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Abstract

We present a new algorithm for mining maximal
frequent itemsets from a transactional database. Our
algorithm is especially efficient when the itemsets in
the database are very long. The search strategy of our
algorithm integrates a depth-first traversal of the
itemset lattice with effective pruning mechanisms.

Our implementation of the search strategy combines
a vertical bitmap representation of the database with
an efficient relative bitmap compression schema. In a
thorough experimental analysis of our algorithm on
real data, we isolate the effect of the individual
components of the algorithm. Our performance
numbers show that our algorithm outperforms previous
work by a factor of three to five.

1 Introduction

The association rule problem is a very important
problem in the data-mining field with numerous
practical applications, including consumer market-
basket analysis, inferring patterns from web page
access logs, and network intrusion detection [9, 15, 18].
The association rule model and the support-confidence
framework were originally proposed by Agrawal et al.
[2, 3].

Let I be a set of items (we assume in the remainder
of the paper without loss of generality I = {1, … , N}).
We call X ⊆ I an itemset, and we call X a k-itemset if
the cardinality of itemset X is k. Let database T be a
multiset of subsets of I, and let support(X) be the
percentage of itemsets Y in T such that X ⊆ Y.
Informally, the support of an itemset measures how
often X occurs in the database. If support(X) ≥ minSup,
we say that X is a frequent itemset, and we denote the
set of all frequent itemsets by FI. If X is frequent and
no superset of X is frequent, we say that X is a
maximally frequent itemset, and we denote the set of all
maximally frequent itemsets by MFI.

The process for finding association rules has two
separate phases [3]. In the first phase, we find the set of
frequent itemsets (FI) in the database T. In the second
step, we use the set FI to generate “interesting” patterns,
and various forms of interestingness have been proposed
[8, 9, 17, 22, 27, 29, 30]. In practice, the first phase is the
most time-consuming [3]. Smaller alternatives to FI that
still contain enough information for the second phase
have been proposed including the set of frequent closed
itemsets FCI [20, 21, 33]. An itemset X is closed if there
does not exist an itemset X’ such that XX ⊃' and t(X)
= t(X’), with t(Y) defined as the set of transactions that
contain itemset Y. It is straightforward to see that the
following relationship holds: MFI ⊆ FCI ⊆ FI.

The set MFI is orders of magnitude smaller than the
set FCI, which itself is orders of magnitude smaller than
the set FI. Wherever there are very long patterns
(patterns containing many items) are present in the data,
it is often impractical to generate the entire set of frequent
itemsets or closed itemsets [7]. Also, there are appli-
cations where the set of maximal patterns is adequate,
such as combinatorial pattern discovery in biological
applications [23].

There is much research on methods for generating all
frequent itemsets efficiently [4, 5, 6, 10, 11, 13, 19, 25,
26, 28, 31] or just the set of maximal frequent itemsets [1,
7, 12, 16, 32]. When the frequent patterns are long (more
than 15 to 20 items), FI and even FCI become very large
and most traditional methods count too many itemsets to
be feasible. Straight Apriori-based algorithms count all
of the 2k subsets of each k-itemset they discover, and thus
do not scale for long itemsets. Other methods use
“lookaheads” to reduce the number of itemsets to be
counted. However, most of these algorithms use a
breadth-first approach, i.e. finding all k-itemsets before
considering (k+1) itemsets. This approach limits the
effectiveness of the lookaheads, since useful longer
frequent patterns have not yet been discovered. Recently,
the merits of a depth-first approach have been recognized
[1].

The database representation is also an important
factor in the efficiency of generating and counting



itemsets. Generating the itemset Z = (X U Y) refers to
creating t(Z) = t(X) ∩ t(Y), and counting is the process of
determining support(Z) in T. Most previous algorithms
use a horizontal row layout, with the database organized
as a set of rows and each row representing a transaction.
The alternative vertical column layout associates with
each item X a set of transaction identifiers (tids) for the
set t(X) [4,10,11,26]. The vertical representation allows
simple and efficient support counting (see Section 4).

In this paper, we take a systems approach to the
problem of finding maximal large itemsets. We propose
an efficient algorithm called MAFIA (MAximal
Frequent Itemset Algorithm) that integrates a variety of
old and new algorithmic ideas into a practical algorithm.
MAFIA assumes that the entire database (and all data
structures used for the algorithm) completely fit into main
memory. With the size of current main memories
reaching gigabytes and growing, many moderate-sized to
large databases will soon become completely memory-
resident. Considering the computational complexity
involved in finding long patterns even in small databases,
this assumption is not very limiting in practice. Since all
algorithms for finding association rules, including
algorithms that work with disk-resident databases, are
CPU-bound, we believe that our study sheds light on the
most important performance bottleneck.

In a thorough experimental evaluation, we first
quantify the effect of each individual component on the
performance of the algorithm. We then compare the
performance of MAFIA against DepthProject, the most
efficient previously known algorithm for finding maximal
frequent itemsets [1]. Our results using some of the
standard machine learning benchmark datasets indicate
that MAFIA outperforms DepthProject by a factor of
three to five on average.

The organization of the paper is as follows. Section
2 discusses the conceptual ideas of the itemset lattice and
subset tree we base our approach on. In Section 3, we
describe the basic depth-first algorithm and methods to
prune the search space. Section 4 describes the database

representation and counting methods, including comp-
ression techniques that significantly speed up the
counting process. We present an analysis of the
components of our algorithm and compare its
performance to the DepthProject Algorithm in Section 5.
We conclude in Section 6 with a discussion of future
work.

2 Preliminaries

In this section, we describe the conceptual
framework of the item subset lattice. Assume there is a
total lexicographic ordering ≤ L of the items I in the
database. If item i occurs before item j in the ordering,
then we denote this by i ≤ L j. This ordering can be used
to enumerate the item subset lattice, or a partial ordering
over the powerset S of items I. We define the partial
order ≤ on S1, S2 ∈ S such that S1 ≤ S2 if S1 ⊆ S2. If
S1 ⊄ S2, there is no relationship in the ordering.

Figure 1 is a sample of a complete subset lattice for
four items. The top element in the lattice is the empty set
and each lower level k contains all of the k-itemsets. The
k-itemsets are ordered lexicographically on each level
and all children are generated from the lexicographically
earliest subset in the previous level. Generating children
in this manner reduces the lattice to the lexicographic
subset tree originally presented by Rymon [24] and
adopted by both Agarwal [1] and Bayardo [7].

The itemset identifying each node will be referred to
as the node’s head, while possible extensions of the node
are called the tail. In a pure depth-first traversal of the
tree, the tail contains all items lexicographically larger
than any element of the head. With a dynamic reordering
scheme, the tail contains only the frequent extensions of
the current node. Notice that all items that can appear in
a subtree are contained in the subtree root’s head union
tail (HUT), a set formed by combining all elements of the
head and tail.
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The problem of mining the frequent itemsets can be
viewed as finding a cut through this lattice such that all
elements above the cut are frequent itemsets, and all
elements (subsets) below are infrequent (see Figure 1).
The frequent itemsets above the cut constitute the positive
border, while the infrequent itemsets below the cut form
the negative border. With a simple traversal without
pruning, we need to count the supports of all elements
above and including the negative border. For example, in
Figure 1, a cut in the lattice has been drawn in and all of
the itemsets shown need to be counted except for
{1,2,3,4} and {1,3,4}, since they are both below the
negative border.

Consider node P in Figure 1 and the cut through the
lattice. P’s head is {1} and the tail (before processing) is
the set {2,3,4}. Therefore, P’s HUT is {1,2,3,4}. Using
dynamic reordering, P’s children {1,2}, {1,3}, {1,4} will
be counted first. Based on the cut in Figure 1, only {1,2}
is frequent; items 3 and 4 will be trimmed out of the tail
of P and no new itemsets need to be counted in the
subtree rooted at P. In the rest of the search tree, itemsets
{2,3}, {2,4}, and {3,4} would also be counted. On the
other hand, a pure depth-first traversal would do extra
work and compute {1,2,3}, {1,2,4}, and {2,3,4} in
addition to the itemsets counted using dynamic
reordering. Thus, as the size of the tree grows, dynamic
reordering will trim out many branches of the search tree.

2.1 Related Work

Given this conceptual framework, we can describe
the most recent approaches to the maximal frequent
itemset problem. As a baseline, Apriori traverses the
lattice in a pure breadth-first manner, discovering all
frequent nodes at level k before moving to level (k+1);
Apriori finds support information by explicitly generating
and counting each node [3]. MaxMiner performs a
breadth-first traversal of the search space as well, but also
performs lookaheads to prune out branches of the tree
[7]. The lookaheads involve superset pruning, using
apriori in reverse (all subsets of a frequent itemset are
also frequent). In general, lookaheads work better with a
depth-first approach, but MaxMiner uses a breadth-first
approach to limit the number of passes over the database.

DepthProject performs a mixed depth-first traversal
of the tree, along with variations of superset pruning [1].
Instead of a pure depth-first traversal, DepthProject uses
dynamic reordering of children nodes. With dynamic
reordering, the size of the search space can be greatly
reduced by trimming infrequent items out of each node’s
tail. Also proposed in DepthProject is an improved
counting method and a projection mechanism to reduce
the size of the database.

The other notable maximal pattern methods are
based on graph-theoretic approaches. MaxClique and

MaxEclat [32] both attempt to divide the subset lattice
into smaller pieces (“cliques”) and proceed to mine these
in a bottom-up Apriori-fashion with a vertical data
representation. However, the algorithms both rely on a
pre-processing step having been performed that limits
future mining flexibility. Pincer-Search also assumes a
pre-processing step has taken place before the algorithm
executes [16].

The VIPER algorithm has shown a method based on
a vertical layout can sometimes outperform even the
optimal method using a horizontal layout [26]. It uses a
vertical bitvector with compression to store intermediate
data during algorithm execution, while counting is
performed using a vertical tid-list approach. However,
VIPER returns the entire set FI and would not be
appropriate for finding the set MFI if the patterns are
very long. Other vertical mining methods for finding FI
are presented by Holsheimer [14] and Savasere et al. [25].
The benefits of using the vertical tid-list were also
explored by Ganti et al. [11]. An analysis of the impact of
different database representations on performance can be
found by Dunkel et al. [10].

3 Algorithmic Descriptions

In this section, we describe the different components
of MAFIA (Figure 5) and the various pruning methods
used to reduce the search space. First, we describe a
simple depth-first traversal with no pruning. We use this
algorithm to motivate the pruning and ordering
improvements introduced in Sections 3.2 and 3.3.

3.1 Simple DFS

In the simple algorithm (see Figure 2), we traverse
the lexicographic tree in pure depth-first order. At each
node n, each element in the node’s tail is generated and
counted as a possible 1-extension. If the support of {n’s
head} U {1-extension} is less than minSup, then we can
stop by the Apriori principle, since any itemset from that
possible 1-extension would have an infrequent subset. If
none of the 1-extensions leads to a frequent itemset, the
node is a leaf.

When we reach a leaf in the tree, we have a
candidate for entry into the MFI. However, a frequent
superset of the itemset may have already been discovered.
Therefore, we need to check if a superset of the candidate
itemset is already in the MFI. If no superset exists, then
we add the candidate itemset to the MFI. It is important
to note that with the depth-first traversal, we never have
to worry about removing subsets from the MFI. This is
due to the fact that itemsets already inserted into the MFI
will be lexicographically ordered earlier.



Algorithmic Descriptions and Pseudocode

Overview: A simple DFS of the space. Lookups in the
MFI will only guarantee maximality and do not
conduct any pruning.

Pseudocode: Simple (Current node C, MFI) {
For each item i in C.tail {

newNode = C U i
if newNode is frequent

Simple(newNode, MFI) }
if (C is a leaf and C.head is not in MFI)

Add C.head to MFI
}

Figure 2

Overview: For each child generated, the transaction sets
of the child and parent are compared. If they match,
the parent can trim the tail by moving that child from
the tail to the head.

Pseudocode: PEP (Current node C, MFI) {
For each item i in C.tail {

newNode = C U i
if (newNode.support == C. support)

Move i from C.tail to C.head
else if newNode is frequent

PEP (newNode, MFI) }
if (C is a leaf and C.head is not in MFI)

Add C.head to MFI
}

Figure 4

Overview: A superset check is performed with
{head} U {tail} by exploring the leftmost branch.

Pseudocode: FHUT (node C, MFI, Boolean IsHUT) {
For each item i in C.tail {

newNode = C U I
IsHUT = whether i is the leftmost child in the tail
if newNode is frequent

FHUT (newNode, MFI, IsHUT) }
if (C is a leaf and C.head is not in MFI)

Add C.head to MFI
if (IsHUT and all extensions are frequent)

Stop exploring this subtree and go back up tree to
when IsHUT was changed to True

}
Figure 6

Overview: Lookups in the MFI check whether the {head}
U {tail} is frequent for superset pruning.

Pseudocode: HUTMFI (Current node C, MFI) {
name HUT = C.head U C.tail;
if HUT is in MFI

Stop searching and return
For each item i in C.tail {

newNode = C U I
if newNode is frequent

HUTMFI(newNode, MFI) }
if (C.head is not in MFI)

Add C.head to MFI
}

Figure 3

Overview: All of the components from Figures 2-4, and 6
are included along with dynamic reordering of
children.

Pseudocode: MAFIA (C, MFI, Boolean IsHUT) {
name HUT = C.head U C.tail;
if HUT is in MFI

Stop generation of children and return
Count all children, use PEP to trim the tail, and reorder

by increasing support.
For each item i in C.trimmed_tail {

IsHUT = whether i is the first item in the tail
newNode = C U I
MAFIA(newNode, MFI, IsHUT) }

if (IsHUT and all extensions are frequent)
Stop search and go back up subtree

if (C is a leaf and C.head is not in MFI)
Add C.head to MFI

}
Figure 5

Overview: Compress bitmap X and all bitmaps in the tail
to a smaller bitmap the size of support(X)

Pseudocode: Project(Bitmap X, node’s TAIL) {
For (each item I in TAIL) {

Create empty bitmap I’
For each transaction T

if bit T of X is on
Append bit T of I to I’ }

Create X’ – a bitmap filled with ones and size of
support(X)
Return set of projected bitmaps I’ and X’

}
Figure 7



3.2 Pruning Away the Tree

The simple depth-first traversal is ultimately no
better than a comparable breadth-first approach, since
exactly the same search space is generated and counted.
To realize performance gains, we must prune out parts of
the search space.

3.2.1 Parent Equivalence Pruning (PEP)
One method of pruning involves comparing the

transaction sets of each parent/child pair (see Figure 4).
Let x be the node n’s head and y be an element in the
node n’s tail. If t(x) ⊆⊆⊆⊆ t(y), then any transaction contain-
ng x also contains y. This guarantees that any frequent
itemset z containing x but not y has the frequent superset
(zU y). Since we only want the maximal frequent
itemsets, it is not necessary to count itemsets containing x
and not y. Therefore, we can move item y from the tail to
the head. For node n, x = xU y and item y is removed
from n’s tail.

3.2.2 FHUT
Another type of pruning is superset pruning. We

observe that at node n, the largest possible frequent
itemset contained in the subtree rooted at n is n’s HUT
(head union tail) as observed by Bayardo [7]. If n’s HUT
is discovered to be frequent, we never have to explore
any subsets of the HUT and thus can prune out the entire
subtree rooted at node n. We refer to this method of
pruning as FHUT (Frequent Head Union Tail) pruning.

FHUT can be computed by exploring the leftmost
path in the subtree rooted at each node. In fact, since the
depth-first algorithm already explores the leftmost path,
no extra computation is necessary (see Figure 6). A
disadvantage of FHUT versus HUTMFI (Section 3.2.3) is
that the leftmost path contains the most items of any path
in the subtree. Thus, while the subtree rooted at that node
is pruned, a significant portion of the tree is still
generated and counted.

3.2.3 HUTMFI
There are two methods for determining whether

an itemset x is frequent: direct counting of the support of
x, and checking if a superset of x has already been
declared frequent; FHUT uses the former method. The
latter approach determines if a superset of the HUT is in
the MFI. If a superset does exist, then the HUT must be
frequent and the subtree rooted at the node corresponding
to X can be pruned away.

We call this type of superset pruning HUTMFI (see
Figure 3). Note that HUTMFI does not expand any
children to check for successful superset pruning, unlike
FHUT where the leftmost branch of the subtree is
explored. Therefore, in general, HUTMFI is preferable to
FHUT pruning.

3.3 Dynamic Reordering

The benefit of dynamically reordering the children of
each node based on support instead of following the
lexicographic order is significant. However, dynamic
reordering requires counting the support of all the
extensions of a node and thus, would not be a pure depth-
first traversal of the space.

Note that most of the elements of a node’s tail will
not be frequent extensions, and these same infrequent
items appear in many tails below. An algorithm that
trims the tail to only frequent extensions at a higher level
will save a lot of computation. For example in Figure 1,
if the itemset {1,4} is counted and found to be infrequent,
then item 4 can be trimmed from the tail of all nodes in
that subtree, and the itemsets {1,2,4}, {1,3,4} need never
be counted.

Of particular note, PEP can be applied much faster
with dynamic reordering. Since PEP depends on the
support of each child relative to the parent, we can move
all elements for which PEP holds from the tail to the head
at once, quickly reducing the size of the tail.

The order of the tail elements is also an important
consideration. Ordering the tail elements (possible
children) by increasing support will keep the search space
as small as possible. This heuristic was first used by
Bayardo [7].

All of the components of the algorithm fit together
nicely and help trim the search space. However, certain
components are more effective than others. The
interaction of the different pruning mechanisms and the
effect on performance is analyzed in Section 5.1.

4 Representation of the Database

4.1 Representation and Counting Support

We chose to use a vertical bitmap representation for
the database. In a vertical bitmap, there is one bit for
each transaction in the database. If item i appears in
transaction j, then bit j of the bitmap for item i is set to
one; otherwise, the bit is set to zero. This naturally
extends to itemsets. Let X be the itemset corresponding
to the head of a node. Let onecount(X) be the number of
ones in the vertical bitmap for X. Note that the count of
ones is exactly the support of itemset X. Let bitmap(X)
correspond to the vertical bitmap that represents the
transaction set for the itemset X. For each element Y in
the node’s tail, t(X) ∩ t(Y) is simply computed as the
bitwise-AND of bitmap(X) and bitmap(Y).

As the fundamental step in generating each new node
in the lexicographic tree, support counting must be highly
optimized. This necessity motivated the vertical bitmap
representation. We adapted a two-phase byte counting
method for generating and counting the extensions to an



itemset. Offline, we compute and store the number of 1’s
of a particular byte value for all 256 possible byte values,
e.g. byte value “2” has 1 one, “3” has 2 ones, and “255”
has 8 ones. Generation of new itemset bitmaps involves
bitwise-ANDing bitmap(X) with a bitmap for 1-itemset Y
and storing the result in bitmap (X U Y). Next, for each
byte in bitmap (X U Y), we lookup the number of 1’s in
the byte using the pre-computed table. Summing these
lookups gives the support of (X U Y).

4.2 Compression And Projected Bitmaps

The weakness of a vertical representation is the
sparseness of the bitmaps, especially at the lower support
levels. Since every transaction has a bit in vertical
bitmaps, there are many zeros since both the absence and
presence of the itemset in a transaction need to be
represented. However, in cases where itemsets appear in
a significant number of transactions, the vertical bitmap is
the smallest representation of the information we need
possible and all methods to make the representation
smaller involve some form of lossless compression and
CPU-computation.

An alternative representation would be a vertical tid-
list for each item, where each item has the list of
transactions it appears in associated with it. Even though
only the presence of items is represented, it is guaranteed
to be a more expensive representation in terms of space if
the support of an item is greater than (1/32) or about 3%.
In a vertical tid-list representation, we need an entire
word (32 bits in most architectures) to represent the
presence of an item versus the single bit of the vertical
bitvector approach. Thus, if the item appears in more
than (1/32) of the transactions, this is a less efficient
representation.

Given the generating and counting method presented
above, this run of zeros present a source of inefficiency
since we are performing wasted operations over regions
containing useless information (regions of only 0’s in X’s
bit vector).

Note that we only need information about
transactions containing the itemset X to count the support
of the subtree rooted at node N. If transaction T does not
contain the itemset X (X’s bit vector has a 0 in bit T),
then it will not provide useful information for counting
supports of N’s children and can be ignored in all
subsequent operations. So, conceptually we can remove
the bit for transaction T from X and all items in N’s tail.
This is a form of compression of the vertical bitmaps to
speed up calculations. The pseudocode describing the
process can be found in Figure 7.

In the projected bit vector for X all positions have
value 1, since each position corresponds to a transaction

needed for computation in the subtree rooted at node N.
We are guaranteed to consider every element in N’s tail
at least once when traversing the subtree rooted at N.
The projection operation is performed when the support
of itemset X drops below a certain rebuilding_threshold,
expressed as a percentage of bitmap X’s overall size (in
bits).

However, there is a tradeoff on the value selected for
rebuilding_threshold. As the rebuilding_threshold
decreases, the cost of projection rises, since many more
nodes at the lower levels of the tree will need to be
projected. On the other hand, the size of the projected
bitmaps is guaranteed to be smaller and thus the cost of
subsequent generation and counting in that subtree is
significantly reduced. In practice, we found that there is
only a small difference in choosing a value for
rebuilding_threshold between 0.25 and 1. Below 0.25,
the cost of rebuilding exceeds the savings of using
projected bitmaps, but between 0.25 and 1, the cost of
projection is balanced by the smaller vertical bitmaps.
The reason for this result is that the size of the projected
bitmaps when built immediately (rebuilding_threshold =
1) depends only on the support of the frequent 1-itemsets
they are projected against. In the real datasets
considered, many 1-itemsets have low supports, and thus,
any rebuilding_threshold above the supports will yield
the same projected bitmaps.

5 Experimental Results

The experiments were conducted on a 933 Mhz
Pentium III with 512 MB of memory running Microsoft
Windows 2000 Professional. All code was compiled
using Microsoft Visual C++ 6.0. MAFIA was tested on
three datasets that have been shown to generate long
patterns [1,7]: connect-4, mushroom, and chess. In
general, at the higher supports, the pattern length varies
between 5-12 items, while at lower supports the patterns
contain over 20 items. A detailed comparison of MAFIA
on these datasets was conducted, since MAFIA yields the
greatest gains when mining long patterns from a database.

5.1 Algorithmic Component Analysis

First however, we present a full analysis of each
component of the MAFIA algorithm (see Section 3 for
algorithmic details). There are three types of pruning
used to trim the tree: FHUT, HUTMFI, and PEP. FHUT
and HUTMFI are both forms of superset pruning and thus
will tend to “overlap” in their efficacy for reducing the
search space. In addition, dynamic reordering will
significantly reduce the size of the search space by
removing infrequent items from each node’s tail.



Figures 8 and 9 show the effects of each component
of the MAFIA algorithm on the mushroom dataset at 1%
minimum support. The number of transactions was
increased by repeating all transactions in the database by
a certain scaling factor. We call this form of scaling
vertical scaling. In this case, mushroom was scaled ten
times vertically. Note that vertical scaling will not
change the search space, and will only affect the time
taken for counting the support of itemsets.

The components of the algorithm are represented in a
cube format, where the running times and number of
lattice nodes visited during the MAFIA search for all
possible combinations are shown. The top of the cube
shows the time for a simple traversal where the full
search space is explored, while the bottom of the cube
corresponds to all three pruning methods being used.
Two separate cubes (with and without dynamic
reordering) rather than one giant cube are presented for
readability.

Note that all pruning components yield some savings
in running time, but that certain components are more
effective than others. In particular, HUTMFI and FHUT
yield very similar results, since they use the same type of
superset pruning, but with different methods of
implementation. The efficient MFI lookups that
HUTMFI uses to check for frequency explain why
HUTMFI outperforms FHUT (see Section 3). It is also

interesting to see that adding FHUT when HUTMFI is
already performed yields very little savings, i.e. from HM
to HM+FH or from HM+PEP to ALL, the running times
do not significantly change. HUTMFI checks for the
frequency of a node’s HUT by looking for a frequent
superset in the MFI, while FHUT will explore the
leftmost branch of the subtree rooted at that node.
Apparently, there are very few cases where a superset of
a node’s HUT is not in the MFI, but the HUT is frequent.

PEP has the biggest effect of the three pruning
methods. All of the running time of the algorithm occurs
at the lower levels of the tree where the border between
frequent and infrequent itemsets exists, and since PEP is
most likely to trim out large sections at the lower levels,
this pruning yields the greatest results. Dynamically
reordering the tail also has dramatic savings (cf. Figure 8
with Figure 9). It is interesting to note that without PEP,
dynamic reordering runs nearly an order of magnitude
faster than the static ordering, while with PEP, it is
“only” 3-5 times faster. Since both PEP and reordering
remove elements from a node’s tail, it is not surprising
that they overlap in their efficacy.

5.2 Comparison With DepthProject

We tested the algorithm on “real” datasets containing
long patterns that have been used in earlier work [1,7].

None
1232.119s
90,146,85

FHUT
16.124 s
984,998

HUTMFI
12.478 s
858,740

PEP
5.758 s
266,534

FH+HM
12.148 s
858,684

FH+PEP
3.365 s
166,603

HM+PEP
2.974 s
141,500

ALL
2.904 s
141,465

Mushroom at 1% support
Scaled 10x vertically

With Reordering

Figure 8

None
942.203 s
96,570,77

FHUT
185.933 s
20,142,05

HUTMFI
103.492 s
9,150,058

PEP
21.582 s

1,331,158

FH+HM
103.323 s
9,150,030

FH+PEP
16.925 s

1,134,863

HM+PEP
8.943 s
535,813

ALL
8.173 s
535,785

Mushroom at 1% support
Scaled 10x vertically
Without Reordering

Figure 9



These datasets are publicly available from the UCI
Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html).
At the lowest supports tested, the longest patterns in these
databases have over 20 items, making any algorithm that
examines all possible subsets of these patterns (or a
significant portion thereof) infeasible. This makes the
task of finding the patterns computationally intensive
despite the small size of the databases. For some of the
experiments the databases were scaled vertically by

concatenating copies of the database together. This only
affects the time counting takes since the bitmaps
(compressed or not) are longer and the search space
examined remains constant.

Figures 10 – 12 illustrate the results of comparing
MAFIA to our implementation of the DepthProject
method, the state-of-the-art method for finding maximal
patterns [1]. The x-axis is the user-specified minimum
support, while the y-axis uses a logarithmic scale to show
the running time.
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DEPTH 1 2 3 4 5 6 7 8
Connect-4 1.23 4.22 16.46 61.07 134.8 169.06 79.98 50.43
Mushroom 1 12.64 51.81 73.15 72.92 56.81 41.29 26.78
Chess 1.33 4.14 5.73 6.51 6.73 6.7 5.97 4.95

Table 1 – Reduction Factor of Nodes Considered Due to PEP Pruning
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In Figures 10 and 11, we see MAFIA is approximately
four to five times faster than DepthProject on both the
Connect-4 and Mushroom datasets for all support levels
tested (down to 10% support in Connect-4 and 0.1% in
Mushroom). For Connect-4, the increased efficiency of
itemset generation and support counting in MAFIA
versus DepthProject explains the improvement. Connect-
4 contains an order of magnitude more transactions than
the other two datasets (67,557 transactions), amplifying
the MAFIA advantage in generation and counting.

For Mushroom, the improvement is best explained
by how often parent-equivalence pruning (PEP) holds,
especially for the lowest supports tested. The dramatic
effect PEP has on reducing the number of itemsets
generated and counted is shown in Table 1. The entries
in the table are the reduction factors due to PEP (in the
presence of all other pruning methods) for the first eight
levels of the tree. The reduction factor is defined as (#
itemsets counted at depth k without PEP) / (# itemsets
counted at depth k with PEP). In the first four levels,
Mushroom has the greatest reduction in number of
itemsets generated and counted. This leads to a much
greater reduction in the overall search space than for the
other datasets, since the reduction is so great at highest
levels of the tree.

In Figure 12, we see that MAFIA is only a factor of
two better than DepthProject on the dataset Chess. The
extremely low number of transactions in Chess (3196
transactions) and the small number of frequent 1-items at
low supports (only 54 at lowest tested support) muted the
factors that MAFIA relies on to improve over
DepthProject. Table 1 shows the reduction in itemsets
using PEP for Chess was about an order of magnitude
lower compared to the other two data sets for all depths.

To test the counting conjecture, we ran an
experiment that vertically scaled the Chess dataset and
fixed the support at 50%. This keeps the search space
constant while varying only the generation and counting

efficiency differences between MAFIA and DepthProject.
The result is shown in Figure 13. We notice both
algorithms scale linearly with the database size, but
MAFIA is about five times faster than DepthProject.
Similar results were found for the other datasets as well.
Thus, we see MAFIA scales very well with the number of
transactions.

5.3 Effects Of Compression

To isolate the effect of the compression schema on
performance, experiments with varying rebuilding-
threshold values we conducted. The most interesting
result is on a scaled version of Connect-4, displayed in
Figure 14. The Connect-4 dataset was scaled vertically
three times, so the total number of transactions is
approximately 200,000. Three different values for
rebuilding-threshold were used: 0 (corresponding to no
compression), 1 (compression immediately, and all
subsequent operations performed on compressed
bitmaps), and an optimized value determined empirically.
We see for higher supports above 40% compression has a
negligible effect, but at the lowest supports compression
can be quite beneficial, e.g. at 10% support compression
yields an improvement factor of 3.6.

However, the small difference between compressing
immediately and finding an optimal compression point is
not so easily explained. The greatest savings here is only
11% at the lowest support of Conenct-4 tested. We
performed another experiment where the support was
fixed and the Connect-4 dataset was scaled vertically.
The results appear in Figure 15. The x-axis shows the
scale up factor while the y-axis displays the running
times. We can see that the optimal compression scales
the best. For many transactions (over 106), the optimal
rel-threshold outperforms compressing everywhere by
approximately 35%. In any case, both forms of
compression scale much better than no compression.
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6 Conclusions

We presented MAFIA, an algorithm for finding
maximal frequent itemsets. Our experimental results
demonstrate that MAFIA consistently outperforms
DepthProject by a factor of three to five on average. The
breakdown of the algorithmic components showed
parent-equivalence pruning and dynamic reordering were
quite beneficial in reducing the search space while
relative compression/projection of the vertical bitmaps
dramatically cuts the cost of counting supports of
itemsets and increases the vertical scalability of MAFIA.
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