Data Structures

Hashing

Uri Zwick January 2014

Dictionaries

D ← Dictionary() – Create an empty dictionary Insert(D,x) – Insert item x into D Find(D,k) – Find an item with key k in D Delete(D,k) – Delete item with key k from D
(Predecessors and successors, etc., not supported)

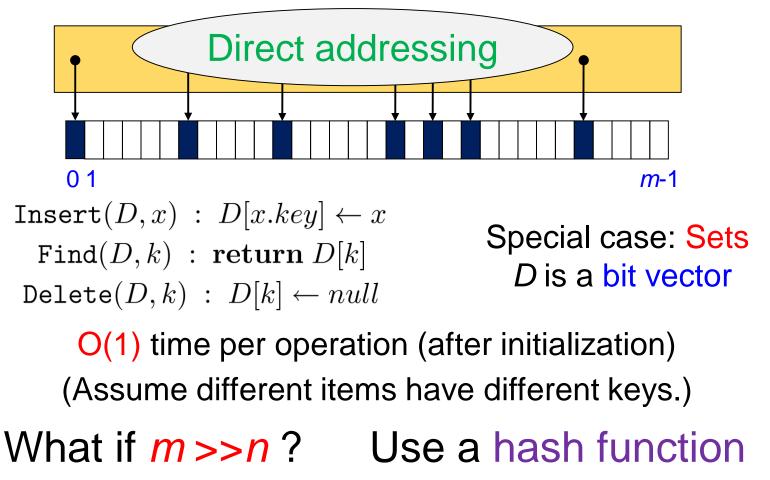
> Can use balanced search trees O(log n) time per operation

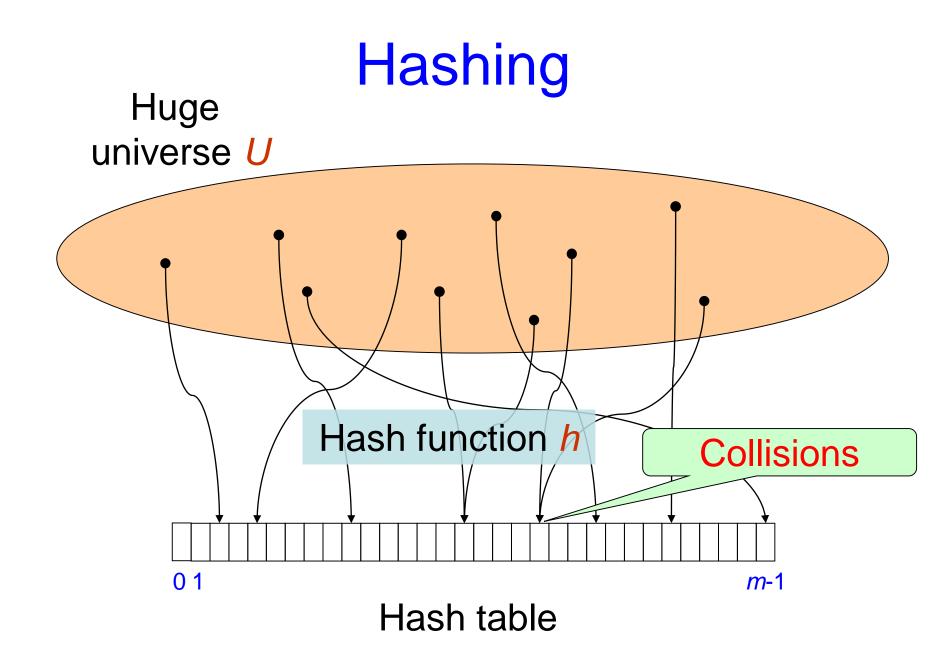
Can we do better? YES !!!

Dictionaries with "small keys"

Suppose all keys are in $[m] = \{0, 1, \dots, m-1\}$, where m = O(n)

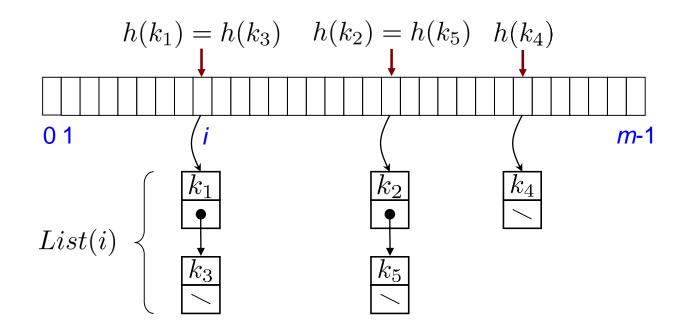
Can implement a dictionary using an array *D* of length *m*.





Hashing with chaining [Luhn (1953)] [Dumey (1956)]

Each cell points to a linked list of items

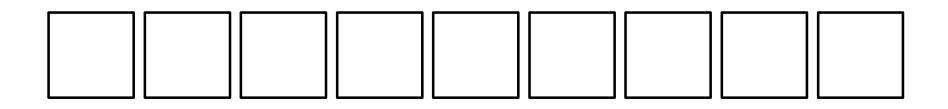


Hashing with chaining with a random hash function

Balls in Bins Throw *n* balls randomly into *m* bins

Balls in Bins

Throw *n* balls randomly into *m* bins



All throws are uniform and independent

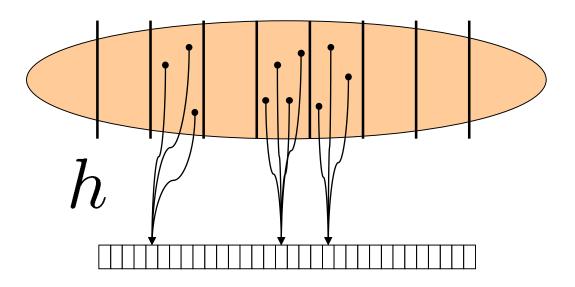
Balls in Bins

Throw *n* balls randomly into *m* bins

Expected number of balls in each bin is *n/m*

When $n = \Theta(m)$, with probability of at least 1 - 1/n, all bins contain at most $O(\log n/(\log \log n))$ balls

What makes a hash function good?



Behaves like a "random function" Has a succinct representation Easy to compute

A single hash function cannot satisfy the first condition

Families of hash functions

We cannot choose a "truly random" hash function Using a fixed hash function is usually not a good idea

Compromise:

Choose a random hash function *h* from a carefully chosen family *H* of hash functions Each function *h* from *H* should have a succinct representation and should be easy to compute

Goal:

For every sequence of operations, the running time of the data structure, when a random hash function hfrom H is chosen, is expected to be small

Modular hash functions [Carter-Wegman (1979)]

$$h(x) = x \mod m$$
$$x \mod 2^k = x \pmod{(2^k - 1)}$$

$$h_{a,b}(x) = ((ax + b) \mod p) \mod m$$
$$h_{a,b} : U = [p] \to [m]$$
$$p - \text{prime number}$$

Form a "Universal Family" (see below) Require (slow) divisions

Multiplicative hash functions [Dietzfelbinger-Hagerup-Katajainen-Penttonen (1997)]

1 0 111

Т

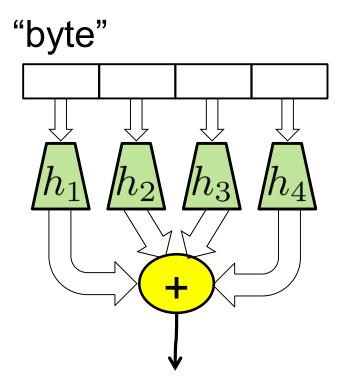
$$h_{a}: U = [2^{w}] \rightarrow [2^{k}] \qquad h_{a}(x) = \left\lfloor \frac{ax \mod 2^{w}}{2^{w-k}} \right\rfloor$$
Typically, w is the number of bits in a machine word $x \boxed{x}$

$$x \boxed{a}$$

$$h_{a}(x) = (\mathbf{a} * \mathbf{x}) >> (\mathbf{w} - \mathbf{k})$$

Form an "almost-universal" family (see below) Extremely fast in practice!

Tabulation based hash functions [Patrascu-Thorup (2012)]



A variant can also be used to hash strings

 h_i can be stored in a small table

Very efficient in practice Very good theoretical properties

Universal families of hash functions [Carter-Wegman (1979)]

A family H of hash functions from U to [m]is said to be universal if and only if for every $k_1 \neq k_2 \in U$ we have $\Pr_{h \in H}[h(k_1) = h(k_2)] \leq \frac{1}{m}$

A family H of hash functions from U to [m] is said to be almost universal if and only if

for every
$$k_1 \neq k_2 \in U$$
 we have
 $\Pr_{h \in H}[h(k_1) = h(k_2)] \leq \frac{2}{m}$

k-independent families of hash functions

A family *H* of hash functions from *U* to [*m*] is said to be *k*-independent if and only if

for every distinct $x_1, x_2, ..., x_k \in U$ and $y_1, y_2, ..., y_k \in [m]$ $\Pr_{h \in H}[h(x_1) = y_1, h(x_2) = y_2, ..., h(x_k) = y_k] = \frac{1}{m^k}$

A family H of hash functions from U to [m] is said to be almost k-independent if and only if

for every distinct $x_1, x_2, ..., x_k \in U$ and $y_1, y_2, ..., y_k \in [m]$ $\Pr_{h \in H}[h(x_1) = y_1, h(x_2) = y_2, ..., h(x_k) = y_k] \leq \frac{2}{m^k}$

A simple universal family [Carter-Wegman (1979)]

- $U = [p] = \{0, 1, \dots, p-1\}, \text{ where } p \text{ is prime} \\ H_{p,m} = \{h_{a,b} \mid 1 \le a < p, 0 \le b < p\} \\ h_{a,b}(x) = ((ax+b) \mod p) \mod m \\ h_{a,b} : [p] \to [m]$
 - **Theorem:** $H_{p,m}$ is a universal family

To represent a function from the family we only need two numbers, *a* and *b*.

The size *m* of the hash table can be arbitrary.

A simple universal family [Carter-Wegman (1979)]

$$U = [p] = \{0, 1, \dots, p-1\}, \text{ where } p \text{ is prime} \\ H_{p,m} = \{h_{a,b} \mid 1 \le a < p, 0 \le b < p\} \\ h_{a,b}(x) = ((ax+b) \mod p) \mod m \\ h_{a,b} : [p] \to [m]$$

Theorem: $H_{p,m}$ is a universal family

Let $x_1 \neq x_2 \in [p]$. For every $y_1 \neq y_2 \in [p]$ there are unique $a, b \in [p], a \neq 0$, such that $y_1 \equiv_p ax_1 + b$ and $y_2 \equiv_p ax_2 + b$.

Thus,
$$\mathbb{P}[y_1 \equiv_m y_2] \leq \frac{\left\lceil \frac{p}{m} \right\rceil - 1}{p - 1} \leq \frac{\frac{p + m - 1}{m} - 1}{p - 1} = \frac{1}{m}$$

Probabilistic analysis of chaining

n – number of elements in dictionary Dm – size of hash table $\alpha = n/m$ – load factor

Assume that h is randomly chosen from a universal family H

If $k \notin D$, thenIf $k \in D$, then $E[|List(h(k))|] \leq \frac{n}{m} = \alpha$ $E[|List(h(k))|] \leq 1 + \frac{n-1}{m} \leq 1 + \alpha$

	Expected	Worst-case
Successful Search Delete	$1 + \frac{\alpha}{2}$	n
Unsuccessful Search (Verified) Insert	$1 + \alpha$	n

Chaining: pros and cons

Pros:

Simple to implement (and analyze) Constant time per operation $(O(1+\alpha))$ Fairly insensitive to table size Simple hash functions suffice

Cons:

Space wasted on pointers Dynamic allocations required Many cache misses

Hashing with open addressing Hashing without pointers Assume that $h: U \times [m] \to [m]$ Insert key k in the first free position among h(k,0), h(k,1), h(k,2), ..., h(k,m-1)Assumed to be a permutation h(k,0) = h(k,2)h(k,1)

No room found \rightarrow Table is full To search, follow the same order

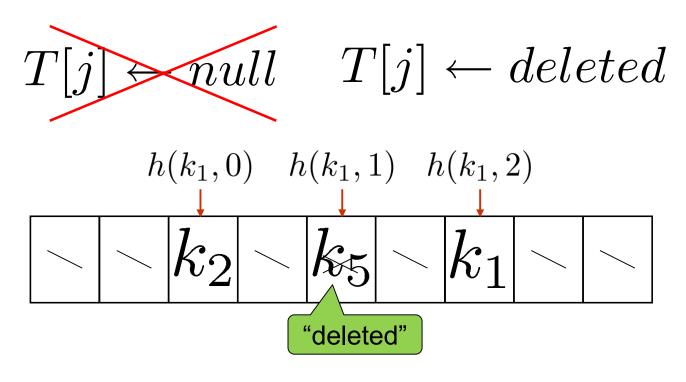
Hashing with open addressing

Function Hash-Insert(T, k) for $i \leftarrow 0$ to m - 1 do $j \leftarrow h(k, i)$ if T[j] = null then $\begin{bmatrix} T[j] \leftarrow k \\ return j \end{bmatrix}$ throw 'hash table full' Function Hash-Search(T, k)

for $i \leftarrow 0$ to m - 1 do $j \leftarrow h(k, i)$ if T[j] = null then $\ \ \ L$ return nullelse if T[j] = k then $\ \ \ L$ return jreturn null

How do we delete elements?

Caution: When we delete elements, do **not** set the corresponding cells to *null*!



Problematic solution...

Probabilistic analysis of open addressing

n – number of elements in dictionary *D m* – size of hash table $\alpha = n/m$ – load factor (Note: $\alpha \le 1$)

Uniform probing: Assume that for every k, h(k,0), ..., h(k,m-1) is random permutation

Expected time for unsuccessful search

$$\frac{1}{1-\alpha}$$

Expected time for successful search

$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

Probabilistic analysis of open addressing

 $\overline{1-\alpha}$

Claim: Expected no. of probes for an unsuccessful search is at most:

If we probe a random cell in the table, the probability that it is full is α .

The probability that the first *i* cells probed are all occupied is at most α^i .

 $1 + \alpha + \alpha^2 + \dots = \frac{1}{1 - \alpha}$

Open addressing variants

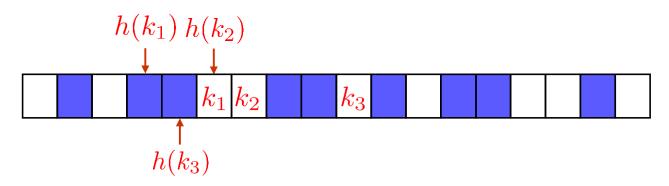
How do we define h(k,i)?

Linear probing: $h(k,i) = (h'(k) + i) \mod m$

Quadratic probing: $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$

Double hashing: $h(k,i) = (h_1(k) + ih_2(k)) \mod m$

Linear probing "The most important hashing technique"



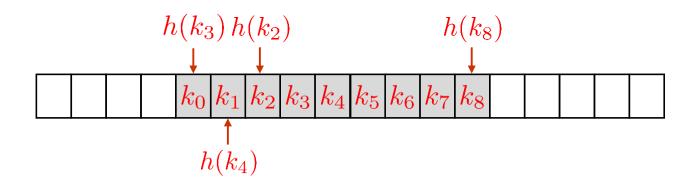
More probes than uniform probing, as probe sequences "merge"

But, much less cache misses

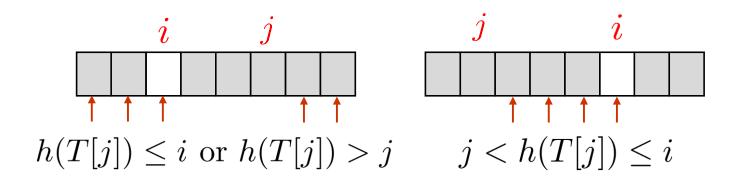
Extremely efficient in practice

More complicated analysis (Requires 5-independence or tabulation hashing)

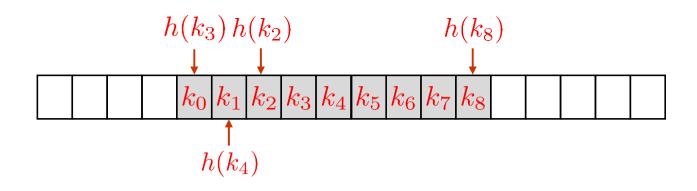
Linear probing – Deletions



Can the key in cell j be moved to cell i? $h(T[j]) \in "[j+1, i]"$

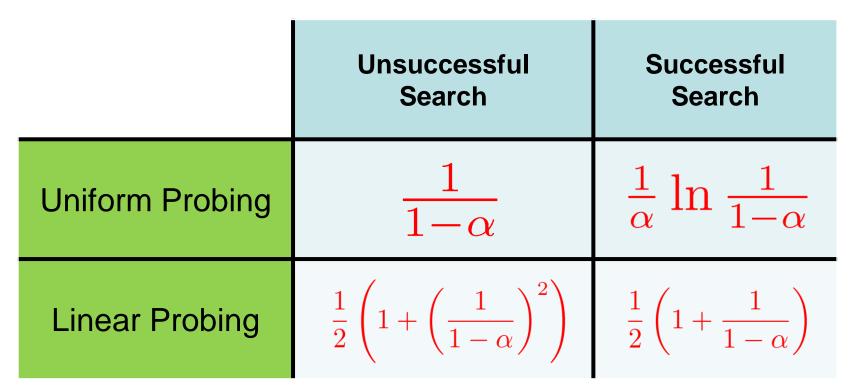


Linear probing – Deletions



When an item is deleted, the hash table is in exactly the state it would have been if the item were not inserted!

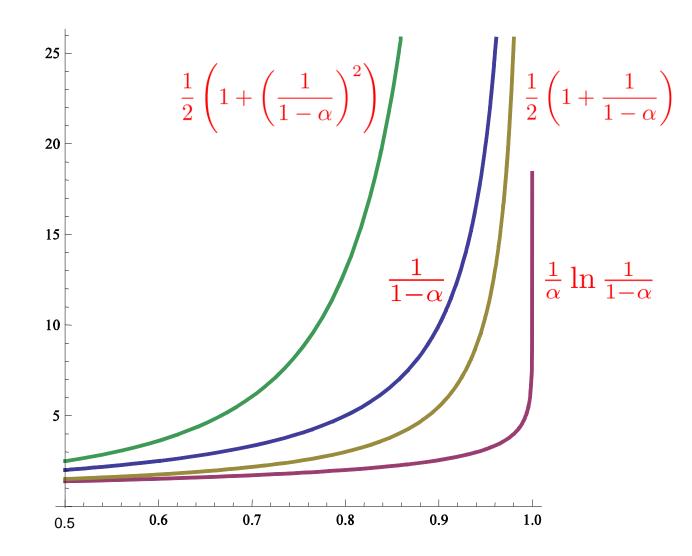
Expected number of probes Assuming random hash functions



[Knuth (1962)]

When, say, $\alpha \leq 0.6$, all small constants

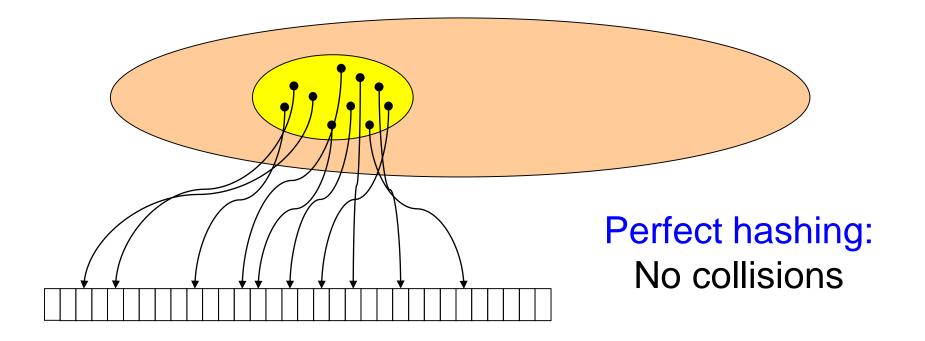
Expected number of probes



Perfect hashing

Suppose that *D* is static.

We want to implement Find is O(1) worst case time.



Can we achieve it?

Expected no. of collisions

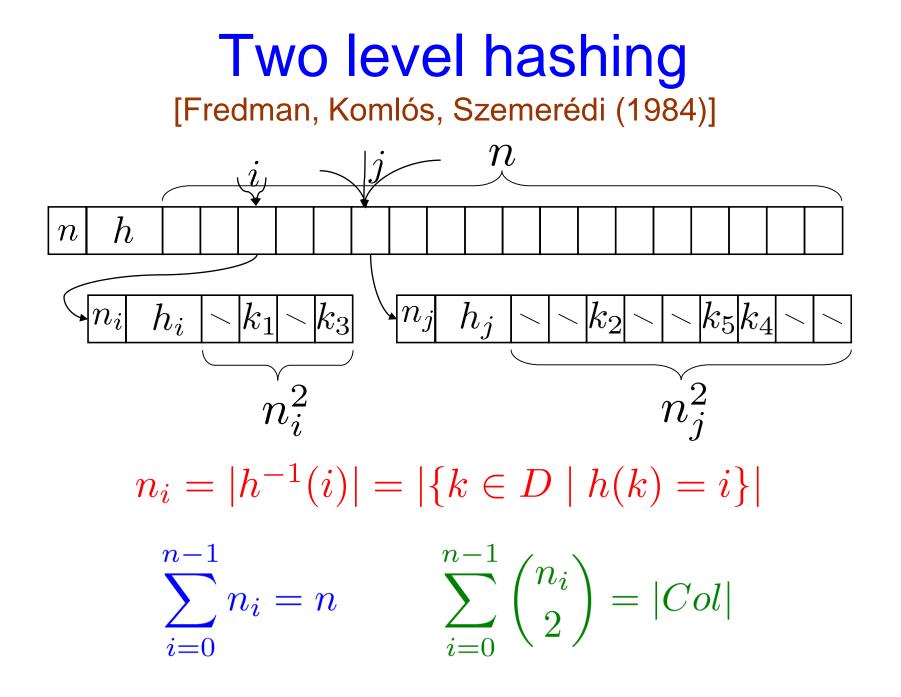
Suppose that |D| = n and that h is randomly chosen from a universal family Collisions: $Col = \{\{k_1, k_2\} \subseteq D \mid k_1 \neq k_2, h(k_1) = h(k_2)\}$ $E[|Col|] = \sum \Pr[h(k_1) = h(k_2)] \leq \frac{\binom{n}{2}}{m}$ $\{k_1, k_2\} \subset D$ $k_1 \neq k_2$

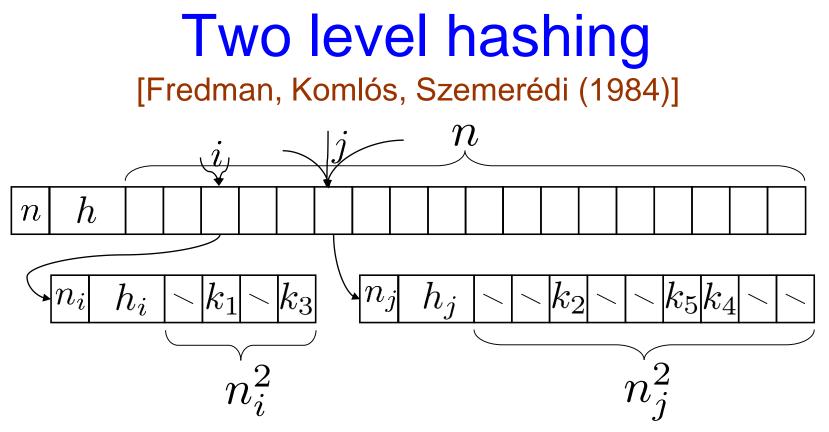
Corollary 1: If m = n, then $E[|Col|] < \frac{n}{2}$ Corollary 2: If $m = n^2$, then $E[|Col|] < \frac{1}{2}$ **Expected no. of collisions** Markov's inequality: $\Pr[X \le 2E[X]] \ge \frac{1}{2}$ Corollary 1: If m = n, then $E[|Col|] < \frac{n}{2}$ Corollary 1': If m = n, then $\Pr[|Col| < n] \ge \frac{1}{2}$

Corollary 2: If $m = n^2$, then $E[|Col|] < \frac{1}{2}$ Corollary 2: If $m = n^2$, then $\Pr[|Col| < 1] \geq \frac{1}{2}$

If we are willing to use $m=n^2$, then any universal family contains a perfect hash function.

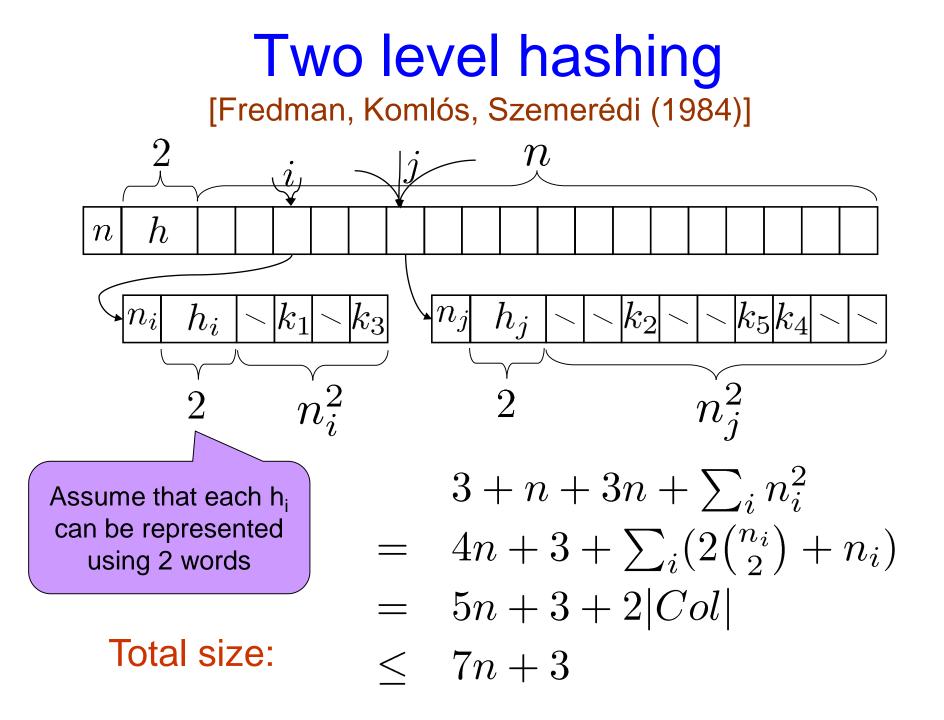
No collisions!





Choose m = n and h such that |Col| < n

Store the n_i elements hashed to iin a small hash table of size n_i^2 using a *perfect* hash function h_i

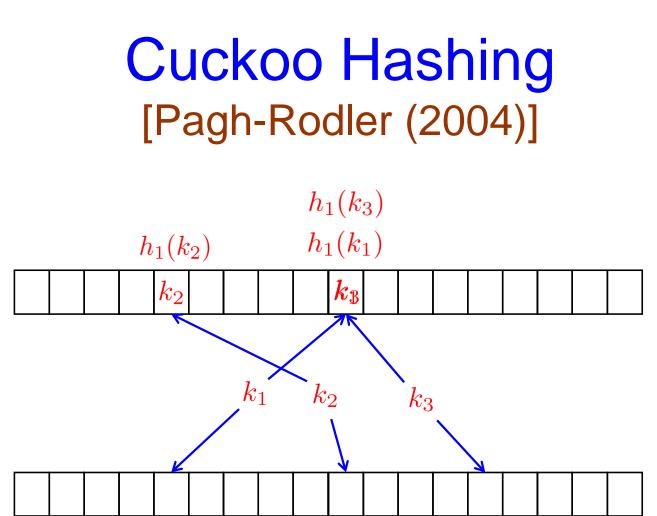


A randomized algorithm for constructing a perfect two level hash table:

Choose a random *h* from *H*(p,*n*) and compute the number of collisions. If there are more than *n* collisions, repeat.

For each cell *i*, if $n_i > 1$, choose a random hash function h_i from $H(p, n_i^2)$. If there are any collisions, repeat.

Expected construction time -O(n)Worst case search time -O(1)



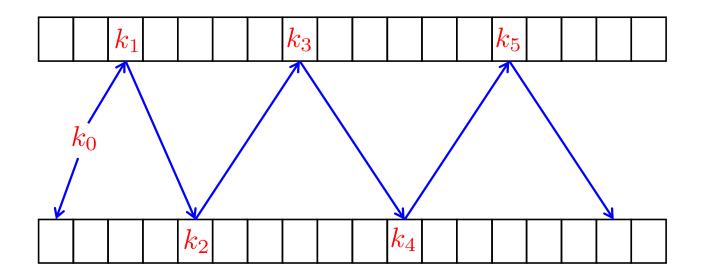
 $h_2(k_1) \qquad h_2(k_2) \qquad h_2(k_3)$

Function Cuckoo-Search(T, k)

 $i_1 \leftarrow h_1(k)$ if $T_1[i_1].key = k$ then return $T_1[i_1]$ $i_2 \leftarrow h_2(k)$ if $T_2[i_2].key = k$ then return $T_2[i_2]$ return null

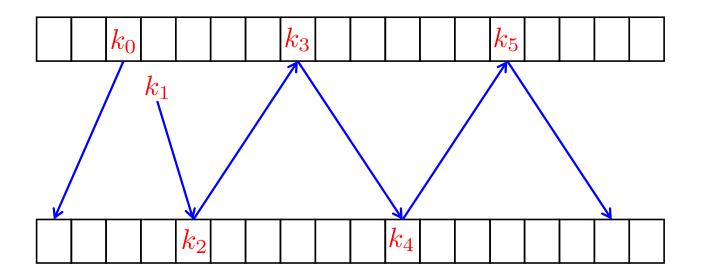
O(1) worst case search time! What is the (expected) insert time?

Difficult insertion

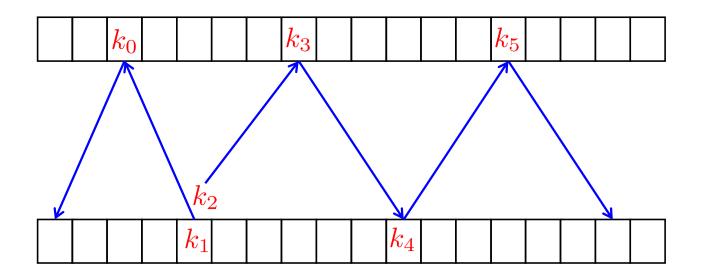


How likely are difficult insertion?

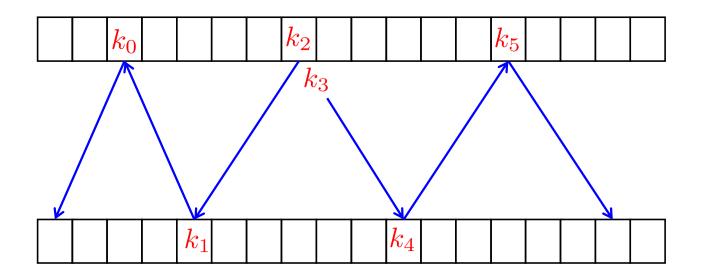
Difficult insertion



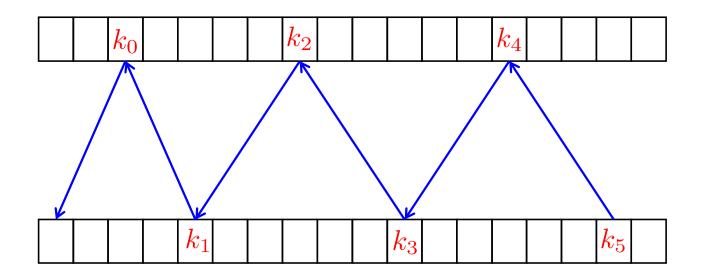
Difficult insertion



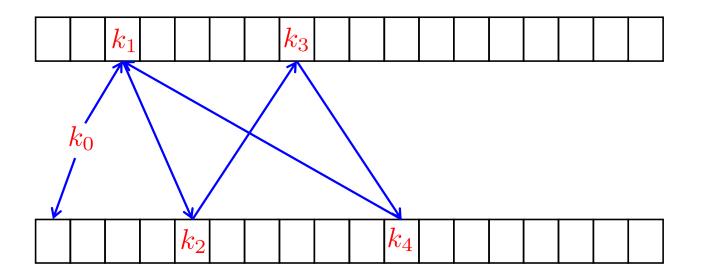
Difficult insertion

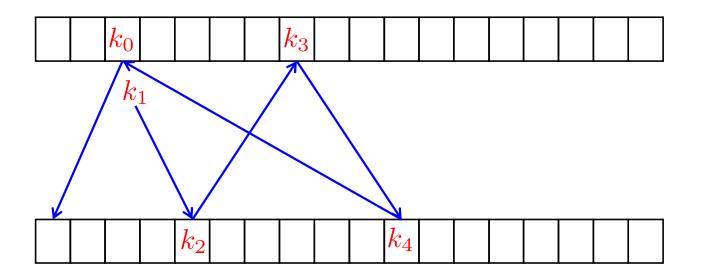


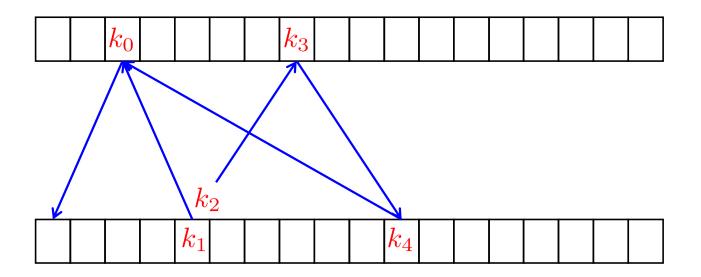
Difficult insertion

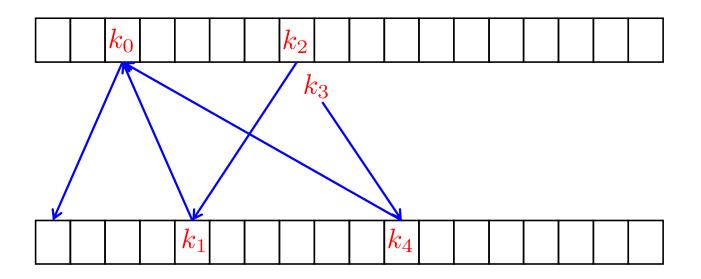


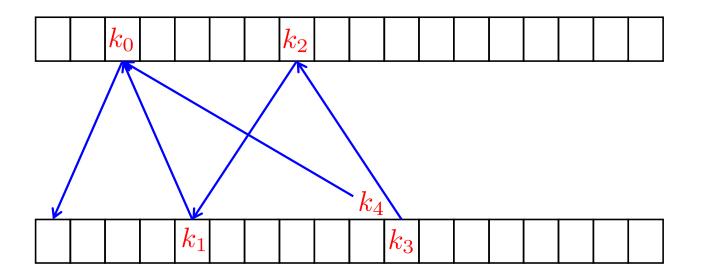
How likely are difficult insertion?

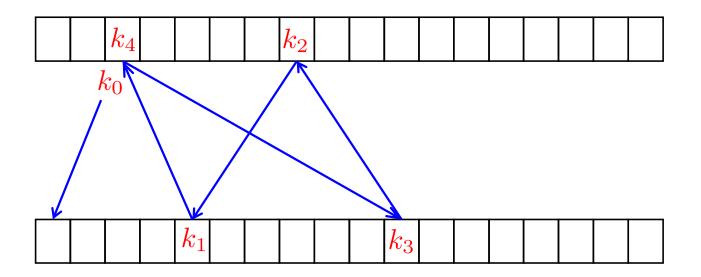


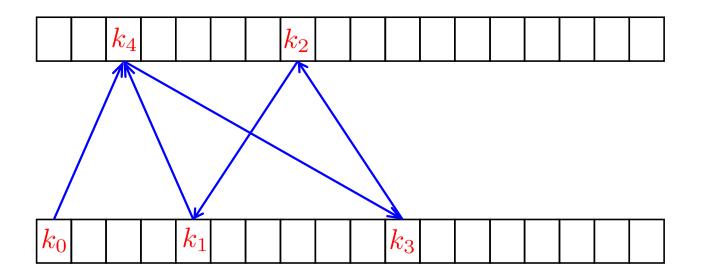




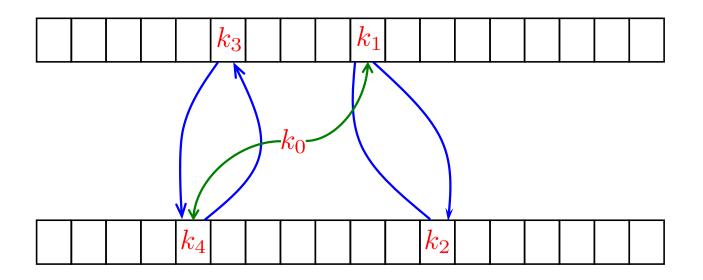








A failed insertion



If Insertion takes more than MAX steps, rehash

Function Cuckoo-Insert(T, x)

```
for i \leftarrow 1 to MAX do

\begin{array}{c} x \leftrightarrow T_1[h_1(x.key)] \\ \text{if } x = null \text{ then return} \\ x \leftrightarrow T_2[h_2(x.key)] \\ \text{if } x = null \text{ then return} \end{array}
Rehash(T)
Cucko-Insert(T, x)
```

With hash functions chosen at random from an appropriate family of hash functions, the amortized expected insert time is O(1)