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Abstract

We prove the correctness of Edmonds’ blossom shrinking algorithm for finding a maximum

cardinality matching in a general graph.

1 The maximum matching problem

Let G = (V,E) be an undirected graph. A set M ⊆ E is a matching if no two edges in M touch

each other or, in other words, if the degree of every vertex in the subgraph (V,M) is at most 1. A

vertex v is matched by M if there is an edge of M that touches v. Otherwise, v in unmatched. In

the maximum matching problem we are asked to find a matching M of maximum size in a given

input graph G = (V,E).

2 Alternating and augmenting paths

We begin with a definition of alternating paths and cycles.

Definition 2.1 (Alternating paths and cycles) Let G = (V,E) be a graph and let M be a

matching in M . A path P is said to be an alternating path with respect to M if and only if among

every two consecutive edges along the path, exactly one belongs to M . An alternating cycle C is

defined similarly.

Some alternating paths and an alternating cycle are shown in Figure 1. We use the convention that

edges that belong to a matching M are shown as thick edges, while edges not belonging to M are

shown as thin edges.
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Figure 1: Alternating paths and cycles

Definition 2.2 (Symmetric difference) If A and B are sets, we let A⊕B = (A−B)∪ (B−A)

be their symmetric difference.

The following lemma is now obvious.

Lemma 2.3 If M is a matching and P is an alternating path with respect to M , where each

endpoint of P is either unmatched by M or matched by the edge of P touching it, then M ⊕ P is

also a matching.

Note that if P starts and ends in vertices unmatched by M (e.g., the top path in Figure 1), then

|M ⊕P | = |M |+ 1, i.e., M ⊕P is a larger matching. If P starts with an edge that does not belong

to M and ends with an edge of M (e.g., the middle path in Figure 1), then |M ⊕P | = |M |. Finally,

if P starts and ends with edges of M (see the bottom path in Figure 1, then |M ⊕ P | = |M | − 1.

Lemma 2.4 Let G = (V,E) be an undirected graph and let M1 and M2 be matchings in G. Then,

the subgraph (V,M1 ⊕M2) is composed of isolated vertices, alternating paths and alternating cycles

with respect to both M1 and M2.

Definition 2.5 (Augmenting paths) An augmenting path P with respect to a matching M is

an alternating path that starts and ends in unmatched vertices.

Note that an augmenting path in necessarily of odd length and that the number of edges on P that

do not belong to M is by one larger than the number of edges that do belong to M .

Theorem 2.6 Let G = (V,E) be an undirected graph and let M be a matching in G. Then, M is

a maximum matching in G if and only if there are no augmenting paths with respect to M in G.

Proof: If P is an augmenting path with respect to M , then M ⊕ P is also a matching and

|M ⊕ P | > |M |, so M is not a maximum cardinality matching of G.

Conversely, suppose that M is not a maximum matching in G. Let M ′ be a matching with |M ′| >

|M |. By Lemma 2.4 M ⊕M ′ is composed of alternating paths and cycles. All the alternating cycles
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are of even length and contain the same number of edges from M and M ′. At least one of the

alternating paths must contain more edges from M ′ and this path is then an augmenting path with

respect to M . 2

Theorem 2.6 suggests the following simple algorithm for finding a maximum matching. Start with

some initial matching M , possibly the empty one. As long as there is an augmenting path P with

respect to M , augment M using P and repeat. All that remains, therefore, is to devise a procedure

for finding augmenting paths, if they exist.

3 Blossoms

Definition 3.1 (Flowers and blossoms) A flower with respect to a matching M is composed of

a stem, which is an alternating path of even length from an unmatched vertex r, called the root,

to vertex b, and an ‘alternating’ cycle of odd length that passes through b, called a blossom. The

last edge on the stem belongs to M . The two edges of the blossom touching b are not in M . Other

than that, every second edge on the blossom belongs to M . The vertex b is said to be the base of

the blossom.

If G = (V,E) is a graph, M ⊆ E is a matching, and B is a blossom, we let GB be the graph

obtained from G by contracting G, and by MB = M −B the matching corresponding to M in GB.

We use B to denote the vertex of GB obtained by contracting B.)

Lemma 3.2 Let G = (V,E) be an undirected graph and let M be a matching in G. Let B be a

blossom in G. If there is an augmenting path with respect to MB in GB, then there is also an

augmenting path with respect to M in G.

Proof: Let P be an augmenting path in GB with respect to MB. If P does not pass through b,

then P is also an augmenting path in G with respect to M , and we are done.

Suppose, therefore, that P does pass through B. We consider two cases:

Case 1: P starts (or ends) at B.

Let (B, c) be the first edge on P and let Pc be the part of P that starts at c. Clearly (B, c) 6∈ MB.

Also, there is a vertex v ∈ B such that (v, c) ∈ E and (v, c) 6∈ M . In the blossom B, we can

find an even length alternating path Q from b to v. This path ends with an edge of M . The path

Q, (v, c), Pc is then an augmenting path in G with respect to M , as required.

Case 2: B is not the first or last vertex on P .

Let (a,B), (B, c) ∈ P be the edges of P that touch B. Assume that (a,B) ∈ MB and (B, c) 6∈ MB.

Let Pa be the part of P up to a, and let Pc be the part of P from c. As (a,B) ∈ Mb, the edge

(a, b) must be present in the original graph and (a, b) ∈ M , as the only edge of the matching that

enters a blossom enters it at its base. As before, there is a vertex v ∈ B such that (v, c) ∈ E and
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(v, c) 6∈ M . We can again find an even alternating path Q in the blossom from b to v. The path

Pa, (a, b), Q, (v, c), Pc is then an augmenting path in G with respect to M , as required. 2

Lemma 3.3 Let G = (V,E) be an undirected graph and let M be a matching in G. Let B be a

blossom in G which is part of a flower with stem Q. If there is an augmenting path with respect

to M in G, then there is also an augmenting path with respect to MB in GB.

Proof: Let b be the base of the blossom B. We consider two cases:

Case 1: b is unmatched by M .

Let P be an augmenting path in G with respect to M . If P does not pass through any vertex of B,

then P is also an augmenting path with respect to M in G. Suppose therefore that P does pass

through B. As P starts and ends at unmatched vertices, and only one vertex on B is unmatched,

we may assume that P does not start on B. Let P ′ be the prefix of P until the first encounter with

a vertex on B. Let P ′ = P ′′, (a, v), where v ∈ B. Then, P ′′, (a,B) is an augmenting path with

respect to MB in GB, as B is unmatched by MB.

Case 2: b is matched by M .

Let M ′ = M ⊕Q, where Q is a stem of a flower with blossom B. As Q is an even alternating path

starting at an unmatched vertex, we get that M ′ is a matching and that |M ′| = |M |. Note that B

is also a blossom with respect to M ′ and that b is unmatched with respect to M ′. We also have

|M ′

B
| = |MB|.

As M ′ and M are matching of the same size and as there is an augmenting path with respect to M ,

there must also be an augmenting path with respect to M ′. As b in unmatched by M ′, we get by

Case 1 that there must be augmenting path with respect to M ′

B
in GB, and as M ′

B
and MB are

again of the same size, we get that there must also be an augmenting path with respect to MB

in GB, as required. 2

For more information see Edmonds’ original paper [Edm65]. For a very clear description of the

whole algorithm, with C++ code, see Section 7.7 of LEDA book [MN99]. Various versions of the

algorithm are also described in the books [Law76], [Tar83] and [AMO93].
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