Exercise 1.1 Let \(x = (x_0, x_1, \ldots, x_{n-1}) \in \mathbb{R}^n \) and let \(y = (y_0, y_1, \ldots, y_{n-1}) \in \mathbb{C}^n \) be such that \(y_{n-j} = y_j^* \), for \(j = 1, \ldots, n-1 \). (Here \(z^* \) is the conjugate of \(z \in \mathbb{C} \), i.e., if \(z = a + ib \), where \(a, b \in \mathbb{R} \), then \(z^* = a - ib \).)

Exercise 1.2 Let \(x = (f(0), f(\frac{1}{12}), \ldots, f(\frac{31}{12})) \in \mathbb{R}^{32} \), where \(f(x) = \sin(13(2\pi x)) + 7\sin(3(2\pi x) + \frac{\pi}{4}) + 5\cos(7(2\pi x)) \). Compute \(DFT(x) \). (Hint: no complicated calculations are necessary. Use the relations \(\cos x = \frac{1}{2}(e^{ix} + e^{-ix}) \), \(\sin x = \frac{1}{2i}(e^{ix} - e^{-ix}) \), and the fact that Fourier basis is an orthonormal basis.)

Exercise 1.3 The chirp transform of a vector \((x_0, x_1, \ldots, x_{n-1}) \in \mathbb{C}^n \), with respect to an arbitrary complex number \(z \in \mathbb{C} \), is defined as follows: \(y_k = \sum_{j=0}^{n-1} x_j z^{jk} \), for \(k = 0, 1, \ldots, n-1 \).

(a) Show that the DFT is a special case of the chirp transform. (For which \(z \)?)

(b) Use the relation \(y_k = z^{k^2/2} \sum_{j=0}^{n-1} (x_j z^{j/2})(z^{-(k-j)^2/2}) \) to express the chirp transform as a convolution. (Use caution. In the sum given, \(j \) ranges from 0 to \(n-1 \), for every value of \(k \), while this is not the case for the non-cyclic convolution.)

(c) Show that the convolution of two vectors of length \(n \) can be computed in \(O(n \log n) \) time for every value of \(n \), not necessarily a power of 2.

(d) Use the previous results to show that the DFT of a vector of length \(n \) can be computed in \(O(n \log n) \) time for any value of \(n \).

Exercise 1.4 The cross-correlation of \(x = (x_0, x_1, \ldots, x_{n-1}) \) and \(y = (y_0, y_1, \ldots, y_{m-1}) \) is defined to be \(z = (z_{n-1}, \ldots, z_0) \) such that \(z_k = \sum_j x_{j+k}y_j \). (The sum here is over \(j \) such that \(0 \leq j + k < n \) and \(0 \leq j < m \).) Show that the cross-correlation of two vectors of lengths \(n \) and \(m \), respectively, where \(m \leq n \), can be computed in \(O(n \log m) \) time.

Exercise 1.5 Let \(T \) be a text of length \(n \) and let \(P \) be a pattern of length \(m \) over a finite and small alphabet \(\Sigma \). Let \(D \) be a \(|\Sigma| \times |\Sigma| \) matrix such that \(D(a, b) \) specifies the similarity or dissimilarity of \(a, b \in \Sigma \). For every \(k = 0, 1, \ldots, n-m-1 \) define \(d_k = \sum_{j=0}^{m-1} D(T[k+j], P[j]) \) to be the total pattern-text dissimilarity when the 0-th pattern character is aligned with the \(k \)-th text character.

(a) Show that \(d_k \), for \(k = 0, 1, \ldots, n-m-1 \), can be computed in \(O(|\Sigma| n \log m) \) time.

(b) Suppose now that \(\Sigma \subset \mathbb{Z} \), i.e., that each character is actually an integer, and that \(D(a, b) = ab \), for every \(a, b \in \Sigma \). How fast can the \(d_k \)’s be computed?

(c) Suppose that we again have \(\Sigma \subset \mathbb{Z} \) but this time \(D(a, b) = (a-b)^2 \), for every \(a, b \in \Sigma \). How fast can the \(d_k \)’s be computed?

Exercise 1.6 (a) Given a text \(T \) of length \(n \) and a pattern \(P \) of length \(m \) over the alphabet \(\{0, 1, \ldots, m-1\} \) such that each character appears in \(P \) no more than \(c \) times, describe an algorithm that computes an array \(M \) of length \(n \), where \(M[k] \) is the number of matches when \(P \) is aligned with \(T[k : k + m - 1] \). The running time of the algorithm should be \(O(nc) \). (Hint: For each character in \(T[i] \) in \(T \), increment entries in \(M \) to which this character contributes a match.)

(b) Combine the algorithm in (a) with an FFT-based algorithm to obtain an algorithm that computes the array \(M \) in \(O(n \sqrt{m \log m}) \) for any pattern \(P \) of length \(m \). (Hint: Treat separately characters that appear many times in \(P \) and characters that appear only a few times in \(P \).)