
MAX CUT in cubic graphs

Eran Halperin ∗ Dror Livnat ∗ Uri Zwick ∗

Abstract

We present an improved semidefinite programming
based approximation algorithm for the MAX CUT prob-
lem in graphs of maximum degree at most 3. The
approximation ratio of the new algorithm is at least
0.9326. This improves, and also somewhat simpli-
fies, a result of Feige, Karpinski and Langberg. We
also observe that results of Hopkins and Staton and
of Bondy and Locke yield a simple combinatorial 4

5 -
approximation algorithm for the problem. Slightly im-
proved results would appear in the full version of the
paper.

1 Introduction

MAX CUT is one of the most basic, and most stud-
ied, combinatorial optimization problems. In a seminal
paper, Goemans and Williamson [GW95] used semidef-
inite programming to obtain a 0.87856-approximation
algorithm for the problem. Feige, Karpinski and Lang-
berg [FKL00] considered the MAX CUT problem in
bounded degree graphs and obtained, among other re-
sults, a 0.921-approximation algorithm for MAX CUT
problem in graphs of maximum degree 3. (They also ob-
tained an improved 0.924-approximation algorithm for
cubic graphs, i.e., graphs in which the degree of all ver-
tices is 3.) Berman and Karpinski [BK99] showed that
no approximation algorithm may achieve an approxi-
mation ratio of 0.997 for the MAX CUT problem in
cubic graphs, unless P=NP. Approximation algorithms
for bounded occurrence constraint satisfaction problems
were also considered by H̊astad [H̊as00].

In this paper, we obtain an improved approximation
algorithm for the MAX CUT problem in graphs of
maximum degree at most 3. Our algorithm is, in fact,
an approximation algorithm for the more general MAX
2-XOR problem in graphs of maximum degree at most 3.
H̊astad [H̊as97] (see also Trevisan et al. [TSSW00])
show that obtaining an approximation ratio of 16

17 + ε
for MAX CUT, and a ratio of 11

12 + ε for MAX 2-XOR,

∗School of Computer Science, Tel-Aviv University, Tel-
Aviv 69978, Israel. E-mail: {heran,dror,zwick}@tau.ac.il.
This research was supported by the ISRAEL SCIENCE FOUN-
DATION (grant no. 246/01).

for any ε > 0, are both NP-hard tasks. As 11
12 ' 0.9167,

our approximation algorithm shows that approximating
general instances of MAX 2-XOR is provably more
difficult than approximating instances of MAX 2-XOR
with maximum degree at most 3.

An instance of the MAX CUT problem is an unweighted
undirected graph G = (V, E). The goal is to find a
subset S ⊆ V of the vertices such that the size of the
cut δ(S) = {(u, v) ∈ E | u ∈ S and v 6∈ S} defined
by S is maximized. We consider a slightly more general
problem called MAX 2-XOR. An instance of MAX
2-XOR is an undirected graph G = (V, E6=, E=) with
two types of edges. Edges of E 6= are called inequality
edges, while edges of E= are called equality edges. The
goal is to find a set S ⊆ V such that the size of the ‘cut’
δ(S) = {(u, v) ∈ E 6= | u ∈ S and v 6∈ S} ∪ {(u, v) ∈
E= | u, v ∈ S or u, v 6∈ S} is maximized. Clearly an
instance G = (V,E) of MAX CUT is equivalent to the
instance (V,E, φ) of MAX 2-XOR. The consideration
of this more general problem allows us to simplify the
description and analysis of our algorithm.

Our algorithm follows the general framework set out by
Feige et al. [FKL00]. It starts by solving the semidef-
inite programming relaxation of the MAX 2-XOR, en-
hanced by the triangle constraints. It rounds a solution
of the relaxation using a random hyperplane. Finally,
it uses a local improvement step in which vertices that
were ‘misplaced’ by the random hyperplane are moved
to the other side of the cut.

Our algorithm and its analysis differ from that of Feige
et al. [FKL00] in the following respects: (i) Our
algorithm is somewhat simpler, even though it works
on a more general problem. (ii) Our analysis is tighter
as it considers a vertex together with all its neighbors;
(iii) The presence of vertices of degree 2 increases, rather
than decreases, the approximation ratio obtained by our
algorithm.

Our algorithm is composed of a simple preprocessing
step that converts every input graph of maximum
degree 3 into a reduced cubic graph. (See definition in
the next section.) Our approximation algorithm itself
works on reduced cubic graphs. It is then easy to
convert the cut obtained in the reduced cubic graph
into a cut of the original graph without decreasing the

approximation ratio.

The design of a local improvement step that combines
well with the semidefinite programming approach leads
us also to the question of obtaining purely combinatorial
approximation algorithms for the MAX CUT problem
in graphs of maximum degree at most 3. We observe
that results of Hopkins and Staton [HS82] and of
Bondy and Locke [BL86] yield a simple combinatorial
4
5 -approximation algorithm for the problem.

The rest of this paper is organized as follows. In the next
section we describe the simple reduction to reduced cu-
bic graphs. In Section 3 we describe the approximation
algorithm for reduced cubic graphs. In Section 4 we
discuss combinatorial approximation algorithms for the
problem. In Section 5 we mention some improved re-
sults that would appear in the full version of the paper.
We end in Section 6 with some concluding remarks and
open problems.

2 The reduction

In this section we describe a simple way of reducing the
problem of approximating MAX 2-XOR in graphs of
maximum degree 3 into the problem of approximating
MAX 2-XOR in reduced cubic graphs:

Definition 2.1. (Reduced cubic graphs) A con-
nected graph G = (V,E 6=, E=) is a reduced cubic graph
if and only if (i) deg(v) = 3, for every v ∈ V ; (ii)
deg=(v) ≤ 1, for every v ∈ V ; (iii) Every vertex v ∈ V
is contained in at most one triangle.

In the above definition, we let deg(v) be the degree of
a vertex v ∈ V in the graph (V, E6= ∪E=), and deg=(v)
be its degree in the graph (V, E=). In the sequel, we use
u−v ∈ G to denote the fact that (u, v) ∈ E6=∪E=. This
notation does not specify whether the edge is in E6= or
in E=. Also, when we draw a graph G = (V,E 6=, E=),
a line connecting vertex u to vertex v indicates that
u − v ∈ G, again without specifying the type of the
edge.
We make use of the following simple lemma whose proof
is obvious:

Lemma 2.1. Let F and F ′ be two families of graphs.
If we can efficiently convert any G ∈ F into a graph
G′ ∈ F ′ such that OPT (G) = OPT (G′) + c, where
c ≥ 0, and such that we can efficiently convert any cut
of G′ of value Z into a cut of G of value Z + c, then an
α-approximation algorithm for F ′ immediately extends
to an α-approximation algorithm for F .

The algorithm for converting an arbitrary graph of
maximum degree 3 into a reduced cubic graph is given

in Figure 1. The algorithm is extremely simple and
intuitive. Steps 1-4 of the algorithm are repeatedly
performed until none of them can be applied.

Step 1 of the algorithm gets rid of vertices of degree 1.
When a vertex of degree 1 is removed, the optimum
clearly decreases by exactly 1. Step 2 of the algorithm
gets rid of paths of degree 2 vertices. When a path of
length k + 1 is replaced by an appropriate equality or
inequality edge, the size of the optimum decreases by
exactly k. The most complicated step is step 3 that
gets rid of vertices that participate in two triangles. It
is not difficult to check that if a vertex u participates
in two triangles, there must also be an edge u − v ∈ G
that participates in two triangles. Let x and y be the
other vertices in these two triangles. If x − y ∈ G,
then x, y, u, v form a connected component of the graph,
and the graph is either not connected, or composed of
only these four vertices. We assume that this is not the
case. Let x′ and y′ be the other neighbors of x and y.
(Note that in this stage the graph is already cubic.) If
x′ = y′, we can simply remove u, v, x, y, x′ = y′ from the
graph. Otherwise, we remove u, v, x, y from the graph
and replace them by an appropriate edge between x′

and y′. It is not difficult to check that this decreases
the optimum by a small predictable constant. Step 4 is
similar to step 3 and gets rid of parallel edges. Finally,
step 5, makes sure that each vertex has at most one
equality edge adjacent to it.

Given a cut of the graph G′ produced by this process,
it is easy to undo the changes, in reversed order, and
increase the size of the cut by the required amount.

3 The approximation algorithm

We now present our semidefinite programming based
approximation algorithm for the MAX 2-XOR problem
in reduced cubic graphs. The approximation algorithm
is composed of three main steps:

1. Solving the SDP relaxation given in Figure 2.

2. Rounding the solution using a random hyperplane.

3. Performing a local improvement step.

The SDP relaxation given in Figure 2 is a natural exten-
sion of the relaxation of MAX CUT in graphs of degree
at most 3 used by Feige et al. [FKL00]. (We assume
there, without loss of generality, that V = {1, 2, . . . , n}.)
The rounding step is identical to the rounding step of
Goemans and Williamson [GW95]. Our local improve-
ment step, and its analysis, are different from those used
by Feige et al. [FKL00]. A full description of the algo-
rithm is given in Figure 3.

ALGORITHM Reduce

Input: A graph G = (V,E 6=, E=) of maximum degree at most 3.
Output: A reduced cubic graph G′ = (V,E′

6=, E′
=).

0. Let G′ ← (V, E 6=, E=).

1. If v ∈ G′ is a vertex of degree 1, then remove it from G′.

2. If x − v1 − v2 − . . . − vk − y ∈ G′, and v1, v2, . . . , vk are of degree 2 while x, y are of degree 3, then
remove v1, v2, . . . , vk from G′ and add an inequality edge (x, y) to E′

6=, if the number of inequality
edges on the path from x to y is odd, and an equality edge (x, y) to E=, otherwise.

3. If
x′ x y y′

u

v ∈ G′, then remove u, v, x, y from G′. If x′ = y′, then remove x′ from G′. If in

any optimal solution of the small subproblem induced by u, v, x, y, x′, y′, the vertices x′ and y′ are
on opposite sides of the cut, add an inequality edge (x′, y′) to E′

6=. If in any optimal solution of the
small subproblem induced by u, v, x, y, x′, y′, the vertices x′ and y′ are on the same side of the cut,
add an equality edge (x′, y′) to E′

=. If there are optimal solutions of both types, do not add any
edge.

4. If
y y′x′ x

∈ G′, then remove x, y from G′. If x′ = y′, then remove x′ from G′. Add
an appropriate edge connecting x′ and y′, if necessary, as above.

5. If v ∈ G′ has more than one equality edge incident on it, make the equality edges incident on v
inequality edges, and vice versa.

Figure 1: Converting a graph of maximum degree 3 into a reduced cubic graph.

The local improvement step used by the algorithm is
very simple. We let Vi be the set of vertices such that i
of their edges are unsatisfied by the current cut δ(S).
Clearly, if a vertex v ∈ V3 is moved to the other side of
the cut, the number of edges in the cut increases by 3,
while if a vertex v ∈ V2 is moved, the number of edges
cut increases by 1. Each such move is clearly beneficial.
In fortunate situations, we can increase the cut using
such local improvement steps by 3|V3| + |V2|. Usually,
however, we have to settle for a smaller improvement, as
each move may destroy several other potential moves.
For example, if v ∈ V3 has a neighbor u ∈ V3, then
when v is moved to the other side of the cut, v is moved
from V3 to V0, while u is moved from V3 to V2. To
maximize the improvement obtained, we should choose
the sequence of improvement steps with some care.

Our algorithm performs the improvement steps in the
following order. Whenever there is a vertex with three
unsatisfied edges incident to it, i.e., V3 6= φ, the
algorithm chooses such a vertex with the minimum
number of neighbors in V3 and flips it, i.e., moves it

to the other side of the cut. When there are no such
vertices left, the algorithm looks for unsatisfied paths
or cycles of V2 vertices. The algorithm then flips every
second vertex on such a path or cycle. These steps are
illustrated in Figure 4.

We now turn to the analysis of the algorithm. To il-
lustrate the ideas used in the analysis in the simplest
setting, we first consider the performance of the algo-
rithm on triangle-free graphs. We then show how to ex-
tend the analysis to graphs that may contain triangles.
The performance of the algorithm actually improves in
the presence of triangles, but the analysis is a bit more
complicated. (The presence of triangles also enhances
the performance of MAX CUT algorithms in general
graphs, see Zwick [Zwi99].)

3.1 Analysis of the algorithm on triangle-free
cubic graphs

We begin with the following combinatorial lemma:

Lemma 3.1. Let G = (V,E 6=, E=) be a triangle-free

Maximize
∑

(i,j)∈E 6=

1− vi · vj

2
+

∑

(i,j)∈E=

1 + vi · vj

2

vi · vj + vi · vk + vj · vk ≥ −1 , 1 ≤ i, j, k ≤ n
vi · vj − vi · vk − vj · vk ≥ −1 , 1 ≤ i, j, k ≤ n

vi · vj + vi · vk + vj · vk = −1 , (i, j), (j, k) ∈ E6=
−vi · vj − vi · vk + vj · vk = −1 , (i, j), (j, k) ∈ E=

vi · vj − vi · vk − vj · vk = −1 , (i, j) ∈ E6=, (i, k) ∈ E=

vi ∈ IRn, ‖vi‖ = 1 , 1 ≤ i ≤ n

Figure 2: A semidefinite programming relaxation of MAX 2-XOR in a graph of maximum degree 3.

cubic graph. Let S ⊆ V be a cut of G, and let V2 and V3

be the corresponding sets of vertices with two and three
unsatisfied adjacent edges. Then, the local improvement
step of algorithm Cubic-Max-2-Xor increases the size
of the cut by at least 2

5 |V2|+ 17
15 |V3|.

Proof: We prove the lemma by induction on the size of
the cut δ(S). If S is an optimal cut, then V2 = V3 = φ,
and the claim holds. We suppose, therefore, that the
claim holds for all cuts that are larger than S, and show
that the claim also holds for S. We assume, at first,
that S 6= φ and S 6= V . We show later how to remove
this assumption.
If V3 6= φ, then the algorithm chooses, in Step 3(a), a
vertex v ∈ V3 that has the smallest number of neighbors
in V3, and moves it to the other side of the cut. As
S 6= φ and S 6= V , the vertex v ∈ V has at most
two neighbors in V3. Assume, therefore, that u1, u2

and u3 are the neighbors of v and that u1, u2 ∈ V3 and
u3 ∈ V2. The other cases are easier. When v is moved
to the other side of the cut, the size of the cut increases
by 3. The vertex v is removed from V3. The vertices u1

and u2 are moved from V3 to V2, and the vertex u3 is
removed from V2. By the induction hypothesis, the local
improvement step could still improve the size of the cut
by at least 2

5 (|V2| + 1) + 17
15 (|V3| − 3). All together, we

get an improvement of at least

3 +
2
5
(|V2|+ 1) +

17
15

(|V3| − 3) ≥ 2
5
|V2|+

17
15
|V3| ,

as required.

If V3 = φ, the algorithm chooses a path or a cycle of V2

vertices. We consider the case of a cycle of an odd size.
The other cases are easier. Let v1−v2−. . .−v2k+1−v1 ∈
G be a cycle, where v1, v2, . . . , v2k+1 ∈ V2, all whose
edges are unsatisfied by S. As the graph contains no
triangles, we have k ≥ 2. Let ui, for 1 ≤ i ≤ 2k + 1,
be the third neighbor of vi. The edges vi − ui ∈ G are
satisfied by S.

The algorithm moves v2, v4, . . . , v2k to the other side
of the cut. (Consult Figure 4(c) that depicts the case
k = 2.) The size of the cut increases by k. The vertices
v1, v2, . . . , v2k+1 are removed from V2. The number of
unsatisfied edges incident on ui, where 1 ≤ i ≤ 2k + 1,
does not decrease. Thus, none of the ui’s is removed
from V2. (Some may join V2 or V3, which is only
better for us.) By the induction hypothesis, the local
improvement step would further increase the size of the
cut by at least 2

5 (|V2| − (2k + 1)). All together, we get
an increase of at least

k +
2
5
(|V2| − (2k + 1)) ≥ 2

5
|V2| ,

as k ≥ 2.

Finally, we have to handle the case S = φ or S = V .
In this case, V3 = V , and the first V3 vertex moved
to the other side would have three V3 neighbors. This,
however, is compensated by the fact that the last V3

vertex moved has at most one V3 neighbor. 2

We note that the coefficient 2
5 of V2 vertices in the above

lemma cannot be improved. The coefficient 17
15 of V3

vertices can be improved a bit, by making the algorithm
choose the V3 vertices to be moved more carefully.
However, the algorithm and its analysis become more
complicated. Details would appear in the full version
of the paper. Furthermore, this has only a negligible
effect on the performance ratio of the whole algorithm,
as most of the improvement comes, as we shall see, from
V2 rather than V3 vertices.
Let v1, v2, . . . , vn be an (almost) optimal solution of
the SDP relaxation of the MAX 2-XOR instance G =
(V, E 6=, E=). Let θij = arccos(vi · vj) be the angle
between vi and vj . Clearly, the probability that an
edge (i, j) ∈ E6= is satisfied by the cut generated by the
random hyperplane is θij/π, and the probability that
an edge (i, j) ∈ E= is satisfied by this cut is (π−θij)/π.
Let p2(i) be the probability that i ∈ V2, and let p3(i) be

ALGORITHM Cubic-Max-2-Xor

Input: A reduced cubic graph G = (V,E 6=, E=).
Output: A large cut of G.

1. Solve the SDP relaxation of Figure 2.

2. Rounding:

(a) Choose a random n-dimensional vector r. Let S = {i | vi · r ≥ 0} and S̄ = V − S.

(b) For each vertex v ∈ V , let n(v) be the number of unsatisfied edges adjacent to v, i.e., the
number of edges adjacent to v that are not in δ(S). Let Vi = {v ∈ V | n(v) = i}. (In the next
step, vertices are moved from one side of the cut to the other. It is assumed, then, that the sets
Vi are automatically updated.)

3. Local improvement:

Repeat the following steps until none is applicable.

Give precedence to step (a).

(a) If V3 6= φ, choose a vertex v ∈ V3 with the smallest number of neighbors in V3 and move v to
the other side of the cut. (I.e., S ← S ⊕ {v}.)

(b) If u− v1 − v2 − . . .− vk − w ∈ G is a path of unsatisfied edges, where v1, v2, . . . , vk ∈ V2 while
u,w 6∈ V2, then move vi, for i odd, to the other side of the cut.

(c) If v1 − v2 − . . . − vk − v1 ∈ G is a cycle of unsatisfied edges, were v1, v2, . . . , vk ∈ V2, then
move vi, for i even, to the other side of the cut.

Figure 3: Algorithm Cubic-Max-2-Xor.

the probability that i ∈ V3, with respect to the cut S
generated by the random hyperplane. If the neighbors
of i are j, k and `, and if (i, j), (i, k), (i, `) ∈ E6=, then

p2(i) = prob(vi, vj , vk,−v`) + prob(vi, vj ,−vk, v`)
+prob(vi,−vj , vk, v`),

p3(i) = prob(vi, vj , vk, v`),

where prob(vi, vj , vk, v`) is the probability that the
vectors vi, vj , vk and v` all lie on the same side of a
random hyperplane. If (vi, v`) ∈ E=, then v` in these
expressions should be replaced by −v`. Unfortunately,
there is no simple way of expressing prob(vi, vj , vk, v`) in
terms of the angles between the vectors vi, vj , vk and v`.
The computation of prob(vi, vj , vk, v`) is equivalent to
the computation of the volume of a tetrahedron defined
by the vectors vi, vj , vk, v`. For more details, see Karloff
and Zwick [KZ97] and Zwick [Zwi01].

Combining these facts with Lemma 3.1, and letting
β2 = 2

5 and β3 = 17
15 , we get that the expected size

of the cut produced by the algorithm is at least:

EXP(G) =
∑

(i,j)∈E 6=

θij

π
+

∑

(i,j)∈E=

π − θij

π

+β2

∑

i∈V

p2(i) + β3

∑

i∈V

p3(i) .

The upper bound on the size of the maximum cut
supplied by the SDP relaxation is:

SDP(G) =
∑

(i,j)∈E 6=

1− vi · vj

2
+

∑

(i,j)∈E=

1 + vi · vj

2
.

Clearly, EXP(G)/SDP(G) is a lower bound on the
performance ratio of the algorithm on the instance
G = (V, E 6=, E=). For every vertex i ∈ V , we now
define:

exp(i) =
∑

j:(i,j)∈E6=

θij

2π
+

∑

j:(i,j)∈E=

π − θij

2π

+ β2p2(i) + β3p3(i) ,

(c)

u v

(a)

u v1

(b)

wv2

v1

v2

v4

v5

v3

Figure 4: The local improvement steps used by algorithm Cubic-Max-2-Xor.

sdp(i) =
∑

j:(i,j)∈E 6=

1− vi · vj

4
+

∑

j:(i,j)∈E=

1 + vi · vj

4
.

It is easy to check that

EXP(G) =
∑

i∈V

exp(i) , SDP(G) =
∑

i∈V

sdp(i) .

To see this, note that half the contribution of each edge
(i, j) appears in exp(i) and sdp(i), and the other half in
exp(j) and sdp(j). Thus:

EXP(G)
SDP(G)

=
∑

i∈V exp(i)
∑

i∈V sdp(i)
≥ min

i∈V

exp(i)
sdp(i)

.

Finally, note that if the neighbors of i ∈ V are j, k and
`, then the expressions exp(i) and sdp(i) depend only
on the vectors vi, vj , vk and v`. We have numerically
computed the minimum possible ratio exp(i)/sdp(i),
when vi, vj , vk and v` satisfy the constraints of the
SDP relaxation, and found that it is at least 0.9326.
The worst configuration is (θij , θik, θjk, θi`, θj`, θk`) '
(2.5682, 2.5682, 0.8229, 2.5682, 0.8229, 0.8229). In this
worst configuration we have p2(i) = Pr(i ∈ V2) ' 0.1075
and p3(i) = Pr(i ∈ V3) ' 0.0157. The computation of
the minimum ratio was carried out in Matlab, using
simple adaptations of code that was used in Karloff and
Zwick [KZ97] and Halperin and Zwick [HZ01].

3.2 Analysis of the algorithm on reduced cubic
graphs

We now extend the analysis given above to reduced
cubic graphs. Reduced cubic graphs may contain
triangles, but each triangle in a reduced cubic graph
is isolated . In other words, each vertex and each edge
participate in at most one triangle. Furthermore, note

that due to condition (ii) of the definition of reduced
cubic graphs (Definition 2.1), each triangle in a reduced
cubic graph contains at most one equality edge. A
triangle is said to be an inequality triangle if its three
edges are inequality edges. We start with the following
extension of Lemma 3.1:

Lemma 3.2. Let G = (V, E 6=, E=) be a reduced cubic
graph. Let T ⊆ V be the vertices of G that are contained
in inequality triangles, and let T̄ = V − T . Let S ⊆ V
be a cut of G, and let V2 and V3 be the corresponding
sets of vertices with two and three unsatisfied adjacent
edges. Then, the local improvement step of algorithm
Cubic-Max-2-Xor increases the size of the cut by at
least 2

5 |V2 ∩ T̄ |+ 17
15 |V3 ∩ T̄ |+ 1

3 |V2 ∩ T |+ 16
17 |V3 ∩ T |.

Proof: The proof of the lemma is a simple extension
of the proof of Lemma 3.1 and it is omitted from this
extended abstract. 2

The definitions of EXP(G) and SDP(G) remain as in
the previous sub-section. Also, if i ∈ T̄ , i.e., if i is
not contained in a triangle, then exp(i) and sdp(i) also
remain unchanged. But, if i is part of the triangle
i − j − k − i ∈ G, and all the edges of this triangle
are inequality edges, and if ` is the other neighbor of i,
we let:

exp(i) =
(θij + θjk + θki)

3π
+

θil

2π
+

1
3
p2(i) +

16
15

p3(i) ,

sdp(i) =
3− vi · vj − vj · vk − vk · vi

6
+

1− vi · vl

4

=
2
3

+
1− vi · vl

4
.

The last equality follows from the fact that vi · vj + vj ·
vk + vk · vi = −1 is a constraint of the SDP relaxation.

ALGORITHM Comb-Cubic-Max-Cut

Input: A graph G = (V,E) of maximum degree at most 3.
Output: A large cut.

1. Throw away all the triangles of G and their adjacent edges.

2. In the remaining triangle-free graph, find a cut that cuts at least 4/5 of the edges.

3. Add back the triangles and the pairs of glued triangles, one by one, and place their vertices optimally
in the two sides of the cut.

Figure 5: A combinatorial 4
5 -approximation algorithm for MAX CUT in graph of degree at most 3.

x′ x y y′
u

v

(b)

u v

w

x y

z
(a)

Figure 6: Triangles and glued pairs of triangles.

It is again easy to check that EXP(G) =
∑

i∈V exp(i)
and SDP(G) =

∑

i∈V sdp(i). This time, the three edges
of a triangle are split evenly among the three vertices of
the triangle.

Numerically, we find that the minimum value
of the ratio exp(i)/sdp(i), where i is in an
inequality triangle, is at least 0.9541. The
worst configuration is (θij , θik, θjk, θi`, θj`, θk`) '
(2.5535, 0.5881, π, π, 0.5881, 2.5535). Note that in this
setting v` = −vi, vk = −vj and p2(i) = p3(i) = 0. The
worst ratio obtained for triangles is, therefore, much
better than the worst ratio obtained for vertices that
are not in triangles, and the performance ratio of the
algorithm remains at least 0.9326 even in the presence
of (isolated) triangles. Non-isolated triangles, and ver-
tices of degree less than three were removed in the pre-
processing step, so the approximation algorithm can be
used to obtain an approximation ratio of at least 0.9326
on any MAX 2-XOR instance, and thus any MAX CUT
instance of degree at most 3.

4 Combinatorial approximation algorithms

It is easy to see that any cubic graph with m edges
has a cut of size at least 2m/3. This result is tight
for K4, a clique on 4 vertices. Lemma 3.1 implies that
any triangle-free cubic graph with m edges has a cut of
size at least 34m/45. Indeed, start with the cut S = φ
for which |V3| = n and |V2| = 0. The lemma then says
that the local improvement step would produce a cut
of size at least 17n/15 = 34m/45. (In a cubic graph
m = 3n/2.) This result can be further improved, as
shown by Hopkins and Staton [HS82] and Bondy and
Locke [BL86]:

Lemma 4.1. ([HS82],[BL86]) Let G = (V, E) be a
triangle-free graph of maximum degree at most 3 with
|E| = m. Then, G has a cut of size at least 4m/5.
Furthermore, such a cut can be found in polynomial
time.

Lemma 4.1 is tight for C5, a cycle of length 5. Bondy
and Locke [BL86] show that the only cubic graphs for
which the lemma is tight are the Petersen graph, and
the dodecahedron graph.

We remark that Lemma 4.1 cannot replace Lemma 3.1
(and Lemma 3.2) in the analysis of the semidefinite
programming based approximation algorithm, as it is
important there to be able to bound the improvement
obtained by the local improvement step when it is
applied on any cut that may be produced by the random
hyperplane rounding step.

However, we can use Lemma 4.1 to obtain a very simple
combinatorial 4

5 -approximation algorithm for the MAX
CUT problem in graphs of degree at most 3. (We
remark that unlike the previous section we consider here
the MAX CUT problem, and not the more general MAX
2-XOR problem.)

Theorem 4.1. Algorithm Comb-Cubic-Max-Cut is
4
5 -approximation algorithm for the MAX CUT problem
in graphs of degree at most 3.

Proof: Triangles in a simple graph of degree at most 3
are isolated, as in Figure 6(a), or glued in pairs, as in
Figure 6(b). The optimum cut can cut at most 5 of the
edges of Figure 6(a). No matter on which side of the
cut the vertices x, y and z were placed in step 2 of the
algorithm, we can always place u, v and w such that 4 of
these edges are cut. The case of glued triangles is even
better. The optimum cut cuts at most 6 edges, and the
cut produced would cut at least 5 edges. 2

5 Further improvements

A slightly improved approximation ratio of 0.9328 for
the MAX 2-XOR problem in graphs of maximum de-
gree at most 3 can be obtained by dealing a bit differ-
ently with vertices of V2 that belong to odd cycles. It
is also possible to slightly strengthen the semidefinite
programming relaxation of the problem by adding pen-
tagon constraints. More details would appear in the full
version of the paper.

Using similar ideas it is also possible to obtain an
improved ‘stand alone’ combinatorial approximation
algorithm for the MAX CUT problem in regular cubic
graphs. This algorithm is not based on the results of
[HS82] and [BL86]. The approximation ratio achieved
by this algorithm is 22

27 = 0.8148. More details would
again appear in the full version of the paper.

6 Concluding remarks

We obtained an improved semidefinite programming
based approximation algorithm for the MAX CUT
problem in graphs of maximum degree at most 3.
We also obtained simple combinatorial approximation
algorithms for the MAX CUT problem in such graphs.

References

[BK99] P. Berman and M. Karpinski. On some tighter in-
approximability results (extended abstract). In Pro-
ceedings of the 26th International Colloquium on Au-
tomata, Languages and Programming, Prague, Czech
Republic, pages 200–209, 1999.

[BL86] J.A. Bondy and S.C. Locke. Largest bipartite sub-
graphs in triangle-free graphs with maximum degree
three. Journal of Graph Theory, 10:477–504, 1986.

[FKL00] U. Feige, M. Karpinski, and M. Langberg. Im-
proved approximation of Max-Cut on graphs of
bounded degree. Technical report, E-CCC Report
number TR00-043, 2000.

[GW95] M.X. Goemans and D.P. Williamson. Improved ap-
proximation algorithms for maximum cut and satisfia-
bility problems using semidefinite programming. Jour-
nal of the ACM, 42:1115–1145, 1995.

[H̊as97] J. H̊astad. Some optimal inapproximability results.
In Proceedings of the 29th Annual ACM Symposium
on Theory of Computing, El Paso, Texas, pages 1–10,
1997. Full version available as E-CCC Report number
TR97-037.

[H̊as00] J. H̊astad. On bounded occurrence constraint
satisfaction. Information Processing Letters, 74(1-
2):1–6, 2000.

[HS82] G. Hopkins and W. Staton. Extremal bipartite
subgraphs of cubic triangle-free graphs. Journal of
Graph Theory, 6:115–121, 1982.

[HZ01] E. Halperin and U. Zwick. Approximation algo-
rithms for MAX 4-SAT and rounding procedures for
semidefinite programs. Journal of Algorithms, 40:184–
211, 2001.

[KZ97] H. Karloff and U. Zwick. A 7/8-approximation
algorithm for MAX 3SAT? In Proceedings of the 38th
Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach, Florida, pages 406–415, 1997.

[TSSW00] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P.
Williamson. Gadgets, approximation, and linear pro-
gramming. SIAM Journal on Computing, 29:2074–
2097, 2000.

[Zwi99] U. Zwick. Outward rotations: a tool for round-
ing solutions of semidefinite programming relaxations,
with applications to max cut and other problems. In
Proceedings of the 31th Annual ACM Symposium on
Theory of Computing, Atlanta, Georgia, pages 679–
687, 1999.

[Zwi01] U. Zwick. Computer assisted proof of optimal ap-
proximability results. In Proceedings of the 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, California, 2001.

