
Analysis of Algorithms

Problem Set no. 2 — Global minimum cuts
Given: November 25, 2009

Exercise 2.1 Let G = (V,E) be a weighted undirected graph with |V | ≥ 3. Show that there are
at least two distinct vertices t1, t2 ∈ V such that (V − {t1}, {t1}) is a minimum s1-t1 cut, for some
s1 ∈ V , and (V − {t2}, {t2}) is a minimum s2-t2 cut, for some s2 ∈ V . Find graphs in which there
are no three such vertices.

Exercise 2.2 Does the algorithm of Stoer and Wagner for finding a minimum s-t cut, for some
s, t ∈ V , work also for directed graphs? If not, what goes wrong?

Exercise 2.3 Find a graph on n vertices that has
(n
2

)
global minimum cuts.

Exercise 2.4 Show that one run of the simple random contraction algorithm of Karger and Stein
on a weighted graph can be implemented in O(n2) time. (Hint: Maintain the sum of the edge
weights incident on each vertex.)

Exercise 2.5 Show that one run of the simple random contraction algorithm of Karger and Stein
on an initially unweighted graph can be implemented in O(m) time. (Hint: Start by choosing a
random permutation of the edges. Next, contract the first m/2 edges and check whether there are
at least two vertices in the contracted graph.)

Exercise 2.6 Consider the following algorithm for finding a minimum global cut in an unweighted
undirected graph on n vertices: Choose a random edge and contract it. Repeat this operation until
the number of remaining vertices in the graph is t, where t is a parameter to be determined later.
Then, apply a deterministic algorithm for finding a global minimum cut in the resulting graph. The
complexity of the deterministic minimum cut algorithm is O(na), where n is the number vertices in
the graph. Finally, run this combined algorithm a sufficient number of times so that the probability
that it finds a global minimum cut is at least 1/2. What is the optimal choice of t and what is then
the running time of this algorithm? What happens if you use this algorithm instead of the O(na)
algorithm?

Exercise 2.7 A cut in a graph G = (V,E) is said to be α-minimal, for α ≥ 1, if its size is at most
α times the size of a global minimum cut. Obtain an upper bound on the number α-minimal cuts
that a graph on n vertices can have.

Exercise 2.8 Show that a simple variant of the random contraction algorithm of Karger and
Stein can be used to find a minimum 3-cut of an undirected and unweighted graph G = (V,E) on
n vertices. (A 3-cut of G = (V,E) is a partition of V into three non-empty sets A,B and C. The
size of the cut is the number of edges connecting vertices from different sets.) What is the success
probability of the algorithm? Extend your answers to the case of minimum k-cuts.

Exercise 2.9 One of the students of the course suggests the following algorithm for finding
a minimum s-t cut in an undirected and unweighted graph G = (V,E) on n vertices: Choose,
uniformly at random, an edge that does not connect s and t, and contract it. If the contracted
edge touches s, then the newly formed vertex continues to play the role of s. The same goes for t.
This goes on until only two vertices are left in the graph. These must be s and t, and an s-t cut it
obtained. Find graphs in which the success probability of this algorithm is exponentially small.


