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1 Dijstra’s algorithm

Dijkstra’s [Dij59] classical single-source shortest paths algorithm, for graphs with non-negative edge

weights, is given in Figure 1. When implemented using a priority queue, such as Fibonacci heaps (see

[FT87]), that supports insert and decrease key operations in O(1) time, and extract-min operations

in O(log n) time, its running time is O(m+ n log n).

We may view the operation of Dijkstra’s algorithm as follows. Suppose that we have just found out

that π is a shortest path from s to u, for some vertex u ∈ V . Then, for every edge (u, v) ∈ E, the

path π · (u, v), obtained by appending the edge (u, v) to the path π, is made a candidate for being

a shortest path from s to v. As subpaths of shortest paths are also shortest paths, at least one

shortest path to any vertex v is made a candidate at some stage and then recognized as a shortest

path at a later stage.

2 The algorithm of Karger, Koller and Phillips

Suppose now that we would like to solve the All-Pairs Shortest Paths (APSP) problem. One option

is of course to run Dijkstra’s algorithm independently from each vertex of the graph. Can we gain

anything by trying to find all shortest paths together?

Suppose for simplicity that all edge lengths are strictly positive. We can try to find shortest paths

between all pairs of vertices in increasing order of their (weighted) length. Suppose that we have

just found out that π is a shortest path from s to u and that (u, v) ∈ E. Should we immediately

make π · (u, v) a candidate for being a shortest path from s to v? If π · (u, v) is a shortest path,

∗Burn after reading!
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Function Dijkstra(G = (V,E, c), s)

d[s]← 0

Q← heap()

heap-insert(Q, s, d[s])

foreach v ∈ V−{s} do
d[v]←∞
p[v]← null

while Q 6= ∅ do
u← extract-min(Q)

foreach e ∈ Eout(u) do
relax(e)

Function relax(e = (u, v))

if d[u] + c(u, v) < d[v] then
d[v]← d[u] + c[e]

if p[v] = null then
heap-insert(Q, v, d[v])

else
decrease-key(Q, v, d[v])

p[v]← u

Figure 1: Dijkstra’s single-source shortest paths algorithm.

Function KKP(G = (V,E, c))

foreach u ∈ V do
d[u, u]← 0

in[u], out[u]← ∅
foreach u 6= v ∈ V do

d[u, v]←∞
p[u, v]← null

Q← heap()

foreach e = (u, v) ∈ E do
d[u, v]← c[e]

p[u, v]← e

heap-insert(Q, (u, v), d[u, v])

while Q 6= ∅ do
(u, v)← extract-min(Q)

insert(in[v], u)

foreach e ∈ out[v] do
relax(u, e)

if start[p[u, v]] = u then
insert(out[u], p[u, v])

foreach w ∈ in[u] do
relax(w, p[u, v])

Function relax(u, e = (v, w))

if d[u, v] + c[e] < d[u,w] then
d[u,w]← d[u, v] + c[e]

if p[u,w] = null then
heap-insert(Q, (u,w), d[u,w])

else
decrease-key(Q, (u,w), d[u,w])

p[u,w]← e

Figure 2: The algorithm of Karger, Koller and Phillips.
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then in particular the edge (u, v) is a shortest path from u to v. If we do not know yet that (u, v)

is a shortest path, there is no reason yet to make π · (u, v) a candidate. (If we know that (u, v) is

not a shortest path, then there is definitely no reason to make π · (u, v) a candidate.)

An algorithm that exploits this idea was developed by Karger, Koller and Phillips [KKP93]. A ver-

sion of their algorithm is presented in Figure 2. A similar algorithm was also devised by McGeouch

[McG95].

For every vertex u ∈ V , we maintain list in[u] of all the vertices w from which a shortest path

from w to u was already found by the algorithm, and a list out[u] of all the edges (u,w) emanating

from u which were already identified as shortest paths.

Definition 2.1 (Essential edges) Let G = (V,E, c) be a weighted directed graph. An edge e =

(u, v) ∈ E is said to be essential if and only if it is a shortest path from u to v.

Theorem 2.2 Algorithm KKP finds shortest paths between all pairs of vertices in a graph with

non-negative edge weights. Its running time is O(m∗n + n2 log n), where m∗ is the number of

essential edges in the graph.

3 The algorithm of Demetrescu and Italiano

3.1 Path systems

The algorithm maintains a collection of paths. Each path in the collection is said to be generated.

Some of the paths are also marked as selected. If a path belongs to the collection maintained,

then any subpath of it also belongs to the collection. Each path π has the following information

associated with it:

`[π] – The path obtained from π by removing its last edge.

r[π] – The path obtained from π by removing its first edge.

start[π] – The first vertex on π.

end[π] – The last vertex on π.

first[π] – The first edge on π.

last[π] – The last edge on π.

cost[π] – The cost of π.

sel[π] – true if and only if the path π is selected.

GL[π] – A list containing all the generated left extensions of π.

GR[π] – A list containing all the generated right extensions of π.

SL[π] – A list containing all the selected left extensions of π.

SR[π] – A list containing references to all the generated right extensions of π.
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Function path(v)

π ← new-path()

`[π]← null

r[π]← null

start[π]← v

end[π]← v

first[π]← null

last[π]← null

cost[π]← 0

sel[π]← true

GL[π], GR[π]← ∅
SL[π], SR[π]← ∅
return π

Function path(e = (u, v))

π ← new-path()

`[π]← π[u]

r[π]← π[v]

start[π]← u

end[π]← v

first[π]← e

last[π]← e

cost[π]← c[e]

sel[π]← false

GL[π], GR[π]← ∅
SL[π], SR[π]← ∅
insert(GL[π[v]], π)

insert(GR[π[u]], π)

return π

Function path(π1, π2)

if r[π1] 6= `[π2] then error

π ← new-path()

`[π]← π1

r[π]← π2

start[π]← start[π1]

end[π]← end[π2]

first[π]← first[π1]

last[π]← last[π2]

cost[π]← c[first[π]] + cost[π2]

sel[π]← false

GL[π], GR[π]← ∅
SL[π], SR[π]← ∅
insert(GL[π2], π)

insert(GR[π1], π)

return π

Figure 3: Generating a new path and inserting it into the path system.

New paths are generated using the constructors given in Figure 3. A call path(v), where v ∈ V ,

generates an empty path composed of the vertex v on its own. A call path(e), where e ∈ E, generates

a path composed of the edge e. More interestingly, if π1 and π2 are such that r[π1] = `[π2], i.e.,

if the path obtained from π1 by removing its first edge is equal to the path obtained from π2 by

removing its last edge, then path(π1, π2) generates a path combining π1 and π2. The combined path

is the path obtained by appending the last edge of π2 to π1, or equivalently, by prepending the first

edge of π1 and π2.

Function apsp(G = (V,E, c))

foreach u ∈ V do
π[u]← path(u)

d[u, u]← 0

p[u, u]← π[u]

foreach u 6= v ∈ V do
P [u, v]← heap()

insert-edges(E)

build-paths()

Function insert-edges(Eins)

foreach e = (u, v) ∈ Eins do
π ← path(e)

heap-insert(P [u, v], π, cost[π])

Function delete-edges(Edel)

foreach e ∈ Eins do
remove-path(π[e])

Definition 3.1 A collection of generated and selected paths is well-maintained if and only if the

following conditions are satisfied:

1. π is generated iff l[π] and r[π] are selected.
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Function build-paths()

Q← heap()

init-build-paths()

while Q 6= φ do
(u, v)← extract-min(Q)

new-shortest-path(p[u, v])

Function init-build-paths()

foreach u 6= v ∈ V do
d[u, v]←∞
p[u, v]← null

if P [u, v] 6= φ then
π ← find-min(P [u, v])

d[u, v]← cost[π]

p[u, v]← π

heap-insert(Q, (u, v), d[u, v])

Function new-shortest-path(π)

if sel[π] = false then
sel[π]← true

insert(SL[r[π]], π)

insert(SR[l[π]], π)

foreach π′ ∈ SL[l[π]] do
π′′ ← path(π′, π)

examine(π′′)

foreach π′ ∈ SR[r[π]] do
π′′ ← path(π, π′)

examine(π′′)

Function examine(π)
u← start[π] ; v ← end[π]

heap-insert(P [u, v], π, cost[π])

if cost[π] < d[u, v] then
d[u, v]← cost[π]

if p[u, v] = null then
heap-insert(Q, (u, v), d[u, v])

else
decrease-key(Q, (u, v), d[u, v])

p[u, v]← π

Figure 4: The functions build-paths and new-shortest-path.

2. If π is generated then π ∈ GL[r[π]] and π ∈ GR[l[π]].

3. If π is selected then π ∈ SL[r[π]] and π ∈ SR[l[π]].

For every pair of vertices u, v ∈ V , we maintain a priority queue P [u, v] that contains all the

generated paths going from u to v. The key of each path π in the priority queue is its cost.

3.2 The static case

To simplify the presentation of the algorithm we start by making the following simplifying assump-

tion:

Uniqueness assumption: For every two vertices u, v ∈ V , there is a unique shortest path from u

to v in the graph.

Lemma 3.2 If the collection of paths is well-maintained before a call to build-paths, insert-edges

and remove-paths, then it is also well-maintained after the call.
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Function update(Edel, Eins)

delete-edges(Edel)

insert-edges(Eins)

build-paths()

Function vertex-update(v, Enew)

Edel ← {(x, y) ∈ E | x = v or y = v}
E ← E − Edel ∪ Enew

update(Edel, Enew)

Function full-update(v, Enew)

t← t+ 1

v[t]← v

vertex-update(v, Enew)

j ← 1

while j < t do
dummy-update(v[t− j])
j ← 2j

Function dummy-update(v)

Ev ← {(x, y) ∈ E | x = v or y = v}
vertex-update(v, Ev)

Figure 5: Updating shortest paths.

Figure 6: F-update

Definition 3.3 (Locally Shortest Paths) A path π is a locally shortest path (LSP) if the paths

`[π] and r[π] obtained by removing the last or first edge of π are shortest paths.

A shortest path is clearly a locally shortest path, but a locally shortest path is not necessarily a

shortest path. Also note that every edge is a locally shortest path.

Theorem 3.4 Suppose that build-paths is run on a collection of paths that initially contains π[e],

for every e ∈ E, and π[v], for every v ∈ V , and that all shortest paths in the graph are unique.

Then at the end of the run we have:

1. The selected paths are exactly the shortest paths in the graph.

2. The generated paths are exactly the locally shortest paths in the graph.

3. For every u, v ∈ V , p[u, v] is the shortest path from u to v in the graph.

The running time of the algorithm is O(|LSP |+ n2 log n), where LSP is the set of locally shortest

paths in the graph.

Lemma 3.5 Under the uniqueness assumption, |LSP | ≤ m∗n ≤ mn, where m∗ is the number of

essential edges of the graph.

Lemma 3.6 The number of locally shortest paths passing through a given vertex v is at most 3n2.
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Function remove-path(π)

if `[π] 6= nu then
delete(GR[`[π]], π)

delete(GL[r[π]], π)

if sel[π] = true then
delete(SR[`[π]], π)

delete(SL[r[π]], π)

u← start[π] ; v ← end[π]

heap-delete(P [u, v], π)

foreach π′ ∈ GL[π] ∪GR[π] do
remove-path(π′)

Figure 7: Removing a path and all its extensions from the system.

3.3 The dynamic case

Edel - the set of edges deleted or that have their cost changed.

Eins - the set of edges inserted or that have their cost changed.

Note that edges that have their cost changed belong to both Edel and Eins. Such edges are first

removed from the graph and then reinserted with their modified cost.

Definition 3.7 (Vertex updates) A vertex update operation may add, delete, or change the cost

of edges incident on a vertex v. An update is said to be an increasing update if it only deletes

edges or increases the cost of existing edges. An update is said to be an decreasing update if it

only inserts edges or decreases the cost of existing edges. (Note that an increasing update can only

increase distances in the graph, while a decreasing update can only decrease distances.)

Suppose that we have just performed an update on vertex v. Generated paths passing through v

may now use edges that are no longer part of the graph, or they may use edges whose cost was

either increased or decreased. Shortest paths passing through v may stop being shortest paths

The first step we take in order to recompute the shortest paths in the graph following an update of

vertex v is to remove all paths passing through v from our system.

All paths passing through an edge e are removed by calling procedure remove-path given in Figure 7.

All these paths are extensions of π[e] and can therefore be recursively reached by following the links

in the lists GL[·] and GR[·]. (This is where the lists GL[·] and GR[·] are used. Only SL[·] and SR[·]
were used in the static case.) When a path π, connecting u and v, is removed from the system, it

is also removed from the priority queue P [u, v]. Removing π from P [u, v] takes O(log n) time.

Lemma 3.8 A call remove-paths(π) correctly removes all extensions of π. The resulting system is

well-maintained. The running time is O(|DEL| log n), where DEL is the number of paths removed.
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Theorem 3.9 Suppose that build-paths is run on a well-maintained collection of paths that in-

cludes π[e], for every e ∈ E, and possibly other generated and selected paths. If all shortest paths

are unique, then at the end of the run we have:

1. All shortest paths are selected.

2. All newly selected paths are shortest paths.

3. For every u, v ∈ V , p[u, v] is the shortest path from u to v in the graph.

The running time of build-paths is O(|NEW |+n2 log n), where NEW is the set of newly generated

paths.

Theorem 3.10 A call vertex-update(v, Enew) recomputes all shortest paths after an update of

vertex v. The running time used is O((|DEL| + n2) log n + |NEW |), where DEL is the set of

generated paths passing through v before the update, and NEW is the set of newly generated paths.

Note that while all paths in DEL pass through v, the updated vertex, the paths in NEW do not

necessarily pass through v.

How large can DEL and NEW be?

3.4 Increasing updates only

If all updated are increasing, things are particularly nice. All selected paths are shortest paths and

all generated paths are locally shortest paths.

Lemma 3.11 Suppose that all selected paths before an increasing update are shortest paths. Then,

the same holds after the update. In particular, all generated paths, before and after the update are

locally shortest paths.

Lemma 3.12 The total running time of k increasing updates is O(mn+ kn2 log n), where m is the

number of edges in the graph after the updates.

Proof: Since all updates are increasing, all selected paths are shortest and all generated paths

are locally shortest. Let di be the number of locally shortest paths destroyed by the i-th update

operation, and let ci be the number of locally shortest paths created (generated) by the i-th update

operation. By Theorem 3.10, the running time of the i-th update is O((di + n2) log n+ ci), and the

total running time is O((kn2 +
∑k

i=1 di) log n+
∑k

i=1 ci).

All paths destroyed by the i-th update are locally shortest paths passing through vi. By Lemma 3.6,

there are at most 3n2 such paths, and therefore di = O(n2). All that remains, therefore, is to bound∑k
i=1 ci.
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The number of LSPs after the k update operations is at least
∑k

i=1 ci −
∑k

i=1 di. By Lemma 3.5,

the number of LSPs after the k-th update is at most mn. Thus
∑k

i=1 ci ≤ mn +
∑k

i=1 di. As we

have seen, di = O(n2). Thus,
∑k

i=1 ci = O(mn + kn2). Putting everything together, we get that

the time required to process the k updates is indeed O(mn+ kn2 log n). 2

3.5 Decreasing updates only

4 General updates

Definition 4.1 (Historical paths) Let π be a path in the graph in time t. Let t′ ≤ t be the last

time a vertex on π was updated. Then, π is said to be historical at time t if it has been a shortest

path at least once during the time interval [t′, t].

Note that a path can stop being a historical path only as a result of an update of one of its vertices.

Definition 4.2 (Locally historical paths) A path π at time t is said to be a locally historical

path if and only if it consists of a single vertex, or if l[π] and r[π] are both historical paths at time t.

Lemma 4.3 If, at some time, there at most z historical paths between any pair of vertices in the

graph, then there are at most zmn locally historical paths.

Lemma 4.4 If, at some time, there at most z historical paths between any pair of vertices in the

graph, then there are at most O(zn2) locally historical paths passing through a given vertex v.

Let v[t] be the vertex updated at time t ≥ 0.

A dummy update of a vertex v is a call to update(v) without changing any edge weights.

Theorem 4.5 Suppose that after performing the requested update on vertex v[t] at time t, we

perform dummy updates on vertices v[t−1], v[t−2], . . . , v[t−2i] . . .. Then, the number of historical

paths between any pair of vertices in the graph is O(log t).

Lemma 4.6 Suppose that π1 and π2 are historical paths from x and y at time t. Let t1 and t2 be

the times of the last (non-dummy) updates on π1 and π2, respectively. Then, t1 6= t2.

Lemma 4.7 Suppose that π1 and π2 are historical paths from x and y at time t. Let t1 and t2 be

the times of the last (non-dummy) updates on π1 and π2. Assume that t1 < t2. Then, if t1 + 2j ≤ t,

then t1 + 2j < t2. In particular, t− t2 < t−t1
2

.
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5 Getting rid of the uniqueness assumption

Assign each edge e a distinct tag tag[e]. All edges that participate in an update are assigned tags

that are larger than all previous tags. If π is a path, we let TAG[π] be the set of the tags of the

edges appearing on π, and tag[π] be the maximum tag of an edge appearing on π. We can easily

add the maintenance of tag[π] to the constructors path(e) and path(π1, π2).

We next define a total order on sets of numbers. Let A and B be two distinct sets of numbers. We

say that A ≺ B if and only if max(A−B) < max(B−A). (In words: the largest element in A that

does not belong to B is smaller than the largest element of B that does not belong to A.) We say

that A � B if and only if A = B or A ≺ B.

We next define a total order of paths. We say that π1 ≺ π2 if and only if cost[π1] < cost[π2] or

cost[π1] = cost[π2] and TAG[π1] ≺ TAG[π2].

We say that a path π from u to v in the graph is optimal if and only if π ≺ π′ for every other path

from u to v in the graph. If there is a path from u to v in the graph, then there is a unique optimal

path from u to v. Also note that a subpath of an optimal path must also be optimal.

We change path() such that it also maintains tag[π] for every π. (But not TAG(π). That would

be too time consuming!). The key associated with each path in P [u, v] and each pair (u, v) in Q is

now the pair (cost[π], tag[π]), and comparisons are done lexicographically.

Lemma 5.1 If up to a certain point in time all selected paths are optimal at the time of their

selection, then up to that point

1. if π1 and π2 are two selected paths between u and v, then cost[π1] 6= cost[π2] and tag[π1] 6=
tag[π2].

2. if π1 and π2 are two generated paths between u and v, then cost[π1] 6= cost[π2] or tag[π1] 6=
tag[π2].

Theorem 5.2 The algorithm finds all the optimal paths in the graph.
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