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Abstract

How far off the edge of the table can we reach by
stacking n identical blocks of length 1? A classical
solution achieves an overhang of 1

2Hn, where Hn =
∑n

i=1
1
i ∼ ln n is the nth harmonic number, by stacking

all the blocks one on top of another with the ith block
from the top displaced by 1

2i beyond the block below.
This solution is widely believed to be optimal. We
show that it is exponentially far from optimal by giving
explicit constructions with an overhang of Ω(n1/3). We
also prove some upper bounds on the overhang that can
be achieved. The stability of a given stack of blocks
corresponds to the feasibility of a linear program and so
can be efficiently determined.

# blocks = 30 overhang = 2.70909

Figure 1: Optimal 30-block stack with overhang 2.709.
The “harmonic” 30-block stack with overhang 1.997 is
visible behind.

1 Introduction

An attractive problem with a long history is that of
stacking some set of objects, such as rectilinear blocks
or discs, on a table-top in a stable arrangement with the
greatest possible overhang beyond the edge of the table.

In 1923 J. G. Coffin posed the problem in the Amer-
ican Mathematical Monthly “Problems and Solutions”
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section [C23] but no solution was presented there. The
problem recurred from time to time over subsequent
decades, e.g., [J55]. The objects to be stacked need not
be identical. One of us set a problem of this type, where
there were just three uniform thin planks of lengths
2, 3 and 4 to be stacked, for the Archimedeans Prob-
lems Drive in 1964 [HP64]. Usually though, the prob-
lem is stated in terms of identical coins, playing cards,
books, bricks, etc. Either deliberately or inadvertently
a further restriction often made is that there can be
at most one object resting on top of another. Under
this restriction the problem has been used by count-
less teachers as an introduction to recurrence relations,
the harmonic series and simple optimisation problems,
e.g., [GKP88]. Already for n = 3, a larger overhang
is reachable without the one-on-one restriction. For
n = 4, S. Ainley [A79] found the optimum overhang

to be 15−4
√

2
8 ∼ 1.16789, a value which was “confirmed

by both Bondis”. We will show that, for general n,
the overhang reachable with a given number of blocks
is exponentially larger than that reachable with the re-
striction.

Figure 2: A stable 4-diamond and unstable 5-diamond.

A seductively simple structure, the m-diamond,
illustrated for m = 4 and 5 in Figure 2, consists
of a symmetric diamond shape with rows of length
1, 2, . . . , m − 1, m, m − 1, . . . , 2, 1. The m-diamond
uses m2 blocks and would give an overhang of m/2,
but unfortunately it is unstable for m > 5. An m-
diamond could be stabilised by adding a column of
sufficiently many blocks resting on the top block, but
the methodology introduced in Section 3 shows that, for
m > 5, a column of at least 2m − m2 − 1 blocks would
be needed. This solution is however slightly superior to
the naive “harmonic tower” solution.

The main results in our paper, Theorems 4.1, 6.1
and 6.2, provide lower and upper bounds for D(n), the
maximum overhang that can be constructed using n



blocks. In Section 2, we give precise definitions for
the problems we consider, for D(n) and for related
functions. We discuss some natural restrictions we
impose and the reasons for these, and introduce the
techniques used in deriving our results.

In Section 3 we look at a restricted set of structures,
which includes the harmonic towers and diamonds, and
prove an upper bound on the overhang. Our empirical
results suggest that this bound is fairly tight.

Our best general construction is described in The-
orem 4.1 in Section 4, giving an explicit lower bound of
D(n) = Ω(n1/3). In Section 5 we give the best empirical
lower bounds for D(n) that we have obtained for mod-
erate values of n. Samples of the optimal constructions
we have found are illustrated in Figures 1 and 3.

The best upper bounds we have for D(n) (Theo-
rems 6.1 and 6.2) are proved in Section 6. We conjec-
ture that the lower bound of Ω(n1/3) is tight to within
a polylogarithmic factor, but our general upper bound
falls short of proving this. The paper concludes with
some remarks and open problems in Section 7.

2 Preliminaries

As the maximum overhang problem is physical in na-
ture, our first task is to formulate it mathematically.
We will only consider a 2-dimensional version of the
problem. Each block is a rectangle of length 1 and
height h with uniform density and unit weight. (We
will see that the height h is unimportant.) We assume
that the table occupies the quadrant x, y 6 0 of the
2-dimensional plane. A stack is specified by giving the
position of each of its blocks. Throughout most of the
paper we consider orthogonal stacks in which the sides
of the blocks are parallel to the axes, with the length of
each block parallel to the x axis. The position of a block
can then be specified by giving the coordinate (x, y) of
its lower left corner. Such a block then occupies the box
[x, x + 1] × [y, y + h]. A stack composed of n blocks is
specified by a sequence (x1, y1), . . . , (xn, yn) of the lower
left coordinates of its blocks. We require each yi to be
a non-negative integral multiple of h, the height of the
blocks. Blocks are not allowed to overlap. The overhang
of the stack is 1 + maxn

i=1 xi.
A block at position (x1, y1) rests on a block in

position (x2, y2) if |x1 − x2| 6 1 and y1 − y2 = h.
The interval of contact between the two blocks is then
[max{x1, x2}, 1 + min{x1, x2}] × {y1}. A block placed
at position (x, 0) rests on the table if x 6 0. When
one block rests on other, each may exert various forces
on the other along their interval of contact. A force
is a vector acting at a specified point. By Newton’s
second law, forces come in opposing pairs. If a force f is
exerted on block A by block B at (x, y), then a force −f

is exerted on block B by block A, again at (x, y). In
general, two blocks may exert a (possibly infinitesimal)
force on each other at each point along their interval
of contact. However, in our case, it is always possible
to replace this collection of forces by a single resultant
force acting at a single point within their interval of
contact.

A force f = (fx, fy) may be resolved into a hori-
zontal force of fx units acting along the x direction and
a vertical force of fy units acting along the y direction.
Suppose that block A is resting on block B with (x, y)
being a point in their contact interval. Suppose that a
force f = (fx, fy) is exerted on A by B. As there is
nothing that holds the blocks A and B together, the
blocks can push, but not pull, one another, i.e., fy > 0.
Furthermore, if the edges of A and B are completely
smooth so that there is no friction between them, then
we also have fx = 0. Throughout the paper, with brief
exceptions, we consider frictionless blocks, so that all
the forces acting between blocks are vertical.

Each block is also subjected to a downward gravi-
tational force of one unit acting at its center of mass.
As the blocks are assumed to be of uniform density, the
center of mass of a block whose lower left corner is at
(x, y) is at (x + 1

2 , y + h
2 ).

A configuration of forces acting between the blocks
of a stack, and between the blocks and the table, is
admissible if it includes the gravitational forces acting
on the blocks and if all the non-gravitational forces
satisfy all the requirements mentioned above.

A rigid body is said to be in equilibrium if the sum
of the forces acting on it, and the sum of the moments
they apply on it, are both zero. A 2-dimensional
rigid body acted upon by k vertical forces f1, f2, . . . , fk

at (x1, y1), . . . , (xk, yk) is in equilibrium if and only if
∑k

i=1 fi = 0 and
∑k

i=1 xifi = 0.

Definition 1. (Stability) A stack of blocks is stable
if and only if there is an admissible configuration of
forces acting on them under which each block is in
equilibrium.

Static stability problems of the kind considered here
are often under-determined, so that a stabilizing set of
forces, if it exists, is usually not unique. It was actually
the consideration by one of us of such stability concerns
arising in the game of Jenga [Z02] which stimulated this
current work. The following theorem shows that the
stability of a given stack can be efficiently checked.

Theorem 2.1. The stability of a stack containing n
blocks can be decided by checking the feasibility of a
linear program with O(n) variables and constraints.

Due to lack of space, the (simple) proof is omitted.



# blocks = 2
overhang

= 0.75
# blocks = 3

overhang =

1.
# blocks = 4

overhang =
1.16789

# blocks = 5
overhang =

1.30455
# blocks = 6

overhang =
1.4367

# blocks = 7
overhang =

1.53005
# blocks = 8 overhang =

1.63151
# blocks = 9 overhang =

1.71527

# blocks = 10 overhang = 1.78713 # blocks = 11 overhang = 1.85878 # blocks = 12 overhang = 1.92509 # blocks = 13 overhang = 1.98451 # blocks = 14 overhang = 2.03822 # blocks = 15 overhang = 2.0929

# blocks = 16 overhang = 2.14384 # blocks = 17 overhang = 2.1909 # blocks = 18 overhang = 2.23457 # blocks = 19 overhang = 2.27713 # blocks = 20 overhang = 2.32014

Figure 3: Optimal constructions with up to 20 blocks. The lighter-shaded blocks form the support set while the
darker ones form the balancing set. All these constructions are spinal except the last one.

Definitions 2. (D(n) and principal block)
Define D(n) to be the maximum overhang achievable by
a stable stack comprising n blocks of length 1. The block
of the stack that achieves the maximum overhang is the
principal block of the stack. If several blocks achieve
the maximum overhang, the lowest one is chosen.

Definitions 3. (Support set, balancing set, Dk)
The support set of a stack is defined recursively as
follows: the principal block is in the support set, and if
a block is in the support set then any block on which
this block rests is also in the support set. The balancing
set consists of any blocks that do not belong to the
support set. Define Dk(n) to be the maximum overhang
achievable using a total of n blocks of which exactly k
are in the support set. Then D(n) = max16k6n Dk(n).

Definition 4. (Loaded stacks, D∗
k(w) and D∗(w))

It is natural and convenient to consider loaded stacks,
which consist only of a support set with some point
weights attached to its blocks. Let D∗

k(w) be the
maximum overhang achievable using a support set of k
blocks with attached point weights of total weight w− k,
and let D∗(w) = max16k6w D∗

k(w).

Theorem 2.2. Dk(n) 6 D∗
k(n).

Proof. Consider the set of forces exerted on the support
set of a stack by the set of balancing blocks. From the
definition of the support set, no block of the support set
can rest on any balancing block, therefore the effect of
the support set can be represented by a set of downward
vertical forces on the support set, or equivalently by a
finite set of point weights attached to the support set
with the same total weight as the set of balancing blocks.

�

We have found in our empirical constructions that
optimal loaded stacks can usually be either exactly rep-
resented or closely approximated by (non-loaded) stacks
of the same total weight. We therefore conjecture:

Conjecture 1. D(n) = D∗(n) − O(1).

3 Spinal stacks

In this section we focus on a restricted class of stacks
for which the analysis is simpler.

Definitions 5. (Spinal stacks, spine) A stack is
spinal if its support set (its spine) has just a single block
at each level.

In particular, any stack in which the x-coordinates of
the rightmost block are increasing in successive rows
from the table up to the principal block (a monotone
stack) is clearly spinal.

Definitions 6. (Sk(n), S(n), S∗
k(w) and S∗(w)) Let

Sk(n) and S(n) (corresponding to Dk(n) and D(n)) be
the maximum overhangs achievable using spinal stacks
composed of n blocks, respectively with and without the
condition of using a support set of size k. Similarly, we
have S∗

k(w) and S∗(w) corresponding to loaded spinal
stacks with total weight w.

It is tempting to make the (false) assumption that
spinal stacks are optimal. Indeed we have the following:

Theorem 3.1. For 1 6 n 6 19, D(n) = S∗(n).

Proof. Verified empirically by exhaustive search. �

However the next theorem allows us to show that no
20-block spinal stack, loaded or non-loaded, can reach
the overhang illustrated in the last stack of Figure 3.



Notation. Given a loaded spinal stack with k
blocks in the spine, we denote the blocks from bottom
to top as B1, B2, . . . , Bk, so Bk is the principal block,
and we may regard the tabletop as B0. For 1 6 i 6 k,
the weight attached to Bi is denoted by wi and the
relative overhang of Bi beyond Bi−1 is denoted by di.

We define ti =
∑k

r=i(1 + wr), the total weight exerted
upon Bi−1 from block Bi, and take tk+1 to be 0.

Theorem 3.2. A loaded spinal stack with total weight
w and with k blocks in the spine achieving the maximal
overhang of S∗

k(w) satisfies the following conditions:

1. di = 1− ti+1+
1
2

ti
and so the stack is monotone, i.e.,

di > 0 for 1 6 i 6 k;

2. each block is balanced over the righthand edge of
the block below it and each weight is attached at the
lefthand edge of its block;

3. for some j, 0 6 j 6 k, we have (ti+1 + 1
2 )ti−1 = t2i

for j 6 i 6 k and wi = 0 for 1 6 i 6 j.

Proof. Due to lack of space we omit the proofs of
Conditions 1 and 2. It remains to prove Condition 3,
and we assume that Conditions 1 and 2 hold. Figure 4
shows a portion of such a loaded spinal stack.
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Figure 4: Fragment of loaded spinal stack.

We are now ready to analyse the balance conditions
which optimise the total overhang. For any fixed i,
2 6 i 6 k, we take wi + wi−1 = q to be fixed and
optimize the contribution of di + di−1 to the overhang
as y = wi−1 varies. Then

ti = ti+1 + 1 + wi, and

ti−1 = ti + 1 + wi−1,

so

ti−1 = ti+1 + 2 + q (fixed), and

ti(y) = ti+1 + 1 + q − y = ti−1 − 1 − y.

By resolving moments about the right end of each block,
we find:

di(y) =
wi + 1

2

ti
=

ti(y) − ti+1 − 1
2

ti(y)
= 1 − ti+1 + 1

2

ti(y)
;

di−1(y) =
wi−1 + 1

2

ti−1
=

y + 1
2

ti−1
.

Differentiating di + di−1 with respect to y, we have

d

dy
(di + di−1) = − ti+1 + 1

2

ti(y)2
+

1

ti−1
,

which is a decreasing function of y over the range
0 6 y 6 q, and takes a negative value at the endpoint
y = q. Thus the contribution of di + di−1 is maximized
with respect to y either where the derivative is zero, i.e.,
(ti+1 + 1/2)ti−1 = t2i if this corresponds to a value of y
satisfying 0 6 y 6 q, or else at endpoint wi−1 = y = 0.
Note however that if wi−1 = 0, then the corresponding
analysis for wi−2 + wi−1 shows that we must also have
wi−2 = 0, and similarly for all other w’s down to w1.
This establishes Condition 3. �

Theorem 3.3. S∗(w) < ln w + 1.

Proof. For fixed total weight w = t1 and fixed k, the
largest possible overhang S∗

k(w) =
∑k

i=1 di is attained
when the conditions given in Theorem 3.2 all hold. Then

k
∑

i=1

di = dk+

k−1
∑

i=1

(

1 − ti+1 + 1
2

ti

)

< dk+k−1−
k−1
∑

i=1

ti+1

ti
.

But dk ≤ 1, and, putting xi = ti+1/ti, we see that

S∗
k(w) < k −

k−1
∑

i=1

xi and

k−1
∏

i=1

xi =
tk
t1

>
1

w
.

The minimum sum for a finite set of positive real num-
bers with fixed product is attained when the numbers
are equal, hence

S∗
k(w) < k − (k − 1)w− 1

k−1 .

Let z be defined by k − 1 = z ln w, then this becomes

S∗
k(w) < 1 + z ln w(1 − e−1/z) < 1 + ln w. �

Corollary 3.1. S(n) < ln n + 1.

To justify the claim made in the Introduction
concerning the instability of diamond stacks, consider
the spine of an m-diamond. In this case, di = 1/2 for
all i and so the balance conditions give the equations



Figure 5: Spinal stack of 100 blocks.

ti > 2ti+1 +1 for 1 6 i 6 m−1. But tm > 1, so we have
ti > 2i − 1 for all i and hence t1 > 2m − 1. Since t1 is
the total weight of the stack, the number of extra blocks
required to be added for stability is at least 2m−1−m2,
which is positive for m > 5.

We can now describe a construction of loaded spinal
stacks which achieve an overhang agreeing asymptoti-
cally with the upper bound proved in Theorem 3.3.

Theorem 3.4. S∗(w) > ln w − ln ln w + O(1).

Proof. It is convenient to choose all wi’s equal, a good
enough value for k, and di’s to maintain the conditions
that each spinal block is only just balanced and has the
force wi applied at its left end.

Let k be the number of blocks in the spine, and let
wi = v for 1 6 i 6 k, where k + kv = w. Since tk+1 = 0
and ti = ti+1 + 1 + v, we have

ti = (1 + v)(k + 1 − i), and so di =
v+ 1

2

ti
=

v+ 1
2

v+1 · 1
k+1−i

for 1 6 i 6 k. Hence

S∗(w) > D =

k
∑

i=1

di =
v + 1

2

v + 1
·H(k) =

(

1 − 1
2v+2

)

H(k).

With equal wi’s, an approximately optimal choice for k
is k = d2w/ lnwe, then

D = (1 − 1

ln w
+ O( 1

w ))(ln w − ln ln w + O(1))

> ln w − ln ln w + O(1). �

In Figure 5 we give an example from the optimal
spinal stacks that we have constructed. The spine is
darkly shaded. Large stabilising forces are supplied by
several “towers” (two in this figure, lightly shaded). The
role of the “shadow” of the spine (medium shading) is
to spread the concentrated loads of the towers onto the
tiny steps of the spine. The placement of the support set

is unique, but there is a lot of freedom in the placement
of the blocks from the balancing set.

The overhang achieved here is about 3.6979, which
is a considerable improvement on the 2.5937 given by a
harmonic stack, but is also substantially less than the
optimal 4.2080 attainable with a non-spinal stack.

We believe that, with few exceptions, the effect of
an optimal arrangement of point weights on the spine
can be given by an appropriately arranged balancing
set.

Conjecture 2. S(n) = S∗(n) for n 6= 3, 5, or 7.

We have verified this conjecture numerically for
n 6 1000.

For n = 3, S(3) = S2(3) = 1 < 11−2
√

6
6 = S∗

2 (3) =
S∗(3). For equality we would need some frictional force
and a stack as represented approximately in Figure 5
in order to supply the “optimal” point weights of w1 =
2 −

√

3/2 and w2 = −1 +
√

3/2. Note that with any
positive coefficient of friction, a configuration of this
form would be stable for sufficiently thin blocks. At
the other extreme, we can obtain an overhang greater
than 1 (indeed arbitrarily close to

√
2(
√

3−1)) with only
two blocks if the coefficient of friction is sufficiently large
and the block height h ≤ 1 is chosen suitably!

1.0168

Figure 6: With 3 blocks we would like some friction!

4 Brick wall stacks

As we have indicated, for large enough values of n spinal
stacks are not optimal. For example, at n = 20 the
optimal spinal stack has an overhang of about 2.31899
whereas the non-spinal stack (illustrated in Figure 3
gives the slightly larger overhang of about 2.32014.
(Note that there is a scarcely visible gap between the
two blocks at the second level.)

We give now a general construction for a sequence
of stacks which establishes that D(n) = Ω(n1/3). Al-
though this is not strictly optimal (see the empirical
results in Section 5), it gives the best explicit general
bound we know and we conjecture that it is within a
polylogarithmic factor of optimality. For simplicity, the
construction is what we term a brick-wall stack, which
resembles the simple “stretcher-bond” pattern in real-
life bricklaying. In each row the blocks are contiguous,
and each is centred over the ends of blocks in the row
beneath.

Theorem 4.1. D(n) > (3n/16)1/3 − O(1) for all n.



Figure 7: A 5-stack consisting of 111 blocks and giving
an overhang of 3.

An illustration of the construction with overhang 3
and 111 blocks is given in Figure 7.

Overall the stack has a symmetric roughly parabolic
shape, with vertical axis at the table edge and a brick-
wall structure.

A t-row is a row of t adjacent blocks, symmetrically
placed with respect to x = 0. An r-slab has height
2r − 1 and consists of alternating (r + 1)-rows, and r-
rows, starting and finishing with (r + 1)-rows. An r-
slab therefore contains r(r + 1) + (r − 1)r = 2r2 blocks.
An r-slab for r = 5 is illustrated in Figure 8. A d-
stack is a d-slab on a (d − 1)-slab on . . . on a 2-slab
on a 1-slab on a single block. A 5-stack is illustrated in
Figure 7. Our whole construction is just a d-stack and
so has overhang (d + 1)/2, and total number of blocks

given by n = 1+
∑d

1(2r2) = 2d3/3+O(d2). Lemma 4.2
shows that the construction is stable.

In preparation for Lemma 4.2, we show in the next
lemma that a slab can concentrate a set of forces acting
on its top together with the weights of its own blocks
down into a narrower set of forces acting on the row
below it. The lemma is illustrated in Figure 8.

Lemma 4.1. For any g > 0, an r-slab with forces
of rg, 2rg, 2rg, . . . , 2rg, rg acting downwards onto its
top row at positions − r+1

2 ,− r−1
2 ,− r−3

2 , . . . , r−1
2 , r+1

2
respectively, and with forces of (r + 1)g + r, 2(r +
1)g + 2r, . . . , 2(r + 1)g + 2r, (r + 1)g + r acting upwards
on its bottom row at positions − r

2 ,− r−2
2 , . . . , r−2

2 , r
2

respectively, is in equilibrium.

Proof. The proof is by induction on r. For r = 1,
a 1-slab is just a 2-row, which is clearly stable with
downward forces of g, 2g, g at −1, 0, 1 and upward forces
of 2g + 1, 2g + 1 at − 1

2 , 1
2 .

For the induction step, we first observe that for any
r > 1 an r-slab can be regarded as an (r − 1)-slab with
an (r+1)-row added above and below and with an extra
block added at each end of the r − 2 (r− 1)-rows of the
(r − 1)-slab. The 4-slab (shaded) contained in a 5-slab
together with the added blocks is shown in Figure 8.

rg

Hr+1Lg+1
+Hr-1Lg Hr+1Lg+1

+Hr-1Lg
2rg 2rg 2rg 2rg 2rg rg

2g+1
+2Hr-1Lg 2g+1

+2Hr-1Lg 2g+1
+2Hr-1Lg 2g+1

+2Hr-1Lg

2rg
+2Hr-1L 2rg

+2Hr-1L 2rg
+2Hr-1L2g+1 2g+1 2g+1 2g+1

2Hr+1Lg+2r 2Hr+1Lg+2r 2Hr+1Lg+2r 2Hr+1Lg+2r

Hr+1Lg
+r-1

Hr+1Lg
+r-1

rg
+r-1

rg
+r-1

Hr+1Lg+r Hr+1Lg+r

Figure 8: A 5-slab with a grey 4-slab contained in it.

Suppose the statement of the lemma holds for (r −
1)-slabs and consider an r-slab with the supposed forces
acting on its top row. The top row can be balanced by
r+1 equal forces of 2rg+1 (the 1 is for the block in the
top row) acting at positions − r

2 ,− r−2
2 , . . . , r−2

2 , r
2 . We

can choose to express this constant sequence in the form
(r− 1)g +((r +1)g +1), 2(r− 1)g +(2g +1), 2(r− 1)g +
(2g+1), . . . , 2(r−1)g+(2g+1), (r−1)g+((r+1)g+1).

The first terms in each expression above can be
regarded as forces acting on the (r − 1)-slab contained
in the r-slab, which then, by the induction hypothesis,
yield downward forces on the bottom row of rg + r −
1, 2rg+2(r−1), . . . , 2rg+2(r−1), rg+r−1 at positions
− r−1

2 ,− r−3
2 , . . . , r−3

2 , r−1
2 .

The second terms from the sequence, together with
the weights of the outermost blocks of the (r + 1)-rows,
are passed straight down through the rigid structure of
the (r − 1)-slab to the bottom row. Now the combined
forces acting down on the bottom row are (r +1)g +r−
1, rg+r−1, 2g+1, 2rg+2(r−1), 2g+1, . . . , 2g+1, rg+
r−1, (r+1)g+r−1, at positions − r

2 ,− r−1
2 , . . . , r−1

2 , r
2 .

The bottom row is in equilibrium with the given upward
forces as required. �

Lemma 4.2. For any d > 1, a d-stack is stable, con-
tains (d + 1)d(2d + 1)/3+ 1 blocks and has an overhang
of (d + 1)/2.

Proof. The number of blocks in a d-stack is 1 +
∑d

r=1 2r2 = 1 + (d+1)d(2d+1)
3 . Equilibrium follows by

repeated application of Lemma 4.1 with corresponding
values of g = g(r) given by g(r) = 1

r(r+1)

∑d
i=r+1 i2.

Note that g(d) = 0. For compatibility, the forces
at the bottom of the r-slab must equal the forces at the



weight = 40.
#blocks = 20 overhang = 3.02248 weight = 50.

#blocks = 27 overhang = 3.28136
weight = 60.
#blocks = 30 overhang = 3.51543 weight = 70.

#blocks = 33 overhang = 3.71019

weight = 80.
#blocks = 36 overhang = 3.88265 weight = 90.

#blocks = 39 overhang = 4.0346 weight = 100.
#blocks = 47 overhang = 4.20801

Figure 9: Loaded constructions that we believe to be optimal with total weights of 40, 50, . . . , 100. The
constructions become more and more non-spinal. The lengths of the arrows depicting the external forces are
proportional to their magnitude. The height of a block corresponds to the weight of a block.

top of the (r−1)-slab, for r = d, d−1, . . . , 2. This holds,
since

(r+1)g(r)+r =
1

r

d
∑

i=r+1

i2+r =
1

r

d
∑

i=r

i2 = (r−1)g(r−1).

�

Proof. (of Theorem) If the total number of blocks n
satisfies d(d− 1)(2d− 1)/3+1 6 n 6 (d+1)d(2d+1)/3
for some positive integer d, then Lemma 4.2 shows that
a (d − 1)-stack yields an overhang of d/2 and can be
constructed using n blocks. Any extra blocks can be
just placed in a vertical pile in the centre on top of the
stack without disturbing stability. Hence

n < 2(d + 1
2 )3/3 and so D(n) = d/2 >

(

3n
16

)
1
3 − 1

4 .

�

By comparing this lower bound for D(n) with the
upper bound of S(n) < 1 + ln n from Corollary 3.1, we
can verify that no spinal stack can be optimal when
n > 5000.

5 General constructions

We have complemented our upper and lower bound
theorems with extensive empirical investigations using
Matlab and Mathematica. The results inform our
conjectures and suggest possibilities for improving our
theoretical bounds.

In most of our experiments we have concentrated
on optimising D∗(n), i.e., overhangs of loaded stacks,
rather than D(n), since we believe these to be very
closed related and the increased continuity offered by

the loadings makes optimisation more tractable and
appears to give a smoother outcome.

For the range 30 < n 6 100 we think that we have
found optimal stacks, though we do not have formal
justification. Pictures of some of these stacks are shown
in Figure 9. We have some larger constructions, e.g., in
Figures 10,11,13, which we believe are close to optimal.

In Section 4, we gave a lower bound for “brick-
wall” constructions. Under this restriction, the number
of possible stacks for any particular n is finite and we
can greatly extend the range for an exhaustive search.
On the grounds of simplicity and aesthetics we have
investigated symmetric (about x = 0) stacks for values
of n up to over 100,000. An interesting outcome of these
experiments is that the shape of optimal symmetric
stacks, after suitable scaling, seems to tend to a limit
curve. See Figures 10 and 13 for examples we have
computed. The shape of the curve, which we have
termed the vase, is similar but different to that of the
normal distribution. We have as yet no conjecture for
its equation.

Asymmetric brickwall stacks can achieve slightly
better overhang but the limiting behaviour is more
difficult to interpret. The stack shown in Figure 11
reaches the same overhang as the symmetric stack in
Figure 10 but requires about 3.5% less weight.

6 Upper bounds

In this section we prove upper bounds for the overhang
reachable by a stack with n blocks. The most gen-
eral upper bound we establish is O(n1/2 log n) (Theo-
rem 6.1), but we can improve this to O(n1/3 log n) (The-
orem 6.2) under a (plausible) assumption about optimal



weight = 1151.76

blocks = 1043

overhang = 10

Figure 10: A symmetric loaded brick wall construction
with an overhang of 10 and a total weight of about 1152.
This is the best symmetric brick wall construction that
we have found.

stacks which is described below.
In our experiments to find optimal stacks for small

values of n and in our best systematic constructions
to date, we have found that the upper contour of the
stack (inclusive of the balancing set) can be made to be
non-decreasing from the right to at least as far left as
the tabletop. The lower contour must decrease from
right to left to the tabletop, otherwise some blocks
would be unsupported. Furthermore, although there
are sometimes internal gaps between blocks in the same
row, we have never needed gaps immediately one above
the other. These features are captured in the definition
of “γ-dense” below. Theorem 6.2 assumes this property.

Consider a stack with n blocks, overhang D and
height h. Rows are labelled from bottom to top as
Row1, . . . , Rowh. Rows are regarded as sets of blocks.
For convenience, we may consider the table as Row0,
tiled with adjacent blocks up to the edge. Columns
are labelled from right (furthest overhang) to left. Colj
is the set of blocks with righthand edge in the range
(D − j, D − j + 1], where the table edge is at 0. Note
that each row from 1 to h is nonempty, as is each column
from the rightmost column Col1 to at least Colw, where
w = bD + 1c.

There is at most one block in the intersection of a
row and a column. If the intersection of Rowi and Colj
is nonempty, denote this block as Bi,j .

Definitions 7. Let Cj = {i | Rowi ∩ Colj 6= ∅}, so
Cj lists all rows with a block in Colj . Let cj = |Cj | =
|Colj | for all j. For any k, 1 6 k 6 w, we define
C6k =

⋃

16j6k Cj and c6k = |C6k|. Then a stack is
γ-dense if ck > γc6k for 1 6 k 6 w.

Theorem 6.1. D(n) = O(n1/2 log n).

weight = 1112.84

blocks = 921

overhang = 10

Figure 11: An asymmetric loaded brick wall construc-
tion with an overhang of 10 and a total weight of about
1113. This is the best asymmetric brick wall construc-
tion that we have found. It needs about 3.5% less weight
for the same overhang as the symmetric stack in Fig-
ure 10.

It is convenient to defer the proof of this theorem
until after the proof of Theorem 6.2, which is similar
but more involved.

Theorem 6.2. For any fixed γ > 0, the maxi-
mum overhang for any γ-dense stack of n blocks is
O(n1/3 log n).

Note that the brickwall stacks that we constructed
in Section 4 are 1-dense.

Proof. Consider any γ-dense stack of n blocks with
overhang D. For all i, j, let di,j be the force exerted
down on Bi,j by Bi+1,j+1, if they both exist, and 0
otherwise. Let ui,j be the total force exerted by any
blocks upwards on Bi,j , if it exists, and 0 otherwise.

We define Col6j =
⋃j

i=1 Coli and consider the
balance of forces on Col6j . In particular we examine
the turning moments about the coordinate D − j. The
external moment from the rest of the stack acting on
Col6j is the sum of such moments acting on Bi,j for all i.
If Bi,j exists, the anticlockwise moment about D − j
acting on Bi,j is at most di,j . The anticlockwise moment
due to gravity on the weight of Bi,j is at most 1/2. (See
Figure 12.) These limits could only be approached if the
lefthand edge of Bi,j were close to coordinate D− j − 1
and the external downward force di,j from Bi+1,j+1

acted close to this edge. We will combine these two
terms using the inequality: di,j + 1/2 < di,j + 1 6 ui,j

if block Bi,j exists. The clockwise moment due to
gravity acting on some block Bu,v in Col6j is at least
j − v − 1/2 > 0, for 1 6 v < j.
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Figure 12: The forces on block Bi,j

For the stability of Col6j , where 1 6 j 6 w, the
following inequality must hold:

(∗)
∑

i∈Cj

ui,j >
∑

i∈Cj

(di,j + 1
2 )

> 1
2cj−1 + 3

2cj−2 + · · · + 2j−3
2 c1.

We also have for each i the “total load” inequality
∑

j ui,j 6 n.
For some fixed k, where 1 6 k 6 w, we now prepare

to sum each side of inequality (∗) for 1 6 j 6 k. Recall
that C6k =

⋃

16j6k Cj and c6k = |C6k |. From the
lefthand side of (∗),

∑

16j6k

∑

i∈Cj

ui,j 6
∑

16j6k

∑

i∈C6k

ui,j =
∑

i∈C6k

∑

16j6k

ui,j

6
∑

i∈C6k

n = nc6k .

From the righthand side of (∗),
∑

16j6k

1
2 (cj−1 + 3cj−2 + · · · + (2j − 3)c1)

= 1
2

∑

16r<k

((2r − 1) + (2r − 3) + · · · + 3 + 1)ck−r

=
∑

16r<k

r2

2 ck−r.

Since the stack is γ-dense, we have ck > γc6k and
obtain the recurrence inequality:

nck >
∑

16r<k

γr2

2 ck−r

for 1 6 k 6 w. Recall that w = bD + 1c.

Lemma 6.1. Suppose that for 1 6 k 6 w, we have
ck > 1 and

ck >
∑

16r<k

γr2

2n ck−r.

Let m = d(n/γ)1/3e, α = 1+1/m, M = d2m lnme, and
β = α−M . Then ck > βαk for 1 6 k 6 w.

Proof. We establish that ck > βαk by induction on k.
For 1 6 k 6 M , ck > 1 = βαM > βαk.

For M + 1 6 k 6 w,

ck >
∑

16r6k−1

γr2

2n
ck−r >

βαk

2n/γ

∑

16r6k−1

r2α−r.

It may be verified that

k−1
∑

r=1

r2α−r =
α

(α − 1)3

(

α + 1 − (k(α − 1) + 1)2 + 2

αk

)

> m3

(

2 + 1/m− (k/m + 1)2 + 2

αk

)

.

Now, since k2/αk is a decreasing function of k for
k > 2/ lnα ∼ 2m and k > M = d2m lnme, we deduce
that for sufficiently large values of n

(k/m + 1)2 + 2

αk
<

(M/m + 1)2 + 2

(1 + 1/m)M

∼ 4(ln m)2e−2 ln m = 4(ln m)2/m2.

Hence
k−1
∑

r=1

r2α−r = m3(2 + 1/m − o(1/m)) > 2n/γ,

for sufficiently large n. So we have shown that ck > αβk,
proving the induction step. �

We now complete the proof of Theorem 6.2. From
the inequalities

n >

w
∑

k=1

ck > β

w
∑

k=1

αk ∼ βαD/(α − 1) = αD−Mm,

we derive (D − M) ln α 6 ln(n/m), and therefore

D 6
ln(n/m)

ln α + M 6 m ln(n/m) + M

6 (2n/γ)1/3 ln(n2/3) + O(n1/3 ln n)

= O(n1/3 log n). �

To finish this section, we give the proof of the more
general upper bound.

Proof. (Theorem 6.1) The proof begins as in the proof
of Theorem 6.2 up to inequality (∗), but here we just use
the naive inequality di,j + 1

2 < n, to derive the weaker
recurrence:

ncj >
∑

i∈Cj

(di,j + 1
2 )

> 1
2cj−1 + 3

2cj−2 + · · · + 2j−3
2 c1

= 1
2

j−1
∑

r=1

(2r − 1)cj−r.

Corresponding to Lemma 6.1, we now have:



weight = 115467.

blocks = 112421

overhang = 50

Figure 13: A scaled outline of a loaded brick wall
construction with an overhang of 50 and a total weight
of about 115, 467. This is the best symmetric brick wall
construction that we have found. Individual blocks are
not shown as they are too small to be visible.

Lemma 6.2. Suppose that for 1 6 k 6 w, we have
ck > 1 and

ck >
∑

16r<k

2r−1
2n ck−r.

Let m = d(2n)1/2e, α = 1 + 1/m, M = d2m ln me, and
β = α−M . Then ck > βαk for 1 6 k 6 w.

Proof. The inductive proof is similar to before, but now,
for M + 1 6 k 6 w, we have

ck >
∑

16r6k−1

2r − 1

2n
ck−r >

βαk

2n

∑

16r6k−1

(2r − 1)α−r.

The summation may be explicitly evaluated as

k−1
∑

r=1

(2r−1)α−r =
1 + 1

α − α−k+1((2k − 1)α + (2k − 3))

(α − 1)2
.

Hence,

k−1
∑

r=1

(2r − 1)α−r >
1 + 1

α − α−k+12k(α + 1)

(α − 1)2

>
1 + 1

α − α−M+12M(α + 1)

(α − 1)2
,

since kα−k is a decreasing function of k for k > M .
Now,

α−M+1M(α + 1) ∼ (1 + 1/m)−2m ln mm lnm

∼ e−2lnmm ln m = (ln m)/m = o(1).

Therefore

k−1
∑

r=1

(2r − 1)α−r > (1 + 1/α − o(1))m2 > 2n

for sufficiently large n. So we have shown that ck > αβk,
proving the induction step. �

To complete the proof of Theorem 6.1, we proceed
in a similar way to before, and derive

D 6
ln(n/m)

ln α + M 6 m ln(n/m) + M

6 (2n)1/2 ln(n1/2) + O(n1/2 ln n) = O(n1/2 log n).

�

7 Concluding remarks and open problems

We have revisited a well-known classic problem and
begun to answer some of the questions that were latent
there. We have shown that the overhang achievable
with n blocks is exponentially larger than was previously
supposed. We believe that our constructions here are
asymptotically close to optimal.

Our upper bound of O(n1/3 log n) (Theorem 6.2)
is only proved under a restriction on the structure
of stacks. To improve our general upper bound of
O(n1/2 log n) we would need to show that optimal stacks
did not need large internal voids in their structure.

Our empirical experiments for large n suggest that
a “vase” shape may be optimal. The contours of our
best symmetric brick wall constructions with overhangs
of 10 (Figure 10), 50 (Figure 13), 100 and 200, after
appropriate scaling, are similar to a Gaussian curve,
but we do not have a conjecture for the real function
approximating this contour.

The major open problem, however, is to resolve the
following conjecture:

Conjecture 3. D(n) = Θ̃(n1/3).
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