Problem Set no. 5
Given: January 23, 2020

Exercise 5.1 Consider the separating automaton of [CDFJLP (2018)]. (a) Let \(w \in \text{AllCycEven}_{n,d} \). Derive an upper bound on the number of steps after which the separating automaton accepts \(w \). (b) Let \(w \in \text{LimsupEven}_d \). Does the automaton necessarily accepts \(w \)? After how many steps?

Exercise 5.2 Let \(G = (V, E, p) \), where \(p : E \to [d] \), be an even graph, i.e., a graph in which the maximum priority on every cycle is even. Assume that \(d \) is even. Let \(L_i \) be the set of vertices from which there is a path containing \(i \) edges of priority \(d - 1 \) and no edges of priority \(d \), but there is no such path containing \(i + 1 \) edges of priority \(d - 1 \). Prove that: (1) \(V = \bigcup_{i=0}^{n-1} L_i \). (2) If \((u, v) \in E, p(u, v) = d - 1, u \in L_j, v \in L_i \), then \(j > i \). (3) If \((u, v) \in E, p(u, v) \leq d - 1, u \in L_j, v \in L_i \), then \(j \geq i \).

Exercise 5.3 Describe a polynomial time algorithm that given an even graph \(G = (V, E, p) \), where \(p : E \to [d] \) and \(d \) even, finds a progress measure \(f : V \to [0, n-1]^d/2 \cup \{\infty\} \). What is the complexity of the algorithm?

Exercise 5.4 Let \(G = (V = V_0 \sqcup V_1, E, p) \), where \(p : E \to [d] \) and \(d \) even, be a parity game. Let \(f^*(u) = \min \{ f(u) \mid f \) is a progress measure of \(G \} \), for every \(u \in V \). (a) Prove that \(f^* \) is a progress measure. (b) Prove that for every \(u \in V \), EVEN can win from \(u \) if and only if \(f^*(u) < \infty \).

Exercise 5.5 Prove that a maximal even \((n,d)\)-multigraph is tree-like. (See slide 57 of Lecture 6.)

Exercise 5.6 Let \(G = (V, E) \) be a tree-like \((n,d)\)-multigraph, where \(E \subseteq V \times [0,d] \times V \). Let \(E_p = \{ (u,v) \in V \times V \mid (u,p,v) \in E \} \). Show that each equivalence class of \(E_{p} \), where \(p > 0 \) is even, is composed of a disjoint union of equivalence classes of \(E_{p-2} \). (See slide 59 of Lecture 6.)

Exercise 5.7 Prove that a tree \(t \) is an ordered subtree of tree \(T \) if and only if there is a homomorphism from \(G(t) \) to \(G(T) \).