cutpoint object, is comprised
of three conjuncts. The first conjunct, requires that v be reachable from an actual pa-
rameter. The second conjunct, requires that v not be pointed-to by an actual parameter.
The third conjunct, requires that v be an entry point into p’s local heap, i.e., is pointed-
to by a local variable of q (the caller procedure) or by a field of an object not passed
to p.

Example 2.3 The structure Sc
2 of Figure 2 depicts the memory state at

the point of the call t = splice(x, y). In this state, the formula
isCPmain,{x,y}(v) does not hold for any object. On the other hand, when
s = splice(t, z) is invoked at Sccp

3 of Figure 3(b), the object pointed-

9

〈body of p, Se〉 lcpfÃ Sx

〈y = p(x1, . . . , xk), Sc〉 lcpfÃ Sr

Sc |= ∀v : ¬isCPq,{x1,...,xk}(v)

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u)}
ιe = updCally=p(x1,...,xk)

q (Sc)
Sr = 〈Ur, ιr〉 where

Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P.





ιc[inUc 7→ λv.1](p)(u1, . . . , um) : u1 = w1.c, . . . , um = wm.c
ιx[inUx 7→ λv.1](p)(u1, . . . , um) : u1 = w1.x, . . . , um = wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 6|= inUc(u) ∧R{x1,...,xk}(u)}
ιr = updRety=p(x1,...,xk)

q (〈U ′, ι′〉)

Figure 4: The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q.
The functions updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Figure 5.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ Local? \ {h1, . . . , hk}
b. Predicate update formulae for updRety=p(x1,...,xk)

q

z′(v) =





retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧match{〈h1,x1〉,...,〈hk,xk〉}(v1, v)

0 : z ∈ Local? \ Vq

f ′(v1, v2) = inUx (v1) ∧ inUx (v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx (v2) ∧ ∃vsep : f(v1, vsep) ∧match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2)
inUc′(v) = inUx ′(v) = 0

Figure 5: Predicate-update formulae for the core predicates used in the procedure call
rule. We assume that the p’s formal parameters are h1, . . . , hk. There is a separate
update formula for every local variable z ∈ Local? and for every field f ∈ FieldId?.

to by y is a cutpoint. Note, that the formula isCPmain,{t,z}(v) evaluates
to 1 when v is bound to this object: the formula R{t,z}(v) holds for ev-
ery object in t’s list. In particular, it holds for the second object which is
pointed-to by a local variable (y) but not by an actual parameter (t, z).

Note that LCPF considers only the values of variables that belong to the current
call when it detects cutpoints. This is possible because all pending calls are cutpoint-
free. This greatly simplifies the cutpoint detection compared to [33].

10

2.2.2 Computing The Memory State at the Entry Site.

Se, the memory state at the entry site to p, represents the local heap passed to p. It
contains only these individuals in Sc that represent objects that are relevant for the
invocation. The formal parameters are initialized by updCally=p(x1,...,xk)

q , defined in
Figure 5(a). The latter, specifies the value of the predicates in Se using a predicate-
update formulae evaluated over Sc. We use the convention that the updated value of
x is denoted by x′. Predicates whose update formula is not specified, are assumed to
be unchanged, i.e., x′(v1, . . .) = x(v1, . . .). Note that only the predicates that rep-
resent variable values are modified. In particular, field values, represented by binary
predicates, remain in p’s local heap as in Sc.

Example 2.4 The structure Se
2 of Figure 2 depicts the memory state at

the entry site to splice when t = splice(x, y) is invoked at the
memory state Sc

2. Note that the list referenced by z is not passed to
splice. Also note that the element which was referenced by x is now
referenced by p. This is the result of applying the update formula p′(v) =
x(v) for the predicate p in this call. Similarly, the element which was
referenced by y is now referenced by q.

2.2.3 Computing The Memory State at the Return Site.

The memory state at the return-site (Sr) is constructed as a combination of the memory
state in which p was invoked (Sc) and the memory state at p’s exit-site (Sx). Infor-
mally, Sc provides the information about the (unmodified) irrelevant objects and Sx

contributes the information about the destructive updates and allocations made during
the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation
is cutpoint-free guarantees that the only references into the local heap are references to
objects referenced by an actual parameter. This allows us to reflect the effect of p into
the local heap of q by: (i) replacing the relevant objects in Sc with Sx, the local heap
at the exit from p; (ii) redirecting all references to an object referenced by an actual
parameter to the object referenced by the corresponding formal parameter in Sx.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively. Pointer redirection is specified
by means of predicate update formulae, as defined in Figure 5(b). The most interest-
ing aspect of these update-formulae is the formula match{〈h1,x1〉,...,〈hk,xk〉}, defined
below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def=

k∨

i=1

inUc(v1) ∧ xi(v1) ∧ inUx (v2) ∧ hi(v2)

This formula matches an individual that represents an object which is referenced by
an actual parameter at the call-site, with the individual that represents the object which
is referenced by the corresponding formal parameter at the exit-site. Our assumption
that formal parameters are not modified allows us to match these two individuals as
representing the same object. Once pointer redirection is complete, all individuals

11

Table 3: The instrumentation predicates used in this paper.
Predicate Intended Meaning Defining Formula
robj (v1, v2) v2 is reachable from v1 by some field path F ∗(v1, v2)
ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬eq(v1, v2) ∧

a field of more than one object in the local-heap F (v1, v) ∧ F (v2, v)
c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)
rx (v) v is reachable from variable x ∃vx : x(vx) ∧ F ∗(vx, v)

originating from Sc and representing relevant objects are removed, resulting with the
updated memory state of the caller.

Note that while the combined structure may not be an admissible memory state, the
resulting memory state at the return site is admissible.

Example 2.5 Sc
2 and Sx

2 , shown in Figure 2, represent the memory states
at the call-site and at the exit-site of the invocation t=splice(x,y),
respectively. Their combination according to the procedure call rule is Sr

2 ,
which represents the memory state at the return site. Note that the lists of
x and y from the call-site were replaced by the lists referenced by p and
q. The list referenced by z was taken as is from the call-site.

3 Abstract Semantics
In this section, we present LCPF#, a conservative abstract semantics abstracting
LCPF .

3.1 Abstract Memory States
We conservatively represent multiple concrete memory states using a single logical
structure with an extra truth-value 1/2 which denotes values which may be 1 and which
may be 0. The information partial order on the set {0, 1/2, 1} is defined as 0 v 1/2 w
1, and 0 t 1 = 1/2.

An abstract state is a 3-valued logical structure S]=〈US]

, ιS
]〉 where:

• US]

is the universe of the structure. Each individual in US]

possibly represents
many heap-allocated objects.

• ιS
]

is an interpretation function mapping predicates to their truth-value in the

structure, i.e., for every predicate p ∈ P of arity k, ιS(p) : US] k → {0, 1/2, 1}.
The set of 3-valued logical structures is denoted by 3Struct .

Instrumentation Predicates Instrumentation predicates record derived properties of
individuals, and are defined using a logical formula over core predicates. Instrumenta-
tion predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Table 3 lists the instrumentation
predicates used in this paper.

12

splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

x

y

z

rx

ry

rz

n

n

n rx

ry

rz

n

n

n

p

q

rp

rq
n

n

rq

n

n

rp p,w

q

rp

rp n

n
rw

n

rq

rp rw
rq

rw x,t

y

z

rx

ry

rz

n

n

rt

rz

n

n

rx rt
ry

rx rt

(Sc#
6) (Se#

6) (Sx#
6) (Sr#

6)

Figure 6: Abstract states for the invocation t = splice(x, y); in the running
example.

Canonical Abstraction We now formally define how concrete memory states are
represented using abstract memory states. The idea is that each individual from the
(concrete) state is mapped into an individual in the abstract state. An abstract memory
state may include summary nodes, i.e., an individual which corresponds to one or more
individuals in a concrete state represented by that abstract state.

A 3-valued logical structure S] is a canonical abstraction of a 2-valued logical
structure S if there exists a surjective function f : US → US]

satisfying the following
conditions: (i) For all u1, u2 ∈ US , f(u1) = f(u2) iff for all unary predicates p ∈ P ,
ιS(p)(u1) = ιS(p)(u2), and (ii) For all predicates p ∈ P of arity k and for all k-tuples
u]

1, u
]
2, . . . , u

]
k ∈ US]

,

ιS
]

(p)(u]
1, u

]
2, . . . , u

]
k) =

⊔

u1,...,uk∈Us

f(ui)=u]
i

ιS(p)(u1, u2, . . . , uk).

The set of concrete memory states such that S] is their canonical abstraction is
denoted by γ(S]). Finally, we say that a node u] ∈ US]

represents node u ∈ U , when
f(u) = u]. Note that only for a summary node u, ιS

]

(eq)(u, u) = 1/2.
3-valued logical structures are also drawn as directed graphs. Definite values

(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values (1/2)
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 3.1 Figure 6 shows the abstract states (as 3-valued logical struc-
tures) representing the concrete states of Figure 2. Note that only the local
variables p and q are represented inside the call to splice(p,q). Rep-
resenting only the local variables inside a call ensures that the number of
unary predicates to be considered when analyzing the procedure is pro-
portional to the number of its local variables. This reduces the overall
complexity of our algorithm to be worst-case doubly-exponential in the
maximal number of local variables rather than doubly-exponential in their
total number (as in e.g., [34]).

The Importance of Reachability Recording derived properties by means of instru-
mentation predicates may provide additional information that would have been other-
wise lost under abstraction. In particular, because canonical abstraction is directed by

13

unary predicates, adding unary instrumentation predicates may further refine the ab-
straction. This is called the instrumentation principle in [36]. In our framework, the
predicates that record reachability from variables plays a central role. They enable us to
identify the individuals representing objects that are reachable from actual parameters.
For example, in the 3-valued logical structure Sc#

6 depicted in Figure 6, we can detect
that the top two lists represent objects that are reachable from the actual parameters
because either rx or ry holds for these individuals. None of these predicates holds for
the individuals at the (irrelevant) list referenced by z. We believe that these predicates
should be incorporated in any instance of our framework.

3.2 Inference Rules

The meaning of statements is described by a transition relation
lcpf #

Ã ⊆ (3Struct ×
st) × 3Struct . Because our framework is based on [36], the specification of the con-
crete operational semantics for program statements (as transformers of 2-valued struc-
tures) in Section 2, also defines the corresponding abstract semantics (as transformers
of 3-valued structures). This abstract semantics is obtained by reinterpreting logical
formulae using a 3-valued logic semantics and serves as the basis for an abstract in-
terpretation. In particular, reinterpreting the side condition of the procedure call rule
conservatively, verifies that the program is cutpoint free. In this paper, we directly
utilize the implementation of these ideas available in TVLA [23].

In principle, the effect of a statement on the values of the instrumentation predi-
cates can be evaluated using their defining formulae and the update formulae for the
core predicates. In practice, this may lead to imprecise results in the analysis. It is
far better to supply the update formula for the instrumentation predicates too. In this
paper, we manually provide the update formulae of the instrumentation predicates (as
done e.g., in [22, 34, 36]). Automatic derivation of update formulae for the instrumen-
tation predicates [30] is currently not implemented in our framework. We note that
update formulae are provided at the level of the programming language, and are thus
applicable to arbitrary procedures and programs. Predicate update-formulae for the
instrumentation predicates are provided in Appendix A.2.

The soundness of our abstract semantics is guaranteed by the combination of the
theorems in Appendix B and [36]:

• In Appendix B, we show that for cutpoint-free programs LCPF is observation-
ally equivalent to a standard store-based global-heap semantics.

• In [36], it is shown that every program-analyzer which is an instance of their
framework is sound with respect to the concrete semantics it is based on.

3.3 Interprocedural Functional Analysis via Tabulation of Abstract
Local Heaps

Our algorithm computes procedure summaries by tabulating input abstract memory-
states to output abstract memory-states. The tabulation is restricted to abstract memory-
states that occur in the analyzed program. The tabulated abstract memory-states repre-
sent local heaps, and are therefore independent of the context in which a procedure is
invoked. As a result, the summary computed for a procedure could be used at different
calling contexts and at different call-sites.

Our interprocedural analysis algorithm is a variant of the IFDS-framework [29]
adapted to work with local-heaps. The main difference between our framework and [29]

14

enter splice(p,q) exit splice(p,q)

p qrp rq
nn rq

n n

rp p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

p qrp rq
n rq

n

p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

q rq
n rq

n

q,w rq
nrw

n

rq rw

Figure 7: Partial tabulation of abstract states for the splice procedure.

is in the way return statements are handled: In [29], the dataflow facts that reach a
return-site come either from the call-site (for information pertaining to local variables)
or from the exit-site (for information pertaining to global variables). In our case, the
information about the heap is obtained by combining pair-wise the abstract memory
states at the call-site with their counterparts at the exit-site. A detailed description of
our tabulation algorithm can be found in Appendix C.

Example 3.2 Figure 7 shows a partial tabulation of abstract local heaps
for the splice procedure of the running example. The figure shows 3
possible input states of the list pointed-to by p. Identical possible input
states of the list pointed-to by q, and their combinations are not shown.
As mentioned in Section 1, the splice procedure is only analyzed 9 times
before its tabulation is complete, producing a summary that is then reused
whenever the effect of splice(p, q) is needed.

4 Prototype Implementation
We have implemented a prototype of our framework using TVLA [23]. The frame-
work is parametric in the heap-abstraction and in the operational semantics. We have
instantiated the framework to produce a shape-analysis algorithm for analyzing Java
programs that manipulate (sorted) singly-linked lists and unshared trees. To translate
Java programs we have extended an existing Soot-based [39] front-end for Java devel-
oped by R. Manevich.

The join operator in our framework can be either set-union or a more “aggressive”
partial-join operation [24]. The former ensures that the analysis is fully-context sensi-
tive. The latter exploits the fact that our abstract domain has a Hoare order and returns
an upper approximation of the set-union operator. Our experiments were conducted
with the partial-join operator.

Our analysis was able to verify that all the tested programs are cutpoint-free and
clean, i.e., do not perform null-dereference and do not leak memory. For singly-linked-
list-manipulating programs (Table 4.a), we also verified that the invoked procedures
preserve list acyclicity. The analysis of the tree-manipulating programs (Table 4.b)
verified that the tree invariants hold after the procedure terminates. For these programs

15

Iterative vs. Recursive Programs
Implementation Iterative Recursive
a. List manipulating programs Space Time Space Time
create creates a list 2.5 11.5 2.3 9.3
find searches an element in a list 3.2 23.7 3.6 37.1
insert inserts an element into a sorted list 5.1 50.1 5.4 46.8
delete removes an element from a sorted list 3.7 41.7 3.9 35.8
append appends two lists 3.7 18.4 3.9 22.5
reverse destructive list-reversal 3.6 26.9 3.4 21.0
revApp reverses a list by appending its head to its reversed tail 4.3 43.6 4.3 41.7
merge merges two sorted lists 12.5 585.1 5.4 87.1
splice splices two lists 4.9 76.5 4.8 33.6
running the running example 5.2 80.5 5.0 36.5

b. Tree manipulating programs Space Time Space Time
create creates a full tree - - 2.6 14.3
insert inserts a node 5.4 98.1 5.6 49.6
remove removes a node using removeRoot and spliceLeft 9.6 480.3 6.6 167.5
find finds a node with a given key 4.9 53.4 6.5 105.7
height returns the tree’s height - - 5.4 76.1
spliceLeft a tree as the leftmost child of another tree 5.3 51.6 5.3 35.7
removeRoot removes the root of a tree 6.1 107.8 6.1 73.9
rotate rotates the left and right children of every node - - 4.9 57.1

c. Sorting programs Space Time Space Time
IinsertionSort moves the list elements into a sorted list 8.6 449.8 7.3 392.2
TailSort inserts the list head to its (recursively) sorted tail 4.9 101.6 4.9 103.4
QuickSort quicksorts a list - - 13.5 1017.1

d. [34] (Call String) vs. [19] (Relational) vs.
our method

Method Call String Relational Our method
Procedure Space Time Space Time Space Time
insert 1.8 20.8 6.3 122.9 3.5 20.0
delete 1.7 16.4 6.8 145.7 2.8 14.9
reverse 1.8 13.9 4.0 6.4 2.8 7.5
reverse8 2.7 123.8 9.1 14.8 2.8 21.7

e. Inline vs. Procedural Abstraction
Inline Proc. Call

Program Space Time Space Time
crt1x3 2.5 5.1 2.5 6.0
crt2x3 4.5 12.5 2.8 7.3
crt3x3 6.4 22.6 3.1 8.6
crt4x3 8.1 38.6 3.3 9.9
crt8x3 17.3 133.4 4.0 15.6

Table 4: Experimental results. Time is measured in seconds. Space is measured in
megabytes. Experiments performed on a machine with a 1.5 Ghz Pentium M processor
and 1 Gb memory.

we assume (and verify) that the trees are unshared. The analysis of the sorting programs
(Table 4.c) verified that the sorting procedure returns a sorted permutation of its input
list. To prove this property we adapted the abstraction used in [22]. We note that
prior attempts to verify the partial correctness of quicksort using TVLA were not
successful. For more details, see Appendix D

For two of our example programs (quicksort and reverse8), cutpoints were
created as a result of objects pointed-to by a dead variable or a dead field at the point
of a call. We manually rewrote these programs to eliminate these (false) cutpoints.

Table 4a-c compares the cost of analysis for iterative and recursive implementations

16

of a given program.3 For these programs, we found that the cost of analyzing recursive
procedures and iterative procedures is comparable in most cases. We note that our tests
were of client programs and not a single procedure, i.e., in all tests, the program also
allocates the data structure that it manipulates.

Table 4.d shows that our approach compares favorably with existing TVLA-based
interprocedural shape analyzers [19, 34]. The experiments measure the cost of analyz-
ing 4 recursive procedures that manipulate singly linked lists. For fair comparison with
[33] and [18], we follow them and do not measure the cost of list allocation in these
tests. All analyzers successfully verified that these (correct) procedures are clean and
preserve list acyclicity. [19] was able to prove that reverse reverses the list and to
pinpoint the location in the list that delete removed an element from. However, the
cost of analysis for insert and delete in [19] was higher than the cost in [34] and
in our analysis. Procedure reverse8 reverses the same list 8 times. The cost of its
analysis indicates that our approach, as well as [19], profits from being able to reuse
the summary of reverse, while [34] cannot.

In addition, we examined whether our analysis benefits from reuse of procedure
summaries. Table 4.e shows the cost of the analysis of programs that allocate several
lists. Program crtYx3 allocates Y lists. The table compares the cost of the analysis of
programs that allocate a list by invoking create3 (right column) to that of programs
that inline create3’s body. The results are encouraging as they indicate (at least in
these simple examples) that our analysis benefits from procedural abstraction.

5 Related Work
Interprocedural shape analysis has been studied in [7, 15, 19, 33, 34].

[34] explicitly represents the runtime stack and abstracts it as a linked-list. In this
approach, the entire heap, and the runtime stack are represented at every program point.
As a result, the abstraction may lose information about properties of the heap, for parts
of the heap that cannot be affected by the procedure at all.

[19] considers procedures as transformers from the (entire) heap before the call, to
the (entire) heap after the call. Irrelevant objects are summarized into a single summary
node. Relevant objects are summarized using a two-store vocabulary. One vocabulary
records the current properties of the object. The other vocabulary encodes the proper-
ties that the object had when the procedure was invoked. The latter vocabulary allows
to match objects at the call-site and at the exit-site. Note that this scheme never sum-
marizes together objects that were not summarized together when the procedure was
invoked. For cutpoint-free programs, these may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministi-
cally replaces elements between the list tails. The method of [19] will not summarize
list elements that originated from different input lists. Thus, it will generate expo-
nentially more mappings in the procedure summary, than the ones produced by our
method.

[33] presents a heap-modular interprocedural shape-analysis for programs manip-
ulating singly linked lists (without implementation). The algorithm explicitly records
cutpoint objects in the local heap, and may become imprecise when there is more

3revApp is a recursive procedure. We analyzed it once with an iterative append procedure and once with
a recursive append. Tail sort is a recursive procedure. We analyzed it once with an iterative insert procedure
and once with a recursive insert.

17

than one cutpoint. Our algorithm can be seen as a specialization of [33] for han-
dling cutpoint-free programs and as its generalization for handling trees and sorting
programs. In addition, because we restricted our attention to cutpoint-free programs,
our semantics and analysis are much simpler than the ones in [33].

[15] exploits a staged analysis to obtain a relatively scalable interprocedural shape
analysis. This approach uses a scalable imprecise pointer-analysis to decompose the
heap into a collection of independent locations. The precision of this approach might be
limited as it relies on pointer-expressions appearing in the program’s text. Its tabulation
operates on global heaps, potentially leading to a low reuse of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented in [7] without an implementation. The main idea there is to record
for every object both its current properties and the properties it had at that time the
procedure was invoked.

A heap modular interprocedural may-alias analysis is given in [12]. The key obser-
vation there is that a procedure operates uniformly on all aliasing relationships involv-
ing variables of pending calls. This method applies to programs with cutpoints. How-
ever, the lack of must-alias information may lead to a loss of precision in the analysis
of destructive updates. For more details on the relation between [12] and local-heap
shape analysis see [32, Sec. 5.1].

Local reasoning [18, 31] provides a way of proving properties of a procedure inde-
pendent of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. Our semantics resembles the frame
rule in the sense that the effect of a procedure call on a large heap can be obtained from
its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the heap
based on user-supplied specifications. In contrast, in our work, the partitioning of the
heap is built into the concrete semantics, and abstract interpretation is used to establish
properties in the absence of user-supplied specifications.

Another relevant body of work is that concerning encapsulation (also known as
confinement or ownership) [1, 3–5, 8, 9, 14, 17, 21, 25, 28]. These works allow modular
reasoning about heap-manipulating (object-oriented) programs. The common aspect
of these works, as described in [27], is that they all place various restrictions on the
sharing in the heap while pointers from the stack are generally left unrestricted. In our
work, the semantics allows for arbitrary heap sharing within the same procedure, but
restricts both the heap sharing and the stack sharing across procedure calls.

6 Conclusions and Future Work
In this paper, we presented an interprocedural shape analysis for cutpoint-free pro-
grams. Our analysis is modular in the heap and thus allows reusing the effect of a
procedure at different calling contexts. In the future, we plan to utilize liveness analy-
sis to automatically remove false cutpoints.

Acknowledgments. We are grateful for the helpful comments of N. Dor, S. Fink,
T. Lev-Ami, R. Manevich, R. Shaham, G. Yorsh, and the anonymous referees of the
SAS paper [35].

18

References
[1] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In

European Conference on Object-Oriented Programming (ESOP), 1997.

[2] T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow
engine. In Workshop on Program Analysis for Software Tools and Engineering
(PASTE), 2001.

[3] A. Banerjee and D. A. Naumann. Representation independence, confinement,
and access control. In Symp. on Princ. of Prog. Lang. (POPL), 2002.

[4] B. Bokowski and J. Vitek. Confined types. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), 1999.

[5] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Symp. on Princ. of Prog. Lang. (POPL), 2003.

[6] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
Conf. on Prog. Lang. Design and Impl. (PLDI), 1990.

[7] S. Chong and R. Rugina. Static analysis of accessed regions in recursive data
structures. In International Static Analysis Symposium (SAS), 2003.

[8] D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
In European Conference on Object-Oriented Programming (ESOP), 2001.

[9] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protec-
tion. In Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), 1998.

[10] P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E.J. Neuhold, editor, Formal Descriptions of Programming
Concepts, (IFIP WG 2.2, St. Andrews, Canada, August 1977), pages 237–277.
North-Holland, 1978.

[11] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in
polynomial time. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.

[12] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In Conf. on Prog. Lang. Design and Impl. (PLDI), 1994.

[13] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In Interna-
tional Static Analysis Symposium (SAS), 2000.

[14] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types.
In Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), 2001.

[15] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
In Symp. on Princ. of Prog. Lang. (POPL), 2005.

[16] C. A. R. Hoare. Algorithm 64: Quicksort. Comm. of the ACM (CACM), 4(7):321,
1961.

19

[17] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), 1991.

[18] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In Symp. on Princ. of Prog. Lang. (POPL), 2001.

[19] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interpro-
cedural shape analysis. In International Static Analysis Symposium (SAS), 2004.

[20] J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf.
on Comp. Construct. (CC), 1992.

[21] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.

[22] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In Int. Symp. on Software Testing and Analysis
(ISSTA), 2000.

[23] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static anal-
ysis. In International Static Analysis Symposium (SAS), 2000. Available at
http://www.math.tau.ac.il/∼ tvla.

[24] R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In International Static Analysis Symposium (SAS), 2004.

[25] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernuniversität Hagen, 2001.

[26] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[27] J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model
of encapsulation. In The First International Workshop on Aliasing, Confinement
and Ownership in Object-Oriented Programming (IWACO), 2003.

[28] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In European Conference
on Object-Oriented Programming (ESOP), 1998.

[29] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Symp. on Princ. of Prog. Lang. (POPL), 1995.

[30] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for
static analysis. In European Symposium on Programming Languages (ESOP),
2003.

[31] J. Reynolds. Separation logic: a logic for shared mutable data structures. In Symp.
on Logic in Computer Science (LICS), 2002.

[32] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for pro-
cedure local heaps and its abstractions. Tech. Rep. 1, AVACS, September 2004.
Available at “http://www.avacs.org”.

20

[33] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for proce-
dure local heaps and its abstractions. In Symp. on Princ. of Prog. Lang. (POPL),
2005.

[34] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs.
In Int. Conf. on Comp. Construct. (CC), 2001.

[35] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In International Static Analysis Symposium (SAS), 2005.

[36] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst. (TOPLAS), 24(3):217–298, 2002.

[37] R. Shaham, E. Yahav, E.K. Kolodner, and M. Sagiv. Establishing local temporal
heap safety properties with applications to compile-time memory management.
In International Static Analysis Symposium (SAS), 2003.

[38] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[39] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. Gagnon P. Lam, and P. Co. Soot - a
java optimization framework. In Proceedings of CASCON 1999, pages 125–135,
1999.

21

Statement Predicate-update formulae side− condition

y = null y′(v) = 0
y = x y′(v) = x(v)
y = x.f y′(v) = ∃v1 : x(v1) ∧ f(v1, v) ∃v1 : x(v1)
y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1) ∃v1 : y(v1)
y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2)) ∃v1 : y(v1)

y = alloc(T) T ′(v) = T ′(v) ∨ new(v)
eq ′(v1, v2) = eq(v1, v2) ∨ new(v1) ∧ new(v2)
new ′(v) = 0

Figure 8: The predicate-update formulae defining the operational semantics of assign-
ments.

A Formal Specification of the Operational Semantics
This appendix provides the operational semantics for the intraprocedural statements
(Section A.1) and the predicate-update formulae for the instrumentation predicates for
interprocedural statements (Section A.2).

A.1 Operational Semantics for Atomic Statements
The operational semantics for assignments is specified by predicate-update formulae:
for every predicate p and for every statement st , the value of p in the 2-valued structure
which results by applying st to S, is defined in terms of a formula evaluated over S.

The predicate-update formulae of the core-predicates for assignment is given in
Figure 8. The table also specifies the side condition which enables that application
of the statement. These conditions check that null-dereference is not performed. The
value of every core-predicate p after the statement executes, denoted by p′, is defined
in terms of the core predicate values before the statement executes (denoted without
primes). Core predicates whose update formula is not specified, are assumed to be
unchanged, i.e., p′(v1, . . .) = p(v1, . . .).

None of the assignments, except for object allocation, modifies the underlying uni-
verse. Object allocation is handled as in [36]: A new individual is added to the universe
to represent the allocated object; the auxiliary predicate new is set to hold only at that
individual; only then, the predicate-update formulae is evaluated.

A.2 Predicate Update Formulae for Instrumentation Predicates
Figure 9 provides the update formulae for instrumentation predicates used by the proce-
dure call rule. We use PTX(v) as a shorthand for

∨
x∈X x(v). The intended meaning

of this formula is to specify that v is pointed to by some variable from X ⊆ Local?.
We use bypassX(v1, v2) as a shorthand for (F (v1, v2) ∧ ¬PTX(v1))∗. The intended
meaning of this formula is to specify that v2 is reachable from v1 by a path that does
not traverse any object which is pointed-to by any variable in X ⊆ Local?. As we can
see, formula match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2) again plays a central role.

22

a. Predicate update formulae for updCally=p(x1,...,xk)
q

ils ′(v) = ils ′(v) ∧ (¬PTx1,...,xk
(v)∨

∃v1, v2 : R{x1,...,xk}(v1) ∧R{x1,...,xk}(v2) ∧
F (v1, v) ∧ F (v2, v) ∧ ¬eq(v1, v2))

r′y(v) =

{
rxi

(v) : y = hi

0 : y ∈ Local? \ {h1, . . . , hk}
b. Predicate update formulae for updRety=p(x1,...,xk)

q

ils ′(v) = ils(v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx (v)) ∨
PTx1,...,xk

(v) ∧ ∃v1, v2, v3 : match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∧ ¬eq(v2, v3) ∧
inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ F (v2, v1) ∧
(inUc(v3) ∧ ¬R{x1,...,xk}(v3) ∧ F (v3, v1) ∨ inUx (v3) ∧ F (v3, v))

r′obj (v1, v2) = robj (v1, v2) ∧ inUx (v1) ∧ inUx (v2) ∨
robj (v1, v2) ∧ inUc(v1) ∧ inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx (v2) ∧ ∃va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧
bypass{x1,...,xk}(v1, va) ∧ robj (vf , v2)

r′x (v) = inUc(v) ∧ rx (v) ∧ ¬R{x1,...,xk}(v) ∨
inUx (v) ∧ ∃vx, va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧

x(vx) ∧ bypass{x1,...,xk}(vx, va) ∧ robj (vf , v)

Figure 9: The predicate update formulae for the instrumentation predicates used in
the procedure call rule. We give the semantics for an arbitrary function call y =
p(x1, . . . , xk) by an arbitrary function q. We assume that the p’s formal parameters
are h1, . . . , hk.

B Semantics Equivalence
In this section, we define the GSB semantics, which is operational, large-step, store-
based (as opposed to storeless), and global, i.e., the entire heap is passed to a procedure.
We refer to this semantics as the standard semantics.

For simplicity, the semantics tracks only pointer values and assumes that every
pointer-valued field or variable is assigned null before being assigned a new value.4

In addition, we assume that before a procedure terminates it assigns a null value to
every pointer variable that is not a formal parameter or the return argument.5

Figure 10 defines the semantic domains. Loc is an unbounded set of memory lo-
cations. A memory state for a procedure p, σp

G ∈ Σp
G, keeps track of the allocated

memory locations, L, an environment mapping p’s local variables to values, ρ, and a
mapping from fields of allocated locations to values, h. Due to our simplifying as-
sumptions, a value is either a memory location or null.

The meaning of statements is described by a transition relation GÃ⊆ (σG×stms)×σG.

4Special care needs to be taken when handling statements in which the same variable appears both in
the left-side of the assignment and in its right-side, e.g., x = x.f. Such statements require additional
source-to-source transformations and the introduction of temporary variables.

5These conventions were chosen as a matter of simplicity; in principle, different ones could be used with
minor effects on the capabilities of our approach.

23

l ∈ Loc
v ∈ Val = Loc ∪ {null}
ρ ∈ Envp = Vp → Val
h ∈ HeapG = Loc × FieldId → Val
σG, 〈L, ρ, h〉 ∈ Σp

G = 2Loc × Envp × HeapG

Figure 10: Semantic domains of the GSB semantics.

〈x = null, 〈L, ρ, h〉〉 GÃ 〈L, ρ[x 7→ null], h〉
〈x = y, 〈L, ρ, h〉〉 GÃ 〈L, ρ[x 7→ ρ(y)], h〉
〈x = y.f, 〈L, ρ, h〉〉 GÃ 〈L, ρ[x 7→ h(ρ(y), f)], h〉 ρ(y) 6= null

〈x.f = null, 〈L, ρ, h〉〉 GÃ 〈L, ρ, h[(ρ(x), f) 7→ null]〉 ρ(x) 6= null

〈x.f = y, 〈L, ρ, h〉〉 GÃ 〈L, ρ, h[(ρ(x), f) 7→ ρ(y)]〉 ρ(x) 6= null

〈x = alloc t, 〈L, ρ, h〉〉 GÃ 〈L∪{l}, ρ[x 7→ l], h∪I(l)〉 l 6∈ L

Figure 11: Axioms for atomic statements in the GSB semantics. I initializes all
pointer fields at l to null.

Figure 11 shows the axioms for assignments. The inference rule for function calls is
given in Figure 12. All other statements are handled as usual using a two-level store
semantics for pointer languages.

B.1 Observable Properties
In this section, we introduce access paths, which are the only means by which a pro-
gram can observe a state. Note that the program cannot observe location names.

Definition B.1 (Field Paths) A field path δ ∈ ∆ = FieldId∗ is a (possibly empty)
sequence of field identifiers. The empty sequence is denoted by ε.

〈body of p, 〈Le, ρe, he〉〉 GÃ 〈Lx, ρx, hx〉
〈y = p(x1, . . . , xk), 〈Lc, ρc, hc〉〉 GÃ 〈Lr, ρr, hr〉

where

Le = Lc, ρe(v) =

{
ρc(xi) v = zi

null otherwise
, he = hc

Lr = Lx, ρr = ρc[y 7→ ρx(retp)], hr = hx

Figure 12: Inference rule for function invocation in the GSB semantics, assuming the
formal variables of p are z1, . . . , zk and that p’s return value is a pointer.

24

Definition B.2 (Access path) An access path α = 〈x, δ〉 ∈ Vp ×∆ of a procedure p
is a pair consisting of a local variable of p and a field path. AccPathp denotes the set
of all access paths of procedure p. AccPath denotes the union of all access paths of
all procedures in a program.

B.2 Observable Properties in GSB
Definition B.3 (Access path value) The value of an access path α = 〈x, δ〉 in state
〈L, ρ, h〉, denoted by [[α]]G〈L, ρ, h〉, is defined to be ĥ(ρ(x), δ), where

ĥ : Val×∆ → Val such that

ĥ(v, δ) =





v if δ = ε

ĥ(h(v, f), δ′) if δ = fδ′, v ∈ Loc
null otherwise

Note that the value of an access path that traverses a null-valued field is defined to
be null. This definition simplifies the notion of equivalence between the GSB semantics
and LSL, our new semantics. Alternatively, we could have defined the value of such
a path to be ⊥. The semantics given in Figure 11 checks that a null-dereference is not
performed (see the side-conditions listed in the caption).

Definition B.4 (Access-path equality) An access path α is equal to null in a given
state σG, denoted by [[α = null]]G(σG), if [[α]]G(σG) = null. Access paths α and β
are equal in σG, denoted by [[α = β]]G(σG), if they have the same value in that state,
i.e., [[α]]G(σG) = [[β]]G(σG).

B.3 Observable Properties in LCPF
In this section, we define the value of access paths equality in LCPF .

Definition B.5 (Reachability via a field path) Let u1, u2 ∈ US be individuals in mem-
ory state S ∈ 2Struct , u1 reaches u2 via δ, if δ = ε and ιS(eq)(u1, u2) = 1, or
δ = fδ′ and there exists u′ ∈ U such that ιS(f)(u1, u

′) = 1 and u′ reaches u2 via δ′.

Definition B.6 (Access-path equality) An access path α = 〈x, δ〉 is equal to null,
denoted by [[α = null]]LCPF (S), if there do not exist individuals u1, u ∈ US such
that ιS(x)(u1) = 1 and u1 reaches u via δ. Access paths α1 = 〈x1, δ1〉 and α2 =
〈x2, δ2〉 are equal in a given memory state S, denoted by [[α1 = α2]]LCPF (S), if both
are equal to null, or there exist individuals u1, u2 and u, such that ιS(x1)(u1) = 1,
ιS(x2)(u2) = 1, u1 reaches u via δ1, and u2 reaches u via δ2.

B.4 Observable Equivalence
Definition B.7 (Observational equivalence) Let p be a method. The states S ∈ 2Struct
and σG ∈ Σp

G are observationally equivalent if for all α, β, γ ∈ AccPathp,

(i) [[α = β]]LCPF (S) ⇔ [[α = β]]G(σG), and

(ii) [[γ = null]]LCPF (S) ⇔ [[γ = null]]G(σG).

25

Theorem B.8 (Equivalence) Let P be a cutpoint free program. Let p be a procedure
in P . Let S ∈ 2Struct and σG ∈ ΣG be observationally equivalent states. Let st be
an arbitrary statement in p. The following holds:

〈st , S〉 lcpfÃ S′ ⇐⇒ 〈st , σG〉 GÃ σ′G.

Furthermore, S′ and σ′G are observationally equivalent.

Sketch of Proof: The proof is done by induction on the shape of the derivation tree. We
prove that observational equivalence is preserved by showing a stronger property: the
two memory states are isomorphic up to garbage (i.e., elements not reachable from any
program variable). We look at the two memory states as graphs. The graph nodes are
the allocated objects and the graph edges are the object fields. The graph nodes may
be labeled by variables.

We maintain an injective and a surjective function ρ from the set of objects that
are reachable from the variables of the current procedure in the memory state of the
GSB to the same set of objects in the memory state of the LCPF semantics. Clearly
when a program starts, and prior to the allocation of any object, the two memory states
are isomorphic. It is easy to verify that atomic statement preserves the isomorphism:
ρ remains unchanged, except that object allocation maps the new location to the new
individual.

When a procedure is invoked, the mapping ρ is projected on the set of objects
passed to the invoked procedure. When a procedure returns, the mapping of locations
resp. individuals that were irrelevant for the invocation remains as in the call site. The
mapping for locations resp. individuals that were relevant for the invocation, as well
as those that were allocated during the invocation, are taken from the exit site. Note
that the induction assumption ensures that the above scheme is well defined and that
the subgraph containing the objects that were (resp. were not) in the invoked procedure
local heap are isomorphic. To see why the whole graphs are isomorphic we recall that
P is cutpoint free. Thus, any object which was not passed to the invoked procedure
which has a field that points to such an object, must point to an object which is pointed
to by an actual parameter, and the LCPF semantics restores all outside references to
these objects, which by the induction assumption, must be the same in both semantics.
A similar reasoning applies to variables.

C Tabulation Algorithm
In this section, we describe the iterative interprocedural local-heap shape-analysis algo-
rithm. For simplicity, we describe it in a generic way as an algorithm that manipulates
shape graphs. In this paper, shape graphs are implemented by 3-valued logical struc-
tures.

The algorithm computes procedure summaries by tabulating input shape-graphs
to output shape-graphs. The tabulation is restricted to shape-graphs that occur in the
analyzed program. The abstract domain is the powerset of shape-graphs (2SG) with
set-union as the join operator. The abstract-transformers are always applied point-wise,
thus they distribute over the join operator (e.g., see [26]). The algorithm remains sound
in case the join operator is an over approximation of set union.

26

The algorithm is a variant of the IFDS-framework [29] adapted to work with local-
heaps. The main difference between our framework and [29] is in the way return
statements are handled: In [29], the dataflow facts that reach a return-site come either
from the call-site (for information pertaining to local variables) or from the exit-site
(for information to pertaining global variables). In our case, the information about the
heap is obtained by combining pair-wise the shape graphs at the call-site with the shape
graphs at the exit-site: the information about the values of local variables and fields of
objects that point to the part of the heap which was not passed to the callee is passed
as-is from the call-site. The information about the values of fields of objects in the
part of the heap which was passed to the callee is taken as-is from the exit-site. The
information about the value of the caller’s local variables and the values of fields of
objects that were not passed to the callee, but point to objects that are passed to the
callee, are computed by the combine operation (see Appendix C.2).

C.1 Program Model
We represent a program P in a standard manner by the set of control-flow-graphs of its
procedures (with a distinguished main procedure), connected by a set of interprocedu-
ral call/return edges. The control-flow-graph CFGp of a procedure p, is comprised of
a set of nodes Np, representing program locations, and a set of intraprocedural edges
Ep ⊆ Np × Np labeled with program statements. We assume that every CFGp has a
single entry-node, entry(p), and a single exit-node, exit(p).

We partition the set N ? of all CFG nodes in the program into five subsets: Entry?,
Exit?, Call?, Ret?, and Intra?, corresponding to the sets of all entry-nodes, exit-
nodes, call-sites, return-sites, and all other nodes, respectively.

The procedural control-flow graphs are connected by a set of interprocedural edges
Einter ⊆ Call? × Entry? ∪ Exit? ×Ret?. We denote the set of all program edges by
E?=

⋃
p∈pgm Ep ∪ Einter.

For simplicity, we guarantee that return-sites are not call-sites or exit-sites, by aug-
menting each return-site with a single nop operation.

In the sequel we denote the set of outgoing edges for a node n ∈ N ? by out(n),
and the statement that labels an edge 〈n,n ′〉 ∈ E? by stmt(〈n,n ′〉). We also use
callee(ncall) and return(ncall) to denote the target of the call at ncall and the return-
site of ncall , respectively. For an entry-node n ∈ Entry?, we denote the matching
exit-node by exit(n).

C.2 Tabulation Algorithm
We describe the algorithm using the following operations as “black boxes”:

• apply : Stmt × SG → 2SG applies the abstract transformer associated with a
given intraprocedural statement to a given shape-graph and returns the resulting
set of shape-graphs.

• applicable : Stmt × SG → {true, false} verifies that the given procedure call
statement can be applied to the given shape graph. Thus, verifying that the invo-
cation is cutpoint free.

• extract : Stmt ×SG → 2SG applies the abstract transformer associated with the
given call-statement to the given shape graph. Thus, computing the shape-graph
that represents the local-heap which is passed to the callee.

• combine : Stmt × SG × SG → 2SG computes the shape-graph representing
the local-heap of the caller at the return-site by applying the associated abstract

27

proc tabulate(Program P, SG sg0)
worklist = {〈entry(main) : 〈sg0, sg0〉〉}
while (worklist 6= ∅)
remove an event 〈n : 〈sgentry , sg〉〉 from worklist
if n ∈ Entry? ∪ Ret? ∪ Intra? then

foreach 〈n,n ′〉 ∈ out(n)
foreach sg ′ ∈ apply(stmt(〈n,n ′〉), sg)

if 〈sgentry , sg ′〉 6∈ PathSet(n ′) then
propagate(n ′, 〈sgentry , sg ′〉)

else if n ∈ Call?

nentry
callee = callee(n)

if not applicable(stmt(〈n,nentry
callee〉), sg) then HALT

foreach sg ′ ∈ extract(stmt(〈n,nentry
callee〉), sg)

add 〈n, 〈sgentry , sg〉〉 to CTXs (nentry
callee) sg ′

if 〈sg ′, sg ′〉 6∈ PathSet(nentry
callee) then

propagate(nentry
callee , 〈sg ′, sg ′〉)

else
nexit = exit(nentry

callee)
foreach sgexit ∈ Summary (nentry

callee) sg ′

addToRet(nexit , sgexit , return(n), 〈sgentry , sg〉)
else //n ∈ Exit?

foreach〈ncall , 〈sge, sgc〉〉 ∈ CTXs (nentry
callee) sgentry

addToRet(n, sg , return(ncall), 〈sgentry , sgcall〉)

proc addToRet(Ncallee nexit ,SG sgx,Ncaller nret ,SG × SG 〈sge, sgc〉)
foreach sg ′ ∈ combine(stmt(〈nexit ,nret〉), 〈sgc, sgx〉,)

if (〈sge, sg ′〉 6∈ PathSet(nret)) then
propagate(nret , 〈sge, sg ′〉)

Figure 13: The tabulation algorithm.

transformer when control returns to the caller. This operation gets two shape
graphs as arguments, one from the call-site and the other from the callee exit-
site.

In this paper, we implement apply by evaluating the abstract transformer asso-
ciate with the given atomic statement (see Section A.1 and Section 3). The operations
applicable, extract, and combine are implemented by evaluating the different steps in
the procedure call rule instantiated for the given call: The operation applicable is im-
plemented by evaluating the side condition on the abstract memory state that arises at
the call site. The operations extract and combine are implemented by following the
rule’s specification on how to construct the (abstract) memory states at the callee’s
entry state and at the caller’s return site, respectively (see Section 2 and Section 3).

The tabulation algorithm propagates path-edges. A path-edge 〈sgentry , sg〉 is prop-
agated to a control flow graph node n ∈ Np iff there exists an interprocedural-valid-
path [38] from entry(p) to n such that applying the composed effect of all abstract
transformers associated with statements along the path to sgentry results in sg [29].

28

The algorithm maintains the following data structures:
• The set PathSet(n) contains all path edges propagated to node n . These sets

are initialized to ∅. Note that PathSet(exit(p)) contains the (already-computed)
summarized effect of the procedure. Thus, we define Summary : Entry? →
SG → 2SG which maintains the procedure summary as
Summary (entry(p)) sgentry = {sgexit : 〈sgentry , sgexit〉 ∈ PathSet(exit(p))}.

• The multi-map CTXs : Entry? → (SG × SG) → 2Call?×SG×SG associates
every procedure p, identified by its entry-site, entry(p), with its calling context.
The calling-context is a map from every 0-length path-edge 〈sgentry , sgentry〉 ∈
PathSet(entry(p)) which was propagated to p’s entry to a set of pairs of a call-
site ncaller

call ∈ Call? and a path-edge 〈sgcaller
entry , sgcaller

call 〉 ∈ PathSet(ncaller
call)

such that the analysis of the invocation of p at call-site ncaller
call extracted the

shape-graph sgentry out of sgcaller
call . This map is initialized to associate entry-

nodes with empty maps.
The iterative algorithm (procedure tabulate) is defined in Figure 13. The work-

list is initialized to contain a 0-length path edge from a shape-graph representing the
memory at the entry to the program to the same shape graph. It then iterates until the
worklist is exhausted. In every iteration, the algorithm extracts one event out of the
worklist. An event is comprised of a CFG node n and a path edge 〈sgentry , sg〉. The
algorithm performs one of the following operations depending on the role of n:

• If n represents a procedure entry, a return-site or a program location of an intra
procedural statement, the algorithm applies the abstract transformer associated
with each edge emanating from n , propagating an (extended) path edge, if nec-
essary.

• If n represents a call-site to procedure p, the algorithm extracts sg ′, the shape-
graph representing the callee-local heap from the target of the path-edge (sg).
It then adds the call-site n and path-edge 〈sgentry , sg〉 to the calling contexts
of CTXs (nentry

callee) sg ′. This operation “registers” 〈n, 〈sgentry , sg〉〉 as a calling-
context of p, which means that whenever a new path edge whose source is sg ′

is propagated to exit(p), the algorithm propagates an appropriate shape-graph to
the return-site return(n). If the path edge 〈sg ′, sg ′〉 has not been propagated to
entry(p), the algorithm propagates it. Otherwise, the algorithm propagates the
known summary effect of p on sg ′ to the return-site using addToRet (see next
case).

• If n represents the exit-site of procedure p, the algorithm updates the return-site
of every calling-context which is registered for sgentry (i.e., in CTXs (entry(p)) sgentry)
using addToRet. The function addToRet combines the shape-graph at the exit-
site of the callee with the shape which is the target of the path-edge at the call-
site.

The algorithm also uses the operation propagate(n, 〈sgentry , sg〉) that adds the
edge 〈sgentry , sg〉 to PathSet(n), the set of path-edges at n; and inserts the event
〈n : 〈sgentry , sg〉〉 to the worklist.

D Analyzing Sorting Programs
The analysis presented in [22] allows to prove partial correctness of sorting and list
manipulating procedures. In this section, we briefly describe our adaptation of their
abstraction to local-heaps.

29

Core Predicates
predicate Intended Meaning
dle(v1, v2) The data component of v1 is less-than-or-equal-to the data component of v2

Instrumentation Predicates
predicate Defining Formula Intended Meaning
O(v) ∀v1 : n(v, v1) =⇒ dle(v, v1) v’s data field is not strictly greater than that

of its successor

Table 5: Core and instrumentation predicates used in the analysis of sorting programs.

The main idea is to track the relative order between the data components of list
elements using a binary core relation (dle). In addition, an additional instrumentation
predicate records the relative order between the data components of successive list
elements (O). Table 5 lists the additional predicates we use here, together with their
intended meaning.

Concrete memory states are represented using 2-valued logical structures and we
abstract them into 3-valued logical structures using canonical abstraction. However,
we represent two individuals that differ only in the value of the predicate O by a single
summary individual. This improves the performance of the analysis, but may reduce
its precision.

We use the same predicate-update formulae as in [22] to specify the effect of in-
traprocedural statements on the values of the added predicates. The main idea is to
assume (and verify) that a list element is allocated with a random data field, which is
not modified afterwards. The program can establish the relative relation between the
data fields using comparisons.

The only change in the procedure call rule amounts to updating the rule to construct
the memory state at the return site. Note that the values of both the O-predicate and
the dle-predicate at the entry to the callee is the same as it was at the call-site.

At the return site, the value of the O-predicate can be taken as is from the call site
(for objects not passed to the invoked procedure) and from the exit site (for objects
in the invoked procedure local heap). This is possible because the invoked procedure
could not have modified the external references into its local heap. In addition, if it
also has not changed the data-value, the O-predicate still holds for those objects whose
successor was passed to the callee.

The dle relation between objects that were (Resp. were not) passed to the callee
does not change. The only difficulty is in restoring the dle relation between objects
that were not passed to the invoked procedure and those that were. The main problem
is that we cannot relate an individual that represents a certain heap allocated object at
the call site, with the individual that represents the same object at the exit site. This
information is lost in our semantics for all objects, except for the ones that are pointed
to by parameters. Thus, we try to restore the relative relation using the parameters,
resorting to an indefinite value as our last choice. The predicate update formulae for
the dle-predicate is given in Figure 14.

We applied our analysis to verify the iterative and recursive sorting programs listed
in Table 4c and in Table 6. Our analysis was able to verify that these programs are
clean and preserve list acyclicity. Furthermore, it verified that:

(i) find, last, insert, and delete preserve list sorted-ness.
(ii) merge merges 2 sorted lists into a sorted list.

30

dle ′(v1, v2) = dle(v1, v2) ∧ (inUc(v1) ∧ inUc(v2) ∨ inUx (v1) ∧ inUx (v2)) ∨
inUc(v1) ∧ inUx (v2) ∧







1 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ dle(v1, vc) ∧ dle(vx, v2)
0 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ ¬dle(v1, vc) ∧ ¬dle(vx, v2)
1/2 : otherwise


 ∨

inUx (v1) ∧ inUc(v2) ∧






1 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ dle(v1, vc) ∧ dle(vx, v2)
0 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ ¬dle(v1, vc) ∧ ¬dle(vx, v2)
1/2 : otherwise




Figure 14: The predicate update formulae for the dle predicate used in the procedure
call rule to construct the memory state at the return site.

(iii) Reversing a sorted list by either reverese or revApp, results in a list in re-
versed order. To establish the last property, we needed an additional instrumenta-
tion predicate RO(v), whose defining formula is ∀v1 : n(v, v1) =⇒ dle(v1, v).
This predicate holds for an individual v, if v’s data field is not strictly less than
that of its successor [22].

(iv) MaxFirst returns the list element with the highest data value in the list, and that
its value is strictly greater than that of any preceding element. Similar properties
were verified for the procedures MaxLast, MinFirst, and MinLast.

We now describe the analysis of quicksort in more details. Figure 15 shows a
program that allocates a random list and sorts it using the quicksort procedure.
The quicksort procedure partitions the list by moving all the list elements whose data
field is less than that of the pivot (the first parameter) to the beginning of the list. The
list is then divided into two sub lists, which are sorted in a recursive fashion. Finally,
the two lists are linked together. Note that the pivot is strictly larger than all other
elements in the first list. This ensures that when the first recursive call returns, the
pivot remains the last element in the first sublist.

We made two modifications to the program in order to eliminate two (false) cut-
points. The n-field of the pivot object (pointed-to by p) is dead when the first recursive
call occurs. Had we not nullified it, the objects pointed-to by tl and last would
have become cutpoints. Similarly, the pr is dead when the second recursive call oc-
curs. However, the object it points to would have become a cutpoint had it not been
nullified. The nullification of all the local variables prior to the return statement is only
conducted to simplify the presentation.

Figure 16 shows several concrete states that occur during the execution of quicksort
and their abstraction. For clarity, in the concrete states we do not draw the instrumenta-
tion predicates. Instead, we draw in each object the numeric value of its data field, from
which the dle relation can be easily inferred. In the abstract states, we do not draw the
dle and robj relations. We prove that a list is sorted by showing that the predicate O
holds in all its elements. Because this predicate does not take a role in the abstraction
and we only care when its value is 1, we draw it only in those nodes in which it hold.
If we do not draw it in a node u, we mean that its value in u is either 0 or 1/2. Because
the dle is a transitive relation, we do not draw dle-labeled edges which can be inferred.
For example, if the data field of u1 is less-or-equal to the data field of u2, and the data

31

Implementation Iterative Recursive

Program Space Time Space Time
create creates a list 2.6 15.0 2.4 12.3
find searches an element in a list 4.1 42.2 4.6 60.7
insert inserts an element into a sorted list 4.7 67.7 4.9 69.5
delete removes an element from a sorted list 4.7 75.1 4.8 70.4
reverse destructively reverses a sorted list 4.5 54.8 4.4 47.6
revApp reverse a sorted list by appending 4.8 74.8 4.8 70.5
its head to the reversed tail
merge merges two sorted lists 11.7 1115.1 5.8 131.2
last returns the last element in a sorted list 4.2 43.3 4.5 47.3
maxFirst returns the first maximal element 3.6 71.3 3.5 51.6
in an unsorted list
maxLast returns the last maximal element 3.6 83.5 3.5 59.0
in an unsorted list
minFirst returns the first minimal element 3.5 64.1 3.5 51.1
in an unsorted list
minLast returns the last minimal element 3.9 76.3 3.5 59.0
in an unsorted list

Table 6: Experimental results for additional sorting programs. Time is measured in
seconds. Space is measured in megabytes. Experiments performed on a machine with
a 1.5 Ghz Pentium M processor and 1 Gb memory.

field of the latter is less-or-equal to the data field of u3, we draw a dle-labeled edge
from u1 to u2 and from u2 to u3, but we do not draw such an edge from u1 to u3.
Because the dle is reflexive, we omit self dle-loops in non summary objects.

Note that the second recursive call to, is invoked on a local heap which, under
abstraction, is identical to the local heap that was passed by the external call, thus the
results of analyzing the recursive call can be reused in the analysis of the external call.
Also note that when the procedure returns, every element has the O property, thus,
proving that the list is in order.

32

public static List quickSortRec(List p, List q) {
// Location (A)
List hd,pr,tl;

if (p == null)
return first;

if (p == q)
return h2;

hd = p;
pr = p;
tl = p.n;

// Partitioning of the list
while (tl != q) {

if (tl.d < p.d) {
pr.n = tl.n;
tl.n = hd;
hd = tl;
tl = pr.n;

}
else {

pr = tl;
tl = tl.n;

}
}

tl = p.n;
p.n = null; // removing a false cutpoint due to a dead field
pr = null; // removing a false cutpoint due to a dead variable

// Location (B)
List s = quickSortRec(hd,p);
// Location (C)
List t = quickSortRec(tl,q);
// Location (D)

p.n = t;

t = hd = pr = tl = null;

// Location (E)
return s;

}

public static void main(String argv[]) {
List x = randomList(8);
List y = quicksort(x,null);

}

Figure 15: A program that sorts a list using a quicksort algorithm for singly linked lists.

33

L
oc

at
io

n
C

on
cr

et
e

M
em

or
y

St
at

es
A

bs
tr

ac
tM

em
or

y
St

at
es

(A
)

p ²² 5
n

// 3
n

// 7
n

// 4
n

// 1
n

// 2
n

// 8
n

// 6

p
//

r
p

n
//

PP d
le

@@r
p

n
yy d
le

QQ

(B
)

h
d ²²

p ²²
t
l ²²

2
n

// 1
n

// 4
n

// 3
n

// 5
7

n
// 6

n
// 8

p ²²
h
d

//
r
h
d

n
//

d
le

¸¸

PP d
le

??r
h
d

n
yy

n
//d
le

´´

d
le

QQ
r
h
d
r
p
O

d
le

¹¹

d
le

¶¶
t
l

//
r
tl

n
yy n

//
__

d
le

NN
r
tl

d
le

QQ

(C
)

s ²²
h
d ²²

p ²²
t
l ²²

1
n

// 2
n

// 3
n

// 4
n

// 5
7

n
// 6

n
// 8

h
d ²²

p ²²
s

//
r
s
O

n
//

d
le

!! r
s
r
h
d
O

n
//

d
le

"" r
s
r
h
d
O d

le

QQ

n
xx

n
//

d
le

""
r
s
r
h
d
r
p
O

d
le

¹¹

d
le

¶¶
t
l

//
r
tl

n
//

__

d
le

NN
r
tl

d
le

QQ

n
yy

(D
)

s ²²
h
d ²²

p ²²
t ²²

t
l ²²

1
n

// 2
n

// 3
n

// 4
n

// 5
6

n
// 7

n
// 8

h
d ²²

p ²²

t
l ²²

s
//

r
s
O

n
//

d
le

!! r
s
r
h
d
O

n
//

d
le

"" r
s
r
h
d
O d

le

QQ

n
xx

n
//

d
le

""
r
s
r
h
d
r
p
O

d
le

··
t

//
r
t
O

n
//

n
//

d
le

!! r
t
r
tl
O

n
//

d
le

´´
r
t
r
tl
O

(E
)

s ²²

p ²²
1

n
// 2

n
// 3

n
// 4

n
// 5

n
// 6

n
// 7

n
// 8

p ²²
s

//
r
s
O

n
//

d
le

´´
r
s
O

d
le

QQ

n
xx

n
//

d
le

¶¶
r
s
r
p
O

n
//

n
//

d
le

´´
r
s
r
p
O

d
le

RR

n
ww

Fi
gu

re
16

:C
on

cr
et

e
m

em
or

y
st

at
es

th
at

oc
cu

rd
ur

in
g

th
e

ex
ec

ut
io

n
of
q
u
i
c
k
s
o
r
t

an
d

th
ei

ra
bs

tr
ac

tio
ns

.

34

