Data Structures

Hashing

Uri Zwick January 2014

Dictionaries

$\mathrm{D} \leftarrow$ Dictionary() - Create an empty dictionary
Insert(D, x) - Insert item x into D
Find (D, k) - Find an item with key k in D
Delete (D, k) - Delete item with key k from D
(Predecessors and successors, etc., not supported)

Can use balanced search trees
 $\mathrm{O}(\log \mathrm{n})$ time per operation

Can we do better?
YES !!!

Dictionaries with "small keys"

Suppose all keys are in $[m]=\{0,1, \ldots, m-1\}$, where $m=O(n)$
Can implement a dictionary using an array D of length m.

$\operatorname{Insert}(D, x): D[x . k e y] \leftarrow x$
Find (D, k) : return $D[k]$
Delete $(D, k): D[k] \leftarrow$ null

Special case: Sets
D is a bit vector

O(1) time per operation (after initialization)
(Assume different items have different keys.)
What if $m \gg n$? Use a hash function

Hashing

Huge

universe U

Hashing with chaining [Luhn (1953)] [Dumey (1956)]

Each cell points to a linked list of items

Hashing with chaining with a random hash function

Balls in Bins

Throw n balls randomly into m bins

Balls in Bins

Throw n balls randomly into m bins

All throws are uniform and independent

Balls in Bins

Throw n balls randomly into m bins

Expected number of balls in each bin is n / m

When $n=\Theta(m)$, with probability of at least $1-1 / n$, all bins contain at most $\mathrm{O}(\log n /(\log \log n))$ balls

What makes a hash function good?

Behaves like a "random function" Has a succinct representation Easy to compute

A single hash function cannot satisfy the first condition

Families of hash functions

We cannot choose a "truly random" hash function Using a fixed hash function is usually not a good idea

Compromise:

Choose a random hash function h from a carefully chosen family H of hash functions
Each function h from H should have a succinct representation and should be easy to compute

Goal:

For every sequence of operations, the running time of the data structure, when a random hash function h from H is chosen, is expected to be small

Modular hash functions [Carter-Wegman (1979)]

$$
\begin{gathered}
h(x)=x \bmod m \\
x \bmod 2^{k}=x \operatorname{and}\left(2^{k}-1\right) \\
h_{a, b}(x)=((a x+b) \bmod p) \bmod m \\
h_{a, b}: U=[p] \rightarrow[m] \\
p-\text { prime number }
\end{gathered}
$$

Form a "Universal Family" (see below) Require (slow) divisions

Multiplicative hash functions

[Dietzfelbinger-Hagerup-Katajainen-Penttonen (1997)]

$$
h_{a}: U=\left[2^{w}\right] \rightarrow\left[2^{k}\right] \quad h_{a}(x)=\left\lfloor\frac{a x \bmod 2^{w}}{2^{w-k}}\right\rfloor
$$

Typically, w is the number of bits in a machine word

$$
h_{a}(x)=(\mathrm{a} * \mathrm{x}) \gg(\mathrm{w}-\mathrm{k})
$$

Form an "almost-universal" family (see below)
Extremely fast in practice!

Tabulation based hash functions [Patrascu-Thorup (2012)]

A variant can also be used to hash strings

h_{i} can be stored in a small table

Very efficient in practice
Very good theoretical properties

Universal families of hash functions

 [Carter-Wegman (1979)]A family H of hash functions from U to [m] is said to be universal if and only if for every $k_{1} \neq k_{2} \in U$ we have

$$
\operatorname{Pr}_{h \in H}\left[h\left(k_{1}\right)=h\left(k_{2}\right)\right] \leq \frac{1}{m}
$$

A family H of hash functions from U to [m] is said to be almost universal if and only if

$$
\begin{aligned}
& \text { for every } k_{1} \neq k_{2} \in U \text { we have } \\
& \operatorname{Pr}_{h \in H}\left[h\left(k_{1}\right)=h\left(k_{2}\right)\right] \leq \frac{2}{m}
\end{aligned}
$$

k-independent families of hash functions

A family H of hash functions from U to $[m]$ is said to be k-independent if and only if for every distinct $x_{1}, x_{2}, \ldots, x_{k} \in U$ and $y_{1}, y_{2}, \ldots, y_{k} \in[m]$

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}, \ldots, h\left(x_{k}\right)=y_{k}\right]=\frac{1}{m^{k}}
$$

A family H of hash functions from U to $[m]$ is said to be almost k-independent if and only if for every distinct $x_{1}, x_{2}, \ldots, x_{k} \in U$ and $y_{1}, y_{2}, \ldots, y_{k} \in[m]$

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}, \ldots, h\left(x_{k}\right)=y_{k}\right] \leq \frac{2}{m^{k}}
$$

A simple universal family [Carter-Wegman (1979)]

$$
\begin{gathered}
U=[p]=\{0,1, \ldots, p-1\}, \text { where } p \text { is prime } \\
H_{p, m}=\left\{h_{a, b} \mid 1 \leq a<p, 0 \leq b<p\right\} \\
h_{a, b}(x)=((a x+b) \bmod p) \bmod m \\
h_{a, b}:[p] \rightarrow[m]
\end{gathered}
$$

Theorem: $H_{p, m}$ is a universal family
To represent a function from the family we only need two numbers, a and b.

The size m of the hash table can be arbitrary.

A simple universal family [Carter-Wegman (1979)]

$$
\begin{gathered}
U=[p]=\{0,1, \ldots, p-1\}, \text { where } p \text { is prime } \\
H_{p, m}=\left\{h_{a, b} \mid 1 \leq a<p, 0 \leq b<p\right\} \\
h_{a, b}(x)=((a x+b) \bmod p) \bmod m \\
h_{a, b}:[p] \rightarrow[m]
\end{gathered}
$$

Theorem: $H_{p, m}$ is a universal family
Let $x_{1} \neq x_{2} \in[p]$. For every $y_{1} \neq y_{2} \in[p]$ there are unique $a, b \in[p], a \neq 0$, such that $y_{1} \equiv_{p} a x_{1}+b$ and $y_{2} \equiv_{p} a x_{2}+b$.
Thus, $\mathbb{P}\left[y_{1} \equiv_{m} y_{2}\right] \leq \frac{\left\lceil\frac{p}{m}\right\rceil-1}{p-1} \leq \frac{\frac{p+m-1}{m}-1}{p-1}=\frac{1}{m}$

Probabilistic analysis of chaining

n - number of elements in dictionary D

$$
m \text { - size of hash table }
$$

$$
\alpha=n / m-\operatorname{load} \text { factor }
$$

Assume that h is randomly chosen from a universal family H

$$
\begin{array}{c|c}
\text { If } k \notin D, \text { then } & \text { If } k \in D, \text { then } \\
E[|\operatorname{List}(h(k))|] \leq \frac{n}{m}=\alpha & E[|\operatorname{List}(h(k))|] \leq 1+\frac{n-1}{m} \leq 1+\alpha
\end{array}
$$

	Expected	Worst-case
Successful Search Delete	$1+\frac{\alpha}{2}$	n
Unsuccessful Search (Verified) Insert	$1+\alpha$	n

Chaining: pros and cons

Pros:

Simple to implement (and analyze)
Constant time per operation $(\mathrm{O}(1+\alpha))$
Fairly insensitive to table size
Simple hash functions suffice

Cons:

Space wasted on pointers
Dynamic allocations required
Many cache misses

Hashing with open addressing

Hashing without pointers

$$
\text { Assume that } h: U \times[m] \rightarrow[m]
$$

Insert key k in the first free position among $\underbrace{h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)}$

Assumed to be a permutation

No room found \rightarrow Table is full
To search, follow the same order

Hashing with open addressing

How do we delete elements?

Caution: When we delete elements, do not set the corresponding cells to null!

Problematic solution...

Probabilistic analysis of open addressing

n - number of elements in dictionary D m - size of hash table $\alpha=n / m-\operatorname{load}$ factor (Note: $\alpha \leq 1$)

Uniform probing: Assume that for every k, $h(k, 0), \ldots, h(k, m-1)$ is random permutation

Expected time for unsuccessful search

$$
\frac{1}{1-\alpha}
$$

Expected time for successful search

$$
\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
$$

Probabilistic analysis of open addressing

Claim: Expected no. of probes for an unsuccessful search is at most:

If we probe a random cell in the table, the probability that it is full is α.

The probability that the first i cells probed are all occupied is at most α^{i}.

$$
1+\alpha+\alpha^{2}+\ldots=\frac{1}{1-\alpha}
$$

Open addressing variants

How do we define $h(k, i)$?

$$
\begin{gathered}
\text { Linear probing: } \\
h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m
\end{gathered}
$$

Quadratic probing:

$$
h(k, i)=\left(h^{\prime}(k)+c_{1} i+c_{2} i^{2}\right) \bmod m
$$

Double hashing:

$$
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod m
$$

Linear probing

"The most important hashing technique"

More probes than uniform probing, as probe sequences "merge"

But, much less cache misses
Extremely efficient in practice
More complicated analysis
(Requires 5-independence or tabulation hashing)

Linear probing - Deletions

Can the key in cell j be moved to cell i ?

Linear probing - Deletions

When an item is deleted, the hash table is in exactly the state it would have been if the item were not inserted!

Expected number of probes Assuming random hash functions

[Knuth (1962)]
When, say, $\alpha \leq 0.6$, all small constants

Expected number of probes

Perfect hashing

Suppose that D is static.

We want to implement Find is $\mathrm{O}(1)$ worst case time.

Perfect hashing: No collisions

Can we achieve it?

Expected no. of collisions

Suppose that $|D|=n$ and that h is randomly chosen from a universal family

$$
\begin{gathered}
\text { Collisions: } \\
\text { Col }=\left\{\left\{k_{1}, k_{2}\right\} \subseteq D \mid k_{1} \neq k_{2}, h\left(k_{1}\right)=h\left(k_{2}\right)\right\} \\
E[|C o l|]=\sum_{\substack{\left\{k_{1}, k_{2}\right\} \subseteq D \\
k_{1} \neq k_{2}}} \operatorname{Pr}\left[h\left(k_{1}\right)=h\left(k_{2}\right)\right] \leq \frac{\binom{n}{2}}{m}
\end{gathered}
$$

Corollary 1: If $m=n$, then $E[|C o l|]<\frac{n}{2}$
Corollary 2: If $m=n^{2}$, then $E[|C o l|]<\frac{1}{2}$

Expected no. of collisions

Markov's inequality: $\operatorname{Pr}[X \leq 2 E[X]] \geq \frac{1}{2}$
Corollary 1: If $m=n$, then $E[|C o l|]<\frac{n}{2}$
Corollary 1': If $m=n$, then $\operatorname{Pr}[|\operatorname{Col}|<n] \geq \frac{1}{2}$
Corollary 2: If $m=n^{2}$, then $E[|C o l|]<\frac{1}{2}$
Corollary 2': If $m=n^{2}$, then $\operatorname{Pr}[|C o l|<1] \geq \frac{1}{2}$
If we are willing to use $m=n^{2}$, then any universal family contains a

No collisions! perfect hash function.

Two level hashing

[Fredman, Komlós, Szemerédi (1984)]

Two level hashing

[Fredman, Komlós, Szemerédi (1984)]

Choose $m=n$ and h such that $|C o l|<n$
Store the n_{i} elements hashed to i in a small hash table of size n_{i}^{2} using a perfect hash function h_{i}

Two level hashing

[Fredman, Komlós, Szemerédi (1984)]

Assume that each h_{i} can be represented using 2 words

$$
\begin{aligned}
& 3+n+3 n+\sum_{i} n_{i}^{2} \\
= & 4 n+3+\sum_{i}\left(2\binom{n_{i}}{2}+n_{i}\right) \\
= & 5 n+3+2|C o l|
\end{aligned}
$$

Total size:

A randomized algorithm for constructing

 a perfect two level hash table:Choose a random h from $H(p, n)$ and compute the number of collisions. If there are more than n collisions, repeat.

For each cell i, if $n_{i}>1$, choose a random hash function h_{i} from $H\left(\mathrm{p}, n_{i}^{2}\right)$. If there are any collisions, repeat.

Expected construction time $-\mathrm{O}(n)$
Worst case search time - O(1)

Cuckoo Hashing [Pagh-Rodler (2004)]

Cuckoo Hashing [Pagh-Rodler (2004)]

```
Function Cuckoo-Search \((T, k)\)
    \(i_{1} \leftarrow h_{1}(k)\)
    if \(T_{1}\left[i_{1}\right] . k e y=k\) then return \(T_{1}\left[i_{1}\right]\)
    \(i_{2} \leftarrow h_{2}(k)\)
    if \(T_{2}\left[i_{2}\right] . k e y=k\) then return \(T_{2}\left[i_{2}\right]\)
    return null
```

O(1) worst case search time! What is the (expected) insert time?

Cuckoo Hashing [Pagh-Rodler (2004)]

Difficult insertion

How likely are difficult insertion?

Cuckoo Hashing [Pagh-Rodler (2004)]

Difficult insertion

How likely are difficult insertion?

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A more difficult insertion

Cuckoo Hashing [Pagh-Rodler (2004)]

A failed insertion

If Insertion takes more than MAX steps, rehash

Cuckoo Hashing [Pagh-Rodler (2004)]

```
Function Cuckoo-Insert(T, x)
    for}i\leftarrow1\mathrm{ to MAX do
        x}\leftrightarrow\mp@subsup{T}{1}{}[\mp@subsup{h}{1}{}(x.key)
        if x= null then return
        x}\leftrightarrow\mp@subsup{T}{2}{[}[\mp@subsup{h}{2}{(x.key)]
        if x= null then return
    Rehash(T)
    Cucko-Insert(T, 位
```

With hash functions chosen at random from an appropriate family of hash functions, the amortized expected insert time is $\mathrm{O}(1)$

