Analysis of Algorithms

Problem Set no. 2 — Minimum directed spanning trees

Given: May 5, 2009

Exercise 1.1 Exhibit a directed graph in which the lightest edge participates in a directed spanning tree rooted at some vertex \(r \), but not in a minimum directed spanning tree rooted at \(r \).

Exercise 1.2 Exhibit a directed graph in which all minimum directed spanning trees rooted at some vertex \(r \) contain the heaviest edge in the graph, even through there are directed spanning trees rooted at \(r \) that avoid that edge.

Exercise 1.3 Exhibit a directed graph \(G = (V, E) \) with two weight functions \(w_1, w_2 : E \to R \) on it such that for every two edges \(e_1, e_2 \in E \) we have \(w_1(e_1) \leq w_1(e_2) \) if and only if \(w_2(e_1) \leq w_2(e_2) \) and yet the minimum directed spanning trees rooted at some vertex \(r \) with respect to \(w_1 \) and \(w_2 \) are different.

Exercise 1.4 Describe a deterministic linear time algorithm for finding a minimum directed spanning tree in an acyclic graph.

Exercise 1.5 Give simple linear time reductions between the problems of finding a minimum directed spanning tree rooted at a given vertex \(r \), and the problem of finding a minimum directed spanning tree rooted at an arbitrary vertex of the graph.

Exercise 1.6 Let \(G = (V, E) \) be a directed graph with a weight function \(w : E \to R \) defined on its edges. A branching \(B \) of \(G \) is a set of edges \(B \subseteq E \) such that the subgraph \((V, B) \) is acyclic and the indegree of each vertex in it is at most 1. Obtain an efficient algorithm for finding a maximum branching of \(G \), i.e., a branching \(B \) for which \(\sum_{e \in B} w(e) \) is maximized. (Note that some of the edge weights may be negative.)