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Dictionaries

D  Dictionary() – Create an empty dictionary

Insert(D,x) – Insert item x into D

Find(D,k) – Find an item with key k in D

Delete(D,k) – Delete item with key k from D

Can use balanced search trees

O(log n) time per operation

(Predecessors and successors, etc., not supported)

Can we do better? YES !!!
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Dictionaries with “small keys”
Suppose all keys are in [m] = {0,1,…,m−1}, where m = O(n)

Can implement a dictionary using an array D of length m.

(Assume different items have different keys.)

O(1) time per operation (after initialization)

What if m >>n ? Use a hash function

0 1 m-1

Special case: Sets

D is a bit vector

Direct addressing



Hashing
Huge

universe U

Hash table
0 1 m-1

Hash function h Collisions



Hashing with chaining
[Luhn (1953)] [Dumey (1956)]

Each cell points to a linked list of items

0 1 m-1i



Hashing with chaining

with a random hash function

Balls in Bins

Throw n balls randomly into m bins



Balls in Bins

Throw n balls randomly into m bins

All throws are uniform and independent



Balls in Bins

Throw n balls randomly into m bins

Expected number of balls 

in each bin is n/m

When n=(m), with probability of

at least 11/n, all bins contain 

at most  O(log n/(log log n)) balls



What makes a hash function good?

Behaves like a “random function”
Has a succinct representation

Easy to compute

A single hash function cannot satisfy the first condition



Families of hash functions

We cannot choose a “truly random” hash function

Compromise:

Choose a random hash function h from a 

carefully chosen family H of hash functions

Each function h from H should have a succinct 

representation and should be easy to compute

Goal:

For every sequence of operations, the running time 

of the data structure, when a random hash function h

from H is chosen, is expected to be small

Using a fixed hash function is usually not a good idea



Modular hash functions
[Carter-Wegman (1979)]

p – prime number

Form a “Universal Family” (see below)

Require (slow) divisions



Multiplicative hash functions
[Dietzfelbinger-Hagerup-Katajainen-Penttonen (1997)]

Extremely fast in practice!



Form an “almost-universal” family (see below)



Tabulation based hash functions
[Patrascu-Thorup (2012)]

+

A variant can also be 

used to hash strings

hi can be stored 

in a small table

“byte”

Very efficient in practice

Very good theoretical properties



Universal families of hash functions
[Carter-Wegman (1979)]

A family H of hash functions from U to [m]

is said to be universal if and only if

A family H of hash functions from U to [m]

is said to be almost universal if and only if



k-independent families of hash functions

A family H of hash functions from U to [m]

is said to be k-independent if and only if

A family H of hash functions from U to [m]

is said to be almost k-independent if and only if



A simple universal family
[Carter-Wegman (1979)]

To represent a function from the family

we only need two numbers, a and b.

The size m of the hash table can be arbitrary.



A simple universal family
[Carter-Wegman (1979)]



Probabilistic analysis of chaining

n – number of elements in dictionary D

m – size of hash table

Assume that h is randomly chosen from a universal family H

Expected Worst-case

Successful Search

Delete

Unsuccessful Search

(Verified) Insert

=n/m – load factor



Chaining: pros and cons

Pros:
Simple to implement (and analyze)

Constant time per operation (O(1+))

Fairly insensitive to table size

Simple hash functions suffice

Cons:
Space wasted on pointers

Dynamic allocations required

Many cache misses



Hashing with open addressing
Hashing without pointers

Insert key k in the first free position among

Assumed to be a permutation

To search, follow the same order

No room found  Table is full



Hashing with open addressing



How do we delete elements?

Caution: When we delete elements,

do not set the corresponding cells to null!

“deleted”

Problematic solution…



Probabilistic analysis 

of open addressing

n – number of elements in dictionary D

m – size of hash table

Uniform probing: Assume that for every k,

h(k,0),…,h(k,m−1) is random permutation

=n/m – load factor (Note: 1)

Expected time for

unsuccessful search

Expected time for

successful search



Probabilistic analysis 

of open addressing

Claim: Expected no. of probes for an 

unsuccessful search is at most:

If we probe a random cell in the table, the 

probability that it is full is . 

The probability that the first i cells probed 

are all occupied is at most i.



Open addressing variants

Linear probing:

Quadratic probing:

Double hashing:

How do we define h(k,i) ?



Linear probing
“The most important hashing technique”

But, much less cache misses

More probes than uniform probing,

as probe sequences “merge”

More complicated analysis

(Requires 5-independence or tabulation hashing)

Extremely efficient in practice



Linear probing – Deletions

Can the key in cell j be moved to cell i?



Linear probing – Deletions

When an item is deleted, the hash table 

is in exactly the state it would have been 

if the item were not inserted!



Expected number of probes
Assuming random hash functions

Successful

Search

Unsuccessful

Search

Uniform Probing

Linear Probing

When, say, 0.6, all small constants

[Knuth (1962)]



Expected number of probes

0.5



Perfect hashing

Suppose that D is static.

We want to implement Find is O(1) worst case time.

Perfect hashing:

No collisions

Can we achieve it?



Expected no. of collisions



Expected no. of collisions

No collisions!If we are willing to use m=n2, then 

any universal family contains a 

perfect hash function.



Two level hashing
[Fredman, Komlós, Szemerédi (1984)]



Two level hashing
[Fredman, Komlós, Szemerédi (1984)]



Total size:

Assume that each hi

can be represented 

using 2 words

Two level hashing
[Fredman, Komlós, Szemerédi (1984)]



A randomized algorithm for constructing

a perfect two level hash table:

Choose a random h from H(p,n) and 

compute the number of collisions. If there 

are more than n collisions, repeat.

For each cell i,if ni>1, choose a random 

hash function hi from H(p,ni
2). If there are 

any collisions, repeat.

Expected construction time – O(n)

Worst case search time – O(1)



Cuckoo Hashing
[Pagh-Rodler (2004)]



Cuckoo Hashing
[Pagh-Rodler (2004)]

O(1) worst case search time!

What is the (expected) insert time?



Cuckoo Hashing
[Pagh-Rodler (2004)]

Difficult insertion

How likely are difficult insertion?



Cuckoo Hashing
[Pagh-Rodler (2004)]

Difficult insertion
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Cuckoo Hashing
[Pagh-Rodler (2004)]

Difficult insertion

How likely are difficult insertion?



Cuckoo Hashing
[Pagh-Rodler (2004)]

A more difficult insertion



Cuckoo Hashing
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A more difficult insertion
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Cuckoo Hashing
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A more difficult insertion



Cuckoo Hashing
[Pagh-Rodler (2004)]

A more difficult insertion



Cuckoo Hashing
[Pagh-Rodler (2004)]

A failed insertion

If Insertion takes more

than MAX steps, rehash



Cuckoo Hashing
[Pagh-Rodler (2004)]

With hash functions chosen at random from

an appropriate family of hash functions, 

the amortized expected insert time is O(1)


