Problem Set no. 3

Given: December 24, 2019

Exercise 3.1 Let $G = (V_0, V_1, E, c)$ be an energy game. Recall that a function $f : V \to \mathbb{R}^+ \cup \{\infty\}$, where $\mathbb{R}^+ = [0, \infty)$, is *feasible* iff (1) If $u \in V_0$ then there exists $(u, v) \in E$ such that $f(u) \geq f(v) - c(u, v)$; (2) If $u \in V_1$ then for every $(u, v) \in E$ we have $f(u) \geq f(v) - c(u, v)$. Show that:

- (a) The infimum f^* , vertex-wise, of all feasible functions in feasible.
- (b) For every $u \in V$, $f^*(u)$ is the value of the game that starts at u.

Exercise 3.2 Let $G = (V_0, V_1, E, c)$ be an energy game. For every $u \in V$, let $f^*(u)$ be the value of the energy game that starts at u. Show that:

- (a) If there is a vertex $u \in V$ such that $f^*(u) < \infty$, then there is a vertex $v \in V$ such that $f^*(v) = 0$.
- (b) For every $u \in V$, if $f^*(u) < \infty$ then $f^*(u) < nW$, where $W = \max_{(u,v) \in E, c(u,v) < 0} c(u,v)$.

Exercise 3.3 (a) Give a polynomial time algorithm for finding the values of all vertices in an energy game in which all vertices are controlled by player 0 (the minimizer).

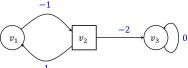
(b) Give a polynomial time algorithm for finding the values of all vertices in an energy game in which all vertices are controlled by player 1 (the maximizers).

Bonus: How efficient can you make these algorithms?

Exercise 3.4 Use the reduction from MPGs to EGs to obtain the following algorithms for the exact solution of a MPG $G = (V_0, V_1, E, c)$, where $c : E \to \{-W, \dots, 0, \dots, W\}$.

- (a) An $O(mn^2W \log(nW))$ algorithm for finding the exact value of a given vertex $u_0 \in V$. (Hint: The value of each vertex is a rational number of the form a/b, where a and b are integers and $-nW \le a \le nW$ and $1 \le b \le n$. Use binary search on the possible rational values.)
- (b) An $O(mn^2W\log(nW))$ algorithm for finding the exact values of all vertices. (Hint: Do the binary search simultaneously on all vertices. If for some rational value r we already know which vertices have value at least r and which vertices have values less than r, then when we continue the search for the values that are at least r we can remove from the game all vertices of value less than r, and vice versa.)
- (c) An $O(mn^2W \log(nW))$ algorithm for finding the exact values of all vertices and optimal strategies of the two players. (Hint: Extend the algorithm developed in item (b).)

Exercise 3.5 Consider a variant of energy games in which the battery has a finite capacity B. The charge of the battery is never allowed to exceed B. If the electric car is in vertex u with charge a, (u, v) is an edge and $a + c(u, v) \ge 0$, then (u, v) can be traversed. If it is traversed, the car reaches v with a charge of $\min\{a + c(u, v), B\}$. The value of a vertex u is the minimum initial charge, not exceeding B, for which player 0 (the minimizer) has a strategy that enables her to keep playing forever, no matter what player 1 (the maximizer) is doing. If there is no such finite initial charge then the value is ∞ . Consider the following game, where v_1, v_3 belong to player 0 and v_2 belongs to player 1.



- (a) What is the value of v_2 in the standard energy game, i.e., when $B = \infty$.
- (b) What is the value of v_2 when B=2?
- (c) Does player 1 have a positional strategy that ensures this value?