Lecture notes on:
 Maximum matching in non-bipartite graphs

Lecturer: Uri Zwick*

Spring 2008

Abstract

We prove the correctness of Edmonds' blossom shrinking algorithm for finding a maximum cardinality matching in a general graph.

1 The maximum matching problem

Let $G=(V, E)$ be an undirected graph. A set $M \subseteq E$ is a matching if no two edges in M touch each other or, in other words, if the degree of every vertex in the subgraph (V, M) is at most 1 . A vertex v is matched by M if there is an edge of M that touches v. Otherwise, v in unmatched. In the maximum matching problem we are asked to find a matching M of maximum size in a given input graph $G=(V, E)$.

2 Alternating and augmenting paths

We begin with a definition of alternating paths and cycles.

Definition 2.1 (Alternating paths and cycles) Let $G=(V, E)$ be a graph and let M be a matching in M. A path P is said to be an alternating path with respect to M if and only if among every two consecutive edges along the path, exactly one belongs to M. An alternating cycle C is defined similarly.

Some alternating paths and an alternating cycle are shown in Figure 1. We use the convention that edges that belong to a matching M are shown as thick edges, while edges not belonging to M are shown as thin edges.

[^0]

Figure 1: Alternating paths and cycles
Definition 2.2 (Symmetric difference) If A and B are sets, we let $A \oplus B=(A-B) \cup(B-A)$ be their symmetric difference.

The following lemma is now obvious.

Lemma 2.3 If M is a matching and P is an alternating path with respect to M, where each endpoint of P is either unmatched by M or matched by the edge of P touching it, then $M \oplus P$ is also a matching.

Note that if P starts and ends in vertices unmatched by M (e.g., the top path in Figure 1), then $|M \oplus P|=|M|+1$, i.e., $M \oplus P$ is a larger matching. If P starts with an edge that does not belong to M and ends with an edge of M (e.g., the middle path in Figure 1), then $|M \oplus P|=|M|$. Finally, if P starts and ends with edges of M (see the bottom path in Figure 1, then $|M \oplus P|=|M|-1$.

Lemma 2.4 Let $G=(V, E)$ be an undirected graph and let M_{1} and M_{2} be matchings in G. Then, the subgraph $\left(V, M_{1} \oplus M_{2}\right)$ is composed of isolated vertices, alternating paths and alternating cycles with respect to both M_{1} and M_{2}.

Definition 2.5 (Augmenting paths) An augmenting path P with respect to a matching M is an alternating path that starts and ends in unmatched vertices.

Note that an augmenting path in necessarily of odd length and that the number of edges on P that do not belong to M is by one larger than the number of edges that do belong to M.

Theorem 2.6 Let $G=(V, E)$ be an undirected graph and let M be a matching in G. Then, M is a maximum matching in G if and only if there are no augmenting paths with respect to M in G.

Proof: If P is an augmenting path with respect to M, then $M \oplus P$ is also a matching and $|M \oplus P|>|M|$, so M is not a maximum cardinality matching of G.
Conversely, suppose that M is not a maximum matching in G. Let M^{\prime} be a matching with $\left|M^{\prime}\right|>$ $|M|$. By Lemma 2.4 $M \oplus M^{\prime}$ is composed of alternating paths and cycles. All the alternating cycles
are of even length and contain the same number of edges from M and M^{\prime}. At least one of the alternating paths must contain more edges from M^{\prime} and this path is then an augmenting path with respect to M.

Theorem 2.6 suggests the following simple algorithm for finding a maximum matching. Start with some initial matching M, possibly the empty one. As long as there is an augmenting path P with respect to M, augment M using P and repeat. All that remains, therefore, is to devise a procedure for finding augmenting paths, if they exist.

3 Blossoms

Definition 3.1 (Flowers and blossoms) A flower with respect to a matching M is composed of a stem, which is an alternating path of even length from an unmatched vertex r, called the root, to vertex b, and an 'alternating' cycle of odd length that passes through b, called a blossom. The last edge on the stem belongs to M. The two edges of the blossom touching b are not in M. Other than that, every second edge on the blossom belongs to M. The vertex b is said to be the base of the blossom.

If $G=(V, E)$ is a graph, $M \subseteq E$ is a matching, and B is a blossom, we let G_{B} be the graph obtained from G by contracting G, and by $M_{B}=M-B$ the matching corresponding to M in G_{B}. We use B to denote the vertex of G_{B} obtained by contracting B.)

Lemma 3.2 Let $G=(V, E)$ be an undirected graph and let M be a matching in G. Let B be a blossom in G. If there is an augmenting path with respect to M_{B} in G_{B}, then there is also an augmenting path with respect to M in G.

Proof: Let P be an augmenting path in G_{B} with respect to M_{B}. If P does not pass through b, then P is also an augmenting path in G with respect to M, and we are done.
Suppose, therefore, that P does pass through B. We consider two cases:
Case 1: P starts (or ends) at B.
Let (B, c) be the first edge on P and let P_{c} be the part of P that starts at c. Clearly $(B, c) \notin M_{B}$. Also, there is a vertex $v \in B$ such that $(v, c) \in E$ and $(v, c) \notin M$. In the blossom B, we can find an even length alternating path Q from b to v. This path ends with an edge of M. The path $Q,(v, c), P_{c}$ is then an augmenting path in G with respect to M, as required.
Case 2: B is not the first or last vertex on P.
Let $(a, B),(B, c) \in P$ be the edges of P that touch B. Assume that $(a, B) \in M_{B}$ and $(B, c) \notin M_{B}$. Let P_{a} be the part of P up to a, and let P_{c} be the part of P from c. As $(a, B) \in M_{b}$, the edge (a, b) must be present in the original graph and $(a, b) \in M$, as the only edge of the matching that enters a blossom enters it at its base. As before, there is a vertex $v \in B$ such that $(v, c) \in E$ and
$(v, c) \notin M$. We can again find an even alternating path Q in the blossom from b to v. The path $P_{a},(a, b), Q,(v, c), P_{c}$ is then an augmenting path in G with respect to M, as required.

Lemma 3.3 Let $G=(V, E)$ be an undirected graph and let M be a matching in G. Let B be a blossom in G which is part of a flower with stem Q. If there is an augmenting path with respect to M in G, then there is also an augmenting path with respect to M_{B} in G_{B}.

Proof: Let b be the base of the blossom B. We consider two cases:
Case 1: b is unmatched by M.
Let P be an augmenting path in G with respect to M. If P does not pass through any vertex of B, then P is also an augmenting path with respect to M in G. Suppose therefore that P does pass through B. As P starts and ends at unmatched vertices, and only one vertex on B is unmatched, we may assume that P does not start on B. Let P^{\prime} be the prefix of P until the first encounter with a vertex on B. Let $P^{\prime}=P^{\prime \prime},(a, v)$, where $v \in B$. Then, $P^{\prime \prime},(a, B)$ is an augmenting path with respect to M_{B} in G_{B}, as B is unmatched by M_{B}.
Case 2: b is matched by M.
Let $M^{\prime}=M \oplus Q$, where Q is a stem of a flower with blossom B. As Q is an even alternating path starting at an unmatched vertex, we get that M^{\prime} is a matching and that $\left|M^{\prime}\right|=|M|$. Note that B is also a blossom with respect to M^{\prime} and that b is unmatched with respect to M^{\prime}. We also have $\left|M_{B}^{\prime}\right|=\left|M_{B}\right|$.

As M^{\prime} and M are matching of the same size and as there is an augmenting path with respect to M, there must also be an augmenting path with respect to M^{\prime}. As b in unmatched by M^{\prime}, we get by Case 1 that there must be augmenting path with respect to M_{B}^{\prime} in G_{B}, and as M_{B}^{\prime} and M_{B} are again of the same size, we get that there must also be an augmenting path with respect to M_{B} in G_{B}, as required.

For more information see Edmonds' original paper [Edm65]. For a very clear description of the whole algorithm, with C++ code, see Section 7.7 of LEDA book [MN99]. Various versions of the algorithm are also described in the books [Law76], [Tar83] and [AMO93].

References

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows - Theory, algorithms and applications. Prentice Hall, 1993.
[Edm65] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.
[Law76] E.L. Lawler. Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, 1976.
[MN99] K. Mehlhorn and S. Näher. LEDA - A platform for combinatorial and geometric computing. Cambridge University Press, 1999.
[Tar83] R.E. Tarjan. Data structures and network algorithms. SIAM, 1983.

[^0]: *School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: zwick@cs.tau.ac.il

