Problem Set no. 1

Given: March 6, 2007
Due: March 20, 2007

Exercise 1.1 Let $G=(V, E, w)$ be a connected weighted graph. (a) The graph G may have many minimum spanning trees. Show, however, that all these minimum spanning trees have the same (multi-)set of edge weights. (b) Show that if all the edge weights in G are distinct, then the minimum spanning tree is unique. (c) Show that a minimum spanning tree of G is also a spanning tree of G whose maximal edge weight is minimal.

Exercise 1.2 Describe a deterministic linear time algorithm for finding a spanning tree whose maximal weight is minimal. (Hint: Start by computing the median of the edge weights.)

Exercise 1.3 Show that Prim's algorithm, which runs in $O(m+n \log n)$ time, can be combined with Borůvka's algorithm to yield an $O(m \log \log n)$ algorithm for finding a minimum spanning tree.

Exercise 1.4 Describe a deterministic linear time algorithm algorithm for finding a minimum spanning tree in a planar graph. (Hint: a contraction of a planar graph is planar graph. A planar graph on n vertices with no parallel edges has at most $3 n-6$ edges.)

Exercise 1.5 In this exercise we obtain an alternative proof, due to Chan, of the following variant of the sampling lemma used to obtain the randomized linear MST algorithm:

Let $G=(V, E)$ be a weighted graph with distinct edge weights. Let $G^{\prime}=(V, R)$ be a random subgraph of G containing exactly r edges. Let F be a minimum spanning forest of G^{\prime}. Then, the expected number of edges of G that are F-light is at most $n m / r$.
(a) Show that $e \in E$ is F-light if and only if $e \in \operatorname{MSF}(R \cup\{e\})$, where $\operatorname{MSF}(R \cup\{e\})$ is the minimum spanning forest of the subgraph $(V, R \cup\{e\})$.
(b) Show that if e is a random edge of G and R is a random subset of exactly r edges of G then $\operatorname{Pr}[e \in \operatorname{MSF}(R \cup\{e\})]<n / r$. (Hint: note that e is a random element of $R \cup\{e\}$, a random set of size r or $r+1$. How many edges from this set are in $\operatorname{MSF}(R \cup\{e\})$?)
(c) Finish of the proof of the lemma.

