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The paper presents a versatile library of analytic and quasi-analytic complex-valued
wavelet packets (WPs) which originate from discrete splines of arbitrary orders. The
real parts of the quasi-analytic WPs are the regular spline-based orthonormal WPs
designed in [4]. The imaginary parts are the so-called complementary orthonormal
WPs, which, unlike the symmetric regular WPs, they are antisymmetric. Tensor
products of 1D quasi-analytic WPs provide a diversity of 2D WPs oriented in
multiple directions. The designed computational scheme in the paper enables us
to get fast and easy implementation of the WP transforms. The presented WPs
proved to be efficient in signal/image processing applications such as restoration of
images degraded by either additive noise or missing of up to 90% of their pixels.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The sparse representation of data is of crucial importance in various applications such as compression,

restoration of images degraded by noise and/or missing some portion of pixels (inpainting), deblurring,

superresolution, classification, to name a few. Sparse representation of an object means its approximation

by a linear combination of a relatively small number of elements from a proper dictionary. To succeed in

image processing applications, the dictionary has to adapt to such typical structures of images that com-

prise smooth regions, oriented edges oriented in various directions and texture that can have an oscillating

structure.

For example, dictionaries that have directionality in them are brushlets [33], contourlets, curvelets, ban-

delets, ridgelets [17,9,8,10,39,31,35], pseudo-polar Fourier transforms [1,2] and related to them shearlets

[30,18]. These dictionaries are used in various image processing applications such as Radon transform in to-

mography, and Affine Shear transforms (DAS-1) [41]. However, while these transforms successfully capture
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edges in images, the dictionaries did not demonstrate a satisfactory texture restoration due to the lack of

oscillating waveforms in their dictionaries.

Since the introduction by Kingsbury ([28,29]) of complex wavelet transforms implemented by the dual-

tree scheme, the complex wavelets (DT_CW), M-band wavelets, wavelet frames and wavelet packets (WPs)

have become a field of active research that appears in multiple applications ([24,26,25,12,11,40,38,7,21,22],

to name a few). The advantages of the DT_CWs over the standard real wavelet transforms stem from their

approximate shift invariance and some directionality inherent to tensor-products of the DT_CWs.

However, the directionality of the DT_CWs as well as the M-band wavelets ([11]) is very limited and

this is a drawback for image processing applications. The tight tensor-product complex wavelet frames

TP_CTFn with different number of directions, are designed in [21,22] and some of them, in particular

TP_CTF6 and TP_CTF↓
n, demonstrate excellent performance (in terms of PSNR) for image denoising and

inpainting. The number of directions in both 2D TP_CTF6 and TP_CTF↓
n frames is 14 and remains the

same for all decomposition levels.

Some of disadvantages of the above 2D TP_CTF6 and TP_CTF↓
n frames are mentioned in [13]. For

example, “limited and fixed number of directions is undesirable in practice especially when the resolution of

an image is very high that requires large number of directional filters in order to capture as many features

with different orientations as possible” ([13]). In addition, “due to the fixed number of 1D filters, the number

of free parameters is limited which prevents the search of optimal filter bank systems for image processing”

([13]).

According to [13], the remedy for the above shortcomings is in the incorporation of the two-layer structure

that is inherent in the TP_CTF6 and TP_CTF↓
n frames into directional filter banks introduced in [23,41].

The complex wavelet packets (Co_WPs) are an alternative way to overcome the above disadvantages. The

first version of complex WPs appears in [24] after the introduction of the complex wavelets by Kingsbury.

The complex wavelet transforms in [24,26,25] are extended to the Co_WP transforms by the application

of the same filters as used in the DT_CW transforms to the high-frequency bands. Although the low-

and high-frequency bands in DT_CW are approximately analytic, this is not the case for the Co_WPs

designed in [24,26,25]. In addition, as shown in [7] (Fig. 1), much energy passes into the negative half-bands

of the spectra. Another approach to the design of Co_WPs is described in [7]. It is suggested in [7] that in

order to retain an approximate analyticity of the dual-tree WP transforms, the filter banks for the second

decomposition of the transforms should be the same for both stems of the tree.

The potential advantages of the Co_WP transforms are apparent. In this paper, we design a family of

Co_WP transforms which possess properties such as perfect frequency separation, Hilbert transform relation

between real and imaginary parts of the Co_WPs, orthonormality of shifts of real and imaginary parts of

the Co_WPs, unlimited number of directions in the multidimensional case, a variety of free parameters, and

fast and easy implementation. As a base for the design, we use the family of discrete-time WPs originated

from periodic discrete splines of different orders that are described in [4] (Chapter 4). The wavelet packets

ψ2r
[m],l, where m is the decomposition level, l = 0, ..., 2m − 1 is the index of the related frequency band and

2r is the order of the generating discrete spline, are symmetric, well localized in time domain (although are

not compactly supported), their DFTs spectra are flat, and provide a refined split of the frequency domain.

The WP transforms are executed in the frequency domain using the Fast Fourier transform (FFT). By

varying the order 2r, we can supply the WPs ψ2r
[m],l with any number of local vanishing moments without

increase of the computational cost. Different combinations of the shifts in these WPs provide a variety of

orthonormal bases of the space of N -periodic signals.

To derive the Co_WPs, we expand the WPs ψ2r
[m],l to periodic analytic discrete-time signals ψ̄2r

±[m],l =

ψ2r
[m],l± i θ2r

[m],l, where θ2r
[m],l is the discrete periodic Hilbert transform (HT) of the WP ψ2r

[m],l. The waveforms

θ2r
[m],l are antisymmetric, and for all l 6= 0, 2m−1, orthonormal properties similar to the properties of the WPs

ψ2r
[m],l take place. To achieve orthonormality, the waveforms θ2r

[m],l, l = 0, 2m−1 are slightly corrected at the

expense of minor deviation from antisymmetry and we get a new orthonormal complimentary WP (cWP)
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system
{

ϕ2r
[m],l

}

, m = 1, ...,M, l = 0, ..., 2m−1, where for l 6= 0, 2m−1, the WPs satisfy ϕ2r
[m],l = θ2r

[m],l. The

magnitude spectra of the cWPs ϕ2r
[m],l coincide with the spectra of the respective WPs ψ2r

[m],l and, similarly

to the WPs ψ2r
[m],l, the cWPs ϕ2r

[m],l provide a variety of orthonormal bases for the space of N -periodic

signals.

Correspondingly, we define the quasi-analytic WP systems (qWP) as

Ψ2r
±[m],l = ψ2r

[m],l ± iϕ2r
[m],l, m = 1, ...,M, l = 0, ..., 2m − 1,

where all the WPs with indices other than l = 0, 2m − 1 are analytic. For the implementation of the

transforms with the complex qWPs we do not use the dual-tree scheme with different filter banks for real

and imaginary wavelets but use the scheme with a single complex filter bank in the first step of the transform,

and a real filter bank in the additional steps.

A dual-tree structure type appears in the 2D case when two sets of qWPs are defined as the tensor

products of 1D qWPs

Ψ2r
++[m],j,l[k, n]

def
= Ψ2r

+[m],κ[k] Ψ2r
+[m],l[n], Ψ2r

+−[m],j,l[k, n]
def
= Ψ2r

+[m],κ[k] Ψ2r
−[m],l[n] (1.1)

and processing with the qWPs Ψ2r
+±[m],j,l is executed separately.

The real and imaginary parts of the qWPs Ψ2r
+±[m],j,l are the 2D waveforms oriented in multiple directions,

specifically the 2(2m+1 − 1) directions at the m-th decomposition level. Such an abundant directionality

proved to be efficient in the examples on image denoising and inpainting. It is worth mentioning that the

WPs of one- and two-dimensions have a localized oscillating structure, which is useful for detection of

transient oscillating events in 1D signals and oscillating patterns in the images (for example, “Barbara” in

Fig. 7.3).

Both one- and two-dimensional transforms are implemented in a fast way by using the Fast Fourier

transform (FFT).

The paper is organized as follows: Section 2 outlines briefly periodic discrete-time WPs originated from

discrete splines and corresponding transforms that form a basis for the design of Co_WPs. The analysis

F̃ and synthesis F filter banks for the WP transforms are described. Section 3 outlines the construction

of discrete-time periodic analytic signals. This section also introduces complimentary sets of WPs (cWPs),

analytic and quasi-analytic WPs (qWPs). Section 4 describes the implementation of the cWP and qWP

transforms. The filter banks for one step of analysis and synthesis transforms are introduced. It is interesting

to note that subsequent application of the direct and inverse qWP filter banks to a signal x produces the

analytic signal x̄ = x+ iH(x). All the subsequent steps of cWP and qWP transforms are implemented with

the same filter banks F̃ and F as used in the above WP transforms (section 2). Section 5 extends the design of

1D qWPs to the 2D case. The 2D qWPs are defined via tensor products as shown in Eq. (1.1). Directionality

of the 2D qWPs is discussed. Section 6 describes the implementation of the 2D qWP transforms by a dual-

tree. Section 7 presents a few experimental results for the restoration of images that are degraded by either

strong additive noise or by missing many of the pixels. In one example, both the degradation sources are

present. Section 8 discusses the results. The Appendix contains the proof of a proposition and the outline

of a denoising scheme.

Notations and abbreviations N = 2j , M = 2m, m < j, Nm = 2j−m and Π[N ] is a space of real-valued N -

periodic signals. Π[N,N ] is the space of two-dimensional N -periodic arrays in both vertical and horizontal

directions. ω
def
= e2π i/N .

The expression
⊕R

k=P fk means the union of elements fk which are orthogonal to each other. A
⊕

B

means the union of the sets A and B, which are orthogonal to each other that is each element of A is

orthogonal to all elements of B and vice versa.
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A signal x = {x[k]} ∈ Π[N ] is represented by its inverse discrete Fourier transform (DFT)

x[k] = 1
N

∑N−1
n=0 x̂[n]ωkn = 1

N

∑N/2−1
n=−N/2 x̂[n]ωkn,

x̂[n] =
∑N−1
k=0 x[k]ω−kn, x̂[−n] = x̂[N − n] = x̂[n]∗,

(1.2)

where ·∗ means complex conjugate. In particular, x̂[0] =
∑N−1
k=0 x[k] and x̂[N/2] =

∑N−1
k=0 (−1)k x[k] are real

numbers.

The DFT of an Nm-periodic signal is x̂[n]m =
∑Nm−1
k=0 x[k]ω−kn2m

. The abbreviation PR means perfect

reconstruction. The abbreviations 1D and 2D mean one-dimensional and two-dimensional, respectively. FFT

is the fast Fourier transform, HT is the Hilbert transform, H(x) is the discrete periodic HT of a signal x.

The abbreviations WP, cWP and qWP mean wavelet packets (typically spline-based wavelet packets

ψ2r
[m],l), complementary wavelet packets ϕ2r

[m],l and quasi-analytic wavelet packets Ψ2r
±[m],l, respectively, in

1D case, and wavelet packets ψ2r
[m],j,l, complimentary wavelet packets ϕ2r

[m],j,l and quasi-analytic wavelet

packets Ψ2r
+±[m],l,j , respectively, in 2D case.

U4r[n]
def
=

1

2

(

cos4r π n

N
+ sin4r π n

N

)

. (1.3)

Peak Signal-to-Noise ratio (PSNR) in decibels (dB) is

PSNR
def
= 10 log10

(

N 2552

∑N
k=1(xk − x̃k)2

)

dB.

SBI stands for split Bregman iterations and p-filter means periodic filter.

Throughout the paper σ denotes the standard deviation of a signal x and

δ[k] =

{

1, if k = lN, l ∈ Z;

0, otherwise
denotes the delta sequence in the space Π[N ].

2. Outline of orthonormal WPs originated from discrete splines: preliminaries

This section provides a brief outline of periodic discrete-time wavelet packets originated from discrete

splines and corresponding transforms. For details see Chapter 4 in [4].

2.1. Periodic discrete splines

The centered span-two N -periodic discrete B-spline of order 2r is defined as the IDFT of the sequence

b̂2r[n] = cos2r π n

N
, b2r[k] =

1

N

N/2−1
∑

n=−N/2

ωkn cos2r π n

N
.

The B-splines are non-negative symmetric finite-length signals (up to periodization). Only the samples

b2r[k], k = −r, ...r, are non-zero.

The signals s2r[k]
def
=
∑N/2−1
l=0 q[l] b2r[k − 2l], which are referred to as discrete splines, form an N/2-

dimensional subspace 2rS0
[1] of the space Π[N ] whose basis consists of two-sample shifts of the B-spline b2r.

Here q = {q[l]} , l = 0, ..., N/2− 1, is a real-valued sequence. The DFT of the discrete spline s2r is

ŝ2r[n] = q̂[n]1 b̂
2r[n] = q̂[n]1 cos2r π n

N
.
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A discrete spline ψ2r
[1],0 ∈ 2rS0

[1] is defined through its inverse DFT (iDFT):

ψ2r
[1],0[k]

def
=

1

N

N/2−1
∑

n=−N/2

ωkn
cos2r π n

N
√

U4r[n]
,

where U4r[n] is defined in Eq. (1.3).

Proposition 2.1 ([4], Proposition 3.6). Two-sample shifts
{

ψ2r
[1],0[· − 2l]}

}

, l = 0, ..., N/2−1, of the discrete

splines ψ2r
[1],0 form an orthonormal basis of the subspace 2rS0

[1] ⊂ Π[N ].

The orthogonal projection of a signal x ∈ Π[N ] onto the space 2rS0
[1] is the signal x0

[1] ∈ Π[N ] such that

x0
[1][k] =

N/2−1
∑

l=0

y0
[1][l]ψ

2r
[1],0[k − 2l], y0

[1][l] =
〈

x, ψ2r
[1],0[· − 2l]

〉

=

N−1
∑

k=0

h0
[1][k − 2l]x[k],

h0
[1][k] = ψ2r

[1],0[k], ĥ0
[1][n] = ψ̂2r

[1],0[n] =
cos2r π n

N
√

U4r[n]
. (2.1)

2.2. Orthogonal complement for subspace 2rS0
[1]

The orthogonal complement for 2rS0
[1] in the signal space Π[N ] is denoted by 2rS1

[1]. Thus, Π[N ] =

S[0] = 2rS0
[1]

⊕2r S1
[1]. The orthonormal basis in the subspace is formed by the two-sample shifts

{

ψ2r
[1],1[· − 2l]}

}

, l = 0, ..., N/2− 1, of the signal ψ2r
[1],1, which is defined through its inverse DFT (iDFT):

ψ2r
[1],1[k]

def
=

1

N

N/2−1
∑

n=−N/2

ωkn
ωn sin2r π n

N
√

U4r[n]
.

Proposition 2.2 ([4], Proposition 4.1). The orthogonal projection of a signal x ∈ Π[N ] onto the space 2rS1
[1]

is the signal x1
[1] ∈ Π[N ] such that

x1
[1][k] =

N/2−1
∑

l=0

y1
[1][l]ψ

2r
[1],1[k − 2l], y1

[1][l] =
〈

x, ψ2r
[1],1[· − 2l]

〉

=
N−1
∑

k=0

h1
[1][k − 2l]x[k],

h1
[1][k] = ψ2r

[1],1[k], ĥ1
[1][n] = ψ̂2r

[1],1[n] =
ωn sin2r π n

N
√

U4r[n]
. (2.2)

The signals ψ2r
[1],0 and ψ2r

[1],1 are referred to as the discrete-spline wavelet packets of order 2r from the first

decomposition level. They are the impulse responses of the low- and high-pass periodic filters (p-filters) h0
[1]

and h1
[1], respectively.

Remark 2.1. We emphasise that the DFTs ψ̂2r
[1],0[n] =

{√
2, if n = 0;

0, if n = N/2,

and ψ̂2r
[1],1[n] =

{

−
√

2, if n = N/2;

0, if n = 0.
It is seen from Eqs. (2.1) and (2.2).

Fig. 2.1 displays the discrete-spline wavelet packets ψ2r
[1],0 and ψ2r

[1],1 of different orders and magnitudes of

their DFT spectra (which are the p-filters h0
[1] and h1

[1] magnitude responses). It is seen that the wavelets
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Fig. 2.1. Left: wavelet packets ψ2r
[1],0 (red lines) and ψ2r

[1],1 (blue lines), r = 1, 3, 5. Right: magnitude spectra of ψ2r
[1],0 (red lines) and

ψ2r
[1],1 (blue lines). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

are well localized in time domain. The spectra are flat and their shapes tend to rectangular as their orders

increase.

2.3. One-level wavelet packet transform of a signal

The transform of a signal x ∈ Π[N ] into the pair
{

y0
[1],y

1
[1]

}

of signals from Π[N/2] is referred to

as the one-level wavelet packet transform (WPT) of the signal x. According to Propositions 2.1 and 2.2,

the transform is implemented by filtering x with time-reversed half-band low- and high-pass p-filters h0
[1]

and h1
[1], respectively, which is followed by downsampling. Thus the p-filters h0

[1] and h1
[1] form a critically

sampled analysis p-filter bank H̃1
[1]. Eqs. (2.1) and (2.2) imply that its modulation matrix is

M̃[n] =

(

ĥ0
[1][n] ĥ0

[1]

[

n+ N
2

]

ĥ1
[1][n] ĥ1

[1]

[

n+ N
2

]

)

=

(

β[n] β
[

n+ N
2

]

α[n] α
[

n+ N
2

]

)

=

(

β[n] ω−nα[n]

α[n] −ωnβ[n]

)

,

β[n] =
cos2r π n

N
√

U4r[n]
, α[n] = ωn β

[

n+ N
2

]

= ωn
sin2r π n

N
√

U4r[n]
.

(2.3)

The analysis modulation matrix M̃[n]/
√

2, as well as the matrix M̃[−n]/
√

2 are unitary matrices. There-

fore, the synthesis modulation matrix is

M[n] =

(

β[n] α[n]

ω−nα[n] −ωnβ[n]

)

= M̃[n]T . (2.4)

Consequently, the synthesis p-filter bank coincides with the analysis p-filter bank and, together, they form

a perfect reconstruction (PR) p-filter bank.

The one-level WP transform of a signal x and its inverse are represented in a matrix form:

(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

=
1

2
M̃[−n] ·

(

x̂[n]

x̂[~n]

)

,

(

x̂[n]

x̂[~n]

)

= M[n] ·
(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

(2.5)

where ~n = n+N/2.
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2.4. Extension of transforms to deeper decomposition levels

2.4.1. Second-level p-filter banks

The signals yλ[1], λ = 0, 1, belong to the space Π[N/2] ⊂ Π[N ]. The space Π[N/2] can be split into

mutually orthogonal subspaces, which we denote by Π0[N/2] and Π1[N/2], in a way that is similar to the

split of the space Π[N ]. Projection of a signal Y ∈ Π[N/2] onto these subspaces and the inverse operation

are done using the analysis and synthesis p-filter banks H̃[2] =
{

h0
[2],h

1
[2]

}

= H[2] (Eq. (2.6)), which operate

in the space Π[N/2]. The frequency responses of the p-filters are

ĥ0
[2][n]1 = β[2n] ĥ1

[2][n]1 = α[2n], (2.6)

where β[n] and α[n] are defined in Eq. (2.3). The impulse responses of the p-filters h0
[2] and h1

[2] are orthogonal

to each other in the space Π[N/2] and their 2-sample shifts are mutually orthogonal

N/2−1
∑

k=0

hλ[2][k − 2l]hµ[2][k − 2p] = δ[λ− µ] δ[l − p], λ, µ = 0, 1.

The orthogonal projections of a signal Y ∈ Π[N/2] onto the subspaces Π0[N/2] and Π1[N/2] are

Y µ[k] =

N/4−1
∑

l=0

yµ[2][l]h
µ
[2][k − 2l], yµ[2][l] =

N/2−1
∑

k=0

hµ[2][k − 2l]Y [k],

where µ = 0, 1. The modulation matrices of the p-filter bank H[2] are

M̃[2][n] = M̃[2n], M[2][n] = M[2n], (2.7)

where the modulation matrices M̃[n] and M[n] are defined in Eqs. (2.3) and (2.4), respectively.

2.4.2. Second-level WPTs

By the application of the analysis p-filter bank H̃[2] (Section 2.4.1 and Eq. (2.6)) to the signals yλ[1][k] =
∑N−1
n=0 h

λ
[1][n − 2k]x[n], µ, λ = 0, 1, that belong to Π[N/2], we get their orthogonal projections y

λ,0
[1] and

y
λ,1
[1] ∈ Π[N/2] onto the subspaces Π0[N/2] and Π1[N/2]:

yλ,µ[1] [k] =

N/4−1
∑

l=0

yρ[2][l]h
µ
[2][k − 2l], yρ[2][l] =

N/2−1
∑

k=0

hµ[2][k − 2l] yλ[1][k]

=

N/2−1
∑

k=0

hµ[2][k − 2l]

N−1
∑

n=0

hλ[1][n− 2k]x[n] =

N−1
∑

n=0

x[n]ψ2r
[2],ρ[n− 4l],

ψ2r
[2],ρ[n]

def
=

N/2−1
∑

k=0

hµ[2][k]hλ[1][n− 2k] =

N/2−1
∑

k=0

hµ[2][k]ψ2r
[1],λ[n− 2k].

where ρ =

{

µ, if λ = 0;

3− µ, if λ = 1.

The signal ψ2r
[2],ρ is a linear combination of 2-sample shifts of the discrete-spline WP ψ2r

[1],λ, therefore

ψ2r
[2],ρ ∈ 2rSλ[1] ⊂ Π[N ]. Its DFT is
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ψ̂2r
[2],ρ[n] = ψ̂2r

[1],λ[n] ĥµ[2][n]1,

ψ̂2r
[2],0[n] =

cos2r π n
N

√

U4r[n]

cos2r 2π n
N

√

U4r[2n]
, ψ̂2r

[2],1[n] =
cos2r π n

N
√

U4r[n]
ω2n sin2r 2π n

N
√

U4r[2n]
, (2.8)

ψ̂2r
[2],2[n] = ωn

sin2r π n
N

√

U4r[n]
ω2n sin2r 2π n

N
√

U4r[2n]
, ψ̂2r

[2],3[n] = wn
sin2r π n

N
√

U4r[n]

cos2r 2π n
N

√

U4r[2n]
.

Remark 2.2. It is seen from Eq. (2.8) that the magnitude DFT spectra
∣

∣

∣
ψ̂2r

[2],0[n]
∣

∣

∣
=

{

2, if n = 0;

0, if n = N/2,

and
∣

∣

∣
ψ̂2r

[2],3[n]
∣

∣

∣
=

{

2, if n = N/2;

0, if n = 0.
The DFTs ψ̂2r

[2],1[n] and ψ̂2r
[2],2[n] are zeros as n = 0 and n = N/2.

Proposition 2.3 ([4]). The norms of the signals ψ2r
[2],ρ ∈ Π[N ] are equal to one. The 4-sample shifts

{

ψ2r
[2],ρ[· − 4l]

}

, l = 0, ..., N/4 − 1, of this signal are mutually orthogonal and signals with different in-

dices ρ are orthogonal to each other.

Thus, the signal space Π[N ] splits into four mutually orthogonal subspaces Π[N ] =
⊕3

ρ=0
2rSρ[2] whose

orthonormal bases are formed by 4-sample shifts
{

ψ2r
[2],ρ[· − 4l]

}

, l = 0, ..., N/4 − 1, of the signals ψ2r
[2],ρ,

which are referred to as the second-level discrete-spline wavelet packets of order 2r.

The orthogonal projection of a signal x ∈ Π[N ] onto the subspace 2rSρ[2] is the signal

xρ[2][k] =

N/4−1
∑

l=0

〈

x, ψ2r
[2],ρ[· − 4l]

〉

ψ2r
[2],ρ[k − 4l] =

N/4−1
∑

l=0

yρ[2][l]ψ
2r
[2],ρ[k − 4l], k = 0, . . . , N − 1.

Practically, derivation of the wavelet packet transform coefficients yλ[1], λ = 0, 1, from x and the inverse

operation are implemented using Eq. (2.5), while the transform yλ[1] ←→ y
ρ
[2] are implemented similarly

using the modulation matrices of the p-filter bank H[2] defined in Eq. (2.7). The second-level wavelet

packets ψ2r
[2],ρ are derived from the first-level wavelet packets ψ2r

[1],λ by filtering the latter with the p-filters

h
µ
[2], λ, µ = 0, 1, ρ =

{

µ, if λ = 0;

3− µ, if λ = 1.
.

Fig. 2.2 displays the second-level wavelet packets originating from discrete splines of orders 2, 6 and 10

and their DFTs. One can observe that the wavelet packets are symmetric and well localized in time domain.

Their spectra are flat and their shapes tend to rectangular as their orders increase. They split the frequency

domain into four quarter-bands.

2.4.3. Transforms to deeper levels

The WPTs to deeper decomposition levels are implemented iteratively, while the transform coeffi-

cients
{

y
ρ
[m+1]

}

are derived by filtering the coefficients
{

yλ[m]

}

with the p-filters h
µ
[m+1], where λ =

0, ..., 2m − 1, µ = 0, 1 and ρ =

{

2λ+ µ, if λ is even;

2λ+ (1− µ), if λ is odd.
The transform coefficients are yλ[m][l] =

〈

x, ψ2r
[m],λ[·,−2ml]

〉

, where the signals ψ2r
[m],λ are normalized, orthogonal to each other in the space Π[N ],

and their 2ml-sample shifts are mutually orthogonal. They are referred to as level-m discrete-spline wavelet

packets of order 2r. The set
{

ψ2r
[m],λ[·,−2ml]

}

, λ = 0, ..., 2m−1, l = 0, ...N/2m−1, constitutes an orthonor-

mal basis of the space Π[N ] and generates its split into 2m orthogonal subspaces. The next-level wavelet

packets ψ2r
[m+1],ρ are derived by filtering the wavelet packets ψ2r

[m],λ with the p-filters h
µ
[m+1] such that
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Fig. 2.2. Left: second-level discrete-spline wavelet packets of different orders; left to right: ψ2r
[2],0 → ψ2r

[2],1 → ψ2r
[2],2 → ψ2r

[2],3. Right:
magnitude DFT spectra of these wavelet packets.

ψ2r
[m+1],ρ[n] =

N/2m−1
∑

k=0

hµ[m+1][k]ψ2r
[m],λ[n− 2mk], ψ̂2r

[m+1],ρ[n] = ψ̂2r
[m],λ[n] ĥµ[m+1][n]m. (2.9)

Proposition 2.4. For any M ∈ N

1. the DFTs ψ̂2r
[M ],0[0] 6= 0 and ψ̂2r

[M ],2M −1[N/2] 6= 0;

2. The DFTs of the wavelet packets
{

ψ̂2r
[M ],l[n]

}

, l = 1, ..., 2m − 1 are zero when n = 0. The DFTs of the

wavelet packets
{

ψ̂2r
[M ],l[n]

}

, l = 0, ..., 2m − 2, are zero when n = N/2.

Proof. Note that the frequency response of an m-level p-filter is ĥµ[m][n] = ĥµ[1][2
m−1n], µ = 0, 1. The claims

are true for M = 1, 2. Assume that it holds for M = m.

1. Then, due to Eq. (2.9),

ψ̂2r
[m+1],0[0] = ψ̂2r

[m],0[0] ĥ0
[m+1][n]m = ψ̂2r

[m],0[0]
cos2r 2mπ n

N
√

U4r[2mn]
6= 0 as n = 0.

If λ = 2m − 1 and ρ = 2m+1 − 1 then µ = 0 and we apply the filter h0
[m+1][k]. Hence, we have

ψ̂2r
[m+1],2m+1−1[N/2] = ψ̂2r

[m],2m−1[N/2]
cos2r(2m−1π)
√

U4r[2mn]
6= 0.

2. Equation (2.9) implies that if ψ̂2r
[m],λ[n] = 0 with either n = 0 or n = N/2 then both ψ̂2r

[m+1],ρ[n], ρ =

2λ, 2λ+ 1, has the same property. If λ = 0 then
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ψ̂2r
[m+1],1[0] = ψ̂2r

[m],0[0] ĥ1
[m+1][n]m = ψ̂2r

[m],0[0]
sin2r 2mπ n

N
√

U4r[2mn]
= 0 as n = 0.

Similarly we can establish that ψ̂2r
[m+1],2m+1−2[N/2] = 0. 2

A scheme of fast implementation of the discrete-spline-based WPT is described in [4]. The transforms

are executed in the spectral domain using the Fast Fourier transform (FFT) by the application of critically

sampled two-channel filter banks to the half-band spectral components of a signal. For example, the Matlab

execution of the 8-level 12-th-order WPT of a signal comprising 245760 samples, takes 0.2324 seconds.

2.5. 2D WPTs

A standard way to extend the one-dimensional (1D) WPTs to multiple dimensions is the tensor-product

extension. The 2D one-level WPT of a signal x = {x[k, n]} , k, n = 0, ..., N − 1, which belongs to Π[N,N ],

consists of the application of 1D WPT to columns of x, which is followed by the application of the transform

to rows of the coefficients array. As a result of the 2D WPT of signals from Π[N,N ], the space becomes

split into four mutually orthogonal subspaces Π[N,N ] =
⊕1

j,l=0
2rSj,l[1] .

The subspace 2rSj,l[1] is a linear hull of two-sample shifts of the 2D wavelet packets
{

ψ2r
[1],j,l[k − 2p, n− 2t]

}

, p, t,= 0, ..., N/2 − 1, that form an orthonormal basis of 2rSj,l[1] . The orthogonal

projection of the signal x ∈ Π[N,N ] onto the subspace 2rSj,l[1] is the signal x
j,l
[1] ∈ Π[N,N ] such that

xj,l[1][k, n] =

N/2−1
∑

p,t=0

yj,l[1][p, t]ψ
2r
[1],j,l[k − 2p, n− 2t], j, l = 0, 1,

The 2D wavelet packets are ψ2r
[1],j,l[n,m]

def
= ψ2r

[1],j [n]ψ2r
[1],l[m], j, l = 0, 1. They are normalized and

orthogonal to each other in the space Π[N,N ]. It means that
∑N−1
n,m=0 ψ

2r
[1],j1,l1[n,m]ψ2r

[1],j2,l2[n,m] = δ[j1 − j2] δ[l1 − l2]. Their two-sample shifts in either direction are

mutually orthogonal. The transform coefficients are

yj,l[1][p, t] =
〈

x, ψ2r
[1],j,l[· − 2p, · − 2t]

〉

=
N−1
∑

n,m=0

ψ2r
[1],j,l[n− 2p,m− 2t] x[n,m].

By the application of the above transforms iteratively to blocks of the transform coefficients down to

m-th level, we get that the space Π[N,N ] is decomposed into 4m mutually orthogonal subspaces Π[N,N ] =
⊕2m−1

j,l=0
2rSj,l[m]. The orthogonal projection of the signal x ∈ Π[N,N ] onto the subspace 2rSj,l[m] is the signal

x
j,l
[m] ∈ Π[N,N ] such that

xj,l[m][k, l] =

N/2m−1
∑

p,t=0

yj,l[m][p, t]ψ
2r
[m],j,l[k − 2mp, l − 2mt], j, l = 0, ..., 2m − 1,

ψ2r
[m],j,l[k, n] = ψ2r

[m],j [k]ψ2r
[m],l[n], yj,l[m][p, t] =

〈

x, ψ2r
[m],j,l[· − 2mp, · − 2mt]

〉

.

The 2D tensor-product wavelet packets ψ2r
[m],j,l are well localized in the spatial domain, their 2D DFT

spectra are flat and provide a refined split of the frequency domain of signals from Π[N,N ].1 The drawback

is that the wavelet packets are oriented in either horizontal or vertical directions or are not oriented at all.

1 Especially it is true for WPs derived from higher-order discrete splines.
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Fig. 2.3. WPs from the second decomposition level (left) and their magnitude spectra (right).

Fig. 2.3 displays the tenth-order 2D wavelet packets from the second decomposition level and their

magnitude spectra.

3. (Quasi-)analytic and complementary WPs

In this section we define analytic and the so-called quasi-analytic WPs related to the discrete-spline-based

WPs discussed in Section 2 and introduce an orthonormal set of waveforms which are complementary to

the above WPs.

3.1. Analytic periodic signals

A real-valued N -periodic signal x ∈ Π[N ] is represented by its inverse DFT. Then, Eq. (1.2) can be

written as follows:

x[k] =
x̂[0] + (−1)kx̂[N/2]

N
+

2

N

N/2−1
∑

n=1

x̂[n]ωkn + (x̂[n]ωkn)∗

2
.

Define the real-valued signal h ∈ Π[N ] and two complex-valued signals x̄+ and x̄− such that

h[k]
def
= 2

N

∑N/2−1
n=1

x̂[n]ωkn−x̂[n]∗ ω−kn

2i ,

x̄±[k]
def
= x[k]± ih[k] = x̂[0]+(−1)kx̂[N/2]

N

+ 2
N

∑N/2−1
n=1

{

x̂[n]ωkn, for x̄+;

x̂[n]∗ ω−kn = x̂[N − n]ω−k(N−n), for x̄−.

(3.1)



ARTICLE IN PRESS

Please cite this article in press as: A. Averbuch et al., Analytic and directional wavelet packets in the space of periodic signals,
Appl. Comput. Harmon. Anal. (2023), https://doi.org/10.1016/j.acha.2023.06.006

JID:YACHA AID:1571 /FLA [m3L; v1.338] P.12 (1-42)

12 A. Averbuch et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

The signals’ x̄± DFT spectra are

ˆ̄x+[n] =











x̂[n], if n = 0, or n = N/2 ;

2x̂[n], if 0 < n < N/2;

0, if −N/2 < n < 0⇐⇒ N/2 < n < N ,

ˆ̄x−[n] =











x̂[n], if n = 0, or n = N/2 ;

2x̂[n], if −N/2 < n < 0⇐⇒ N/2 < n < N ;

0, if n = 0, or n = N/2.

(3.2)

The spectrum of x̄+ comprises only non-negative frequencies and vice versa for x̄−. x = Re(x̄±) and

Im(x̄±) = ±h. The signals x̄± are referred to as periodic analytic signals.

The signal’s h DFT spectrum is

ĥ[n] =











−i x̂[n], if 0 < n < N/2;

i x̂[n], if −N/2 < n < 0⇐⇒ N/2 < n < N ;

0, if n = 0, or n = N/2.

Thus, the signal h where h = H(x) can be regarded as the Hilbert transform (HT) of a discrete-time

periodic signal x, (see [34], for example).

Proposition 3.1.

1. The operator H(·) of the HT h = H(x) is cyclic-invariant in the space Π[N ]. That means that for a

circular m-sample shift h̃ = h[·+m] is the HT of x̃ = x[·+m].

2. If the signal x ∈ Π[N ] is symmetric about a grid point k = K then h = H(x) is antisymmetric about K

and h[K] = 0.

3. Assume that a signal x ∈ Π[N ] and x̂[0] = x̂[N/2] = 0. Then,

(a) The norm of its HT is ‖H(x)‖ = ‖x‖.
(b) Magnitude spectra of the signals x and h = H(x) coincide.

Proof. 1. The DFT of the signal x̃ is ˆ̃x[n] = ωmn x̂[n]. Denote by ¯̃x+ the analytic signal related to x̃.

Equation (3.2) implies that ˆ̃̄x+[n] = ωmn ˆ̄x[n]. Consequently, ¯̃x+[k] = x̄+[k + m]. The same relation

holds for h̃ = Im(¯̃x).

2. Assume that x ∈ Π[N ] is symmetric about K = 0. Then, its DFT obeys

x̂[n] = x[0] + (−1)nx[N/2] + 2

N/2−1
∑

k=1

x[k] cos(2πkn/N) = x̂[−n].

Then, due to Eq. (3.1), h[k] = 2/N
∑N/2−1
n=1 x[n] sin(2πkn/N) = h[−k] and h[0] = 0. Extension of the

proof to K 6= 0 is straightforward.

3. If x̂[0] = x̂[N/2] = 0 then x[k] = 1
N

∑N/2−1
n=1

(

x̂[n]ωkn + (x̂[n]ωkn)∗
)

. In that case we have

(a) The squared norm is ‖h‖2 = 1
N

∑N/2−1
n=−N/2 |ĥ[n]|2 = 1

N

∑N/2−1
n=−N/2 |x̂[n]|2.

(b) The coincidence of the magnitude spectra is straightforward. 2
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3.2. Analytic WPs

The analytic spline-based WPs and their DFT spectra are derived from the corresponding WPs
{

ψ2r
[m],l

}

, m = 1, ...,M, l = 0, ..., 2m − 1, in line with the scheme in Section 3.1. Recall that for all

l 6= 0, the DFT ψ̂2r
[m],l[0] = 0 and for all l 6= 2m − 1, the DFT ψ̂2r

[m],l[N/2] = 0.

Denote by θ2r
[m],l = H(ψ2r

[m],l) the discrete periodic HT of the wavelet packet ψ2r
[m],l, such that the DFT is

θ̂2r
[m],l[n] =











−i ψ̂2r
[m],l[n], if 0 < n < N/2;

i ψ̂2r
[m],l, if −N/2 < n < 0;

0, if n = 0, or n = N/2 .

Then, the corresponding analytic WPs are

ψ̄2r
±[m],l = ψ2r

[m],l ± iθ2r
[m],l.

Properties of the analytic WPs

1. The DFT spectra of the analytic WPs ψ̄2r
+[m],l and ψ̄2r

−[m],l are located within the bands [0, N/2] and

[N/2, N ]⇐⇒ [−N/2, 0], respectively.

2. The real component ψ2r
[m],l is the same for both WPs ψ̄2r

±[m],l. It is a symmetric oscillating waveform.

3. The HT WPs θ2r
[m],l = H(ψ2r

[m],l) are antisymmetric oscillating waveforms.

4. For all l 6= 0, 2m − 1, the norms
∥

∥

∥
θ2r

[m],l

∥

∥

∥
= 1. Their magnitude spectra

∣

∣

∣
θ̂2r

[m],l[n]
∣

∣

∣
coincide with the

magnitude spectra of the respective WPs ψ2r
[m],l.

5. When l = 0 or l = 2m−1, the magnitude spectra of θ2r
[m],l coincide with that of ψ2r

[m],l everywhere except

for the points n = 0 or N/2, respectively, and the waveforms’ norms are no longer equal to 1.

Properties in items 3–5 follow directly from Proposition 3.1.

Remark 3.1. Comment on Property 5: The DFT of the HT signal θ̂2r
[m],0[0] = 0 while Proposition 2.4 implies

that ψ̂2r
[m],0[0] 6= 0. Therefore, as in the proof of Proposition 3.1, we have

‖θ2r
[m],0‖2 =

1

N

N/2−1
∑

n=−N/2

| ˆθ2r
[m],0[n]|2 =

1

N





N/2−1
∑

n=−N/2

|ψ̂2r
[m],0[n]|2 − |ψ̂2r

[m],0[0]|2


 = 1− 1

N
|ψ̂2r

[m],0[0]|2.

Similarly we have ‖θ2r
[m],2m−1‖2 6= 1.

Proposition 3.2. For all l 6= 0, 2m − 1, the shifts of the HT WPs
{

θ2r
[m],l[· − 2mk]

}

are orthogonal to each

other in the space Π[N ]. The orthogonality does not take place for θ2r
[m],0 and θ2r

[m],2m−1.

Proof. For all l 6= 0, 2m − 1, the inner product is

〈

θ2r
[m],l, θ

2r
[m],l[· − 2mk]

〉

=
1

N

N/2−1
∑

n=−N/2

ω2mkn
∣

∣

∣
θ̂2r

[m],l[n]
∣

∣

∣

2

=
1

N

N/2−1
∑

n=−N/2

ω2mkn
∣

∣

∣
ψ̂2r

[m],l[n]
∣

∣

∣

2

=
〈

ψ2r
[m],l, ψ

2r
[m],l[· − 2ml]

〉

= 0.
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Fig. 3.1. WPs ψ2r
[2],l (first, third and fifth from the top left frames) and θ2r

[2],l (second, fourth and sixth from the top left frames)

from the second decomposition level and their magnitude spectra, respectively (right frames).

If l = 0, we have

〈

θ2r
[m],0, θ

2r
[m],0[· − 2mk]

〉

=
1

N

N/2−1
∑

n=−N/2

ω2mkn
∣

∣

∣
ψ̂2r

[m],0[n]
∣

∣

∣

2

− 1

N
|ψ̂2r

[m],0[0]|2 = − 1

N
|ψ̂2r

[m],0[0]|2 6= 0.

Similarly we have
〈

θ2r
[m],2m−1, θ

2r
[m],2m−1[· − 2mk]

〉

6= 0. 2

Fig. 3.1 displays the wavelet packets ψ2r
[2],l and θ2r

[2],l, r = 1, 3, 5, l = 0, 1, 2, 3, and their magnitude spectra.

3.3. Complementary set of wavelet packets and quasi-analytic WPs

3.3.1. Complementary orthonormal WPs

The discrete-spline-based WPs
{

ψ2r
[m],l

}

are normalized and their 2m-sample shifts are mutually orthogo-

nal. Combinations of shifts of several wavelet packets can form orthonormal bases for the signal space Π[N ].

On the other hand, it is not true for the set
{

θ2r
[m],l

}

, l = 0, ...2m−1, of the antisymmetric waveforms, which

are the HTs of the WPs
{

ψ2r
[m],l

}

. At the decomposition level m, the waveforms
{

θ2r
[m],l

}

, l = 1, ...2m − 2,

are normalized and their 2m-sample shifts are mutually orthogonal, but the norms of the waveforms θ2r
[m],0

and θ2r
[m],2m−1 are close but not equal to 1 and their shifts are not mutually orthogonal. It happens because

the values θ̂2r
[m],j [0] and θ̂2r

[m],j [N/2] are missing in their DFT spectra.2 Keeping this in mind, we upgrade

the set
{

θ2r
[m],l

}

, l = 0, ...2m − 1 in the following way.

Define a set
{

ϕ2r
[m],l

}

, m = 1, ...,M, l = 0, ..., 2m − 1, of signals from the space Π[N ] via their DFTs:

ϕ̂2r
[m],l[n] =











−i ψ̂2r
[m],l[n], if 0 < n < N/2;

i ψ̂2r
[m],l[n], if −N/2 < n < 0 ;

ψ̂2r
[m],l[n], if n = 0, or n = N/2.

(3.3)

2 Recall that these values are real.
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Fig. 3.2. Left: signals θ6
[2],l, l = 0, 3 (top), and ϕ6

[2],l, l = 0, 3 (bottom). Right: their magnitude DFT spectra, respectively.

For all l 6= 0, 2m − 1, the signals ϕ2r
[m],l coincide with θ2r

[m],l = H(ψ2r
[m],l).

Proposition 3.3.

– The magnitude spectra
∣

∣

∣
ϕ̂2r

[m],l[n]
∣

∣

∣
coincide with the magnitude spectra of the respective WPs ψ2r

[m],l.

– For any m = 1, ...,M , and l = 1, ..., 2m − 2, the signals ϕ2r
[m],l are antisymmetric oscillating waveforms.

For l = 0 and l = 2m − 1, the shapes of the signals slightly deviate from the antisymmetry.

– The orthonormality properties that are similar to the properties of WPs ψ2r
[m],l hold for the signals ϕ2r

[m],l

such that

〈

ϕ2r
[m],l[· − p 2m], ϕ2r

[m],λ[· − s 2m]
〉

= δ[λ, l] δ[p, s].

The proof of Proposition 3.3 is similar to the proof of Proposition 3.2.

Fig. 3.2 displays the signals θ6
[2],l, l = 0, 3 and ϕ6

[2],l, l = 0, 3, from the second decomposition level and

their magnitude spectra. Lack of the values θ̂2r
[m],j [0] and θ̂2r

[m],j [N/2] in the DFTs of θ6
[2],l, l = 0, 3, are seen.

Addition of ψ̂2r
[m],j [0] and ψ̂2r

[m],j [N/2] to the above spectra results in the antisymmetry distortion.

We call the signals
{

ϕ2r
[m],l

}

, m = 1, ...,M, l = 0, ..., 2m−1, the complementary wavelet packets (cWPs).

Similarly to the WPs
{

ψ2r
[m],l

}

, different combinations of the cWPs can provide different orthonormal bases

for the space Π[N ]. These can be, for example, the wavelet bases







N/2M

⊕

r=0

ϕ2r
[M ],0[· − r 2M ]







M
⊕

m=1







N/2m

⊕

r=0

ϕ2r
[m],1[· − r 2m]







.

or a Best Basis [14] type.

3.3.2. Quasi-analytic WPs

The sets of complex-valued WPs, which we refer to as the quasi-analytic wavelet packets (qWP), are

defined as

Ψ2r
±[m],l = ψ2r

[m],l ± iϕ2r
[m],l, m = 1, ...,M, l = 0, ..., 2m − 1,
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where ϕ2r
[m],l are the cWPs defined in Eq. (3.3). The qWPs Ψ2r

±[m],l differ from the analytic WPs ψ̄2r
±[m],l

by the addition of the two values ±i ψ̂2r
[m],l[0] and ±i ψ̂2r

[m],l[N/2] into their DFT spectra, respectively. For

a given decomposition level m, these values are zero for all l except for l0 = 0 and lm = 2m − 1 (see

Proposition 2.4). It means that for all l except for l0 and lm, the qWPs Ψ2r
±[m],l are analytic. The DFTs of

qWPs are

Ψ̂2r
+[m],l[n] =











(1 + i)ψ̂2r
[m],l[n], if n = 0 or n = N/2;

2ψ̂2r
[m],l[n], if 0 < n < N/2;

0 if N/2 < n < N ,

(3.4)

Ψ̂2r
−[m],l[n] =











(1− i)ψ̂2r
[m],l[n], if n = 0 or n = N/2;

0 if 0 < n < N/2;

2ψ̂2r
[m],l[n], if N/2 < n < N .

3.3.3. Design of cWPs and qWPs

The DFTs of the first-level WPs are

ψ̂2r
[1],0[n] =

cos2r π n
N

√

U4r[n]
= β[n], ψ̂2r

[1],1[n] =
ωn sin2r π n

N
√

U4r[n]
= α[n],

where the sequence U4r[n] is defined in Eq. (1.3). Consequently, the DFTs of the first-level cWPs are

ϕ̂2r
[1],0[n] =



















−i β[n], if 0 < n < N/2;

i β[n], if N/2 < n < N ;√
2, if n = 0;

0, if n = N/2,

ϕ̂2r
[1],1[n] =



















−i α[n], if 0 < n < N/2;

i α[n], if N/2 < n < N ;

0, if n = 0;

−
√

2, if n = N/2.

(3.5)

Due to Eq. (2.8), the DFT of the second-level WPs are

ψ̂2r
[2],ρ[n] = ψ̂2r

[1],λ[n] ĥµ[2][n]1, λ, µ = 0, 1, ρ = 2λ+

{

µ, if λ = 0;

1− µ, if λ = 1.
,

ĥ0
[2][n]1 = β[2n], ĥ1

[2][n]1 = α[2n]. (3.6)

For example, assume λ = µ = 0 then we have

ψ̂2r
[2],0[n] = ψ̂2r

[1],0[n] ĥ0
[2][n]1 =

cos2r π n
N

√

U4r[n]

cos2r 2π n
N

√

U4r[2n]
.

Keeping in mind that the sequence β[2n] = cos2r(2π n/N)/
√

U4r[2n] is N/2-periodic, we have that the

DFT of the corresponding cWP is

ϕ̂2r
[2],0[n] = ̂H(ψ2r

[2],0)[n] = β[2n]



















−i β[n], if 0 < n < N/2;

i β[n], if N/2 < n < N ;

2, if n = 0;

0, if n = N/2,

= ϕ̂2r
[1],0[n] ĥ0

[2][n]1 = ϕ̂2r
[1],0[n] ĥ0

[1][2n]1.

Similar relations hold for all the second-level cWPs and a general statement is true.
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Proposition 3.4. Assume that for a WP ψ2r
[m+1],ρ the relation in Eq. (2.9) holds. Then, for the cWP ϕ2r

[m+1],ρ

we have

ϕ2r
[m+1],ρ[n] =

N/2m−1
∑

k=0

hµ[m+1][k]ϕ2r
[m],λ[n− 2mk]⇐⇒ ϕ̂2r

[m+1],ρ[ν] = ĥµ[1][2
mν]m ϕ̂

2r
[m],λ[ν],

ĥ0
[1][ν] = ψ̂2r

[1],0[ν] = β[ν], ĥ1
[1][ν] = ψ̂2r

[1],1[ν] = α[ν].

Corollary 3.5. Assume that for a WP ψ2r
[m+1],ρ, the relation in Eq. (2.9) holds. Then, for the qWP Ψ2r

±[m+1],ρ

we have

Ψ2r
±[m+1],ρ[n] =

N/2m−1
∑

k=0

hµ[m+1][k] Ψ2r
±[m],λ[n− 2mk]⇐⇒ Ψ̂2r

±[m+1],ρ[ν] = ĥµ[1][2
mν]m Ψ̂2r

±[m],λ[ν]. (3.7)

4. Implementation of cWP and qWP transforms

Implementation of transforms with WPs ψ2r
[m],λ was discussed in Section 2. In this section, we extend the

transform scheme to the transforms with cWPs ϕ2r
[m],λ and qWPs Ψ2r

[m],λ.

4.1. One-level transforms

Denote by 2rC0
[1] the subspace of the signal space Π[N ], which is the linear hull of the set W0

[1] =
{

ϕ2r
[1],0[· − 2k]

}

, k = 0, ..., N/2 − 1. The signals from the set W0
[1] form an orthonormal basis of the

subspace 2rC0
[1]. Denote by 2rC1

[1] the orthogonal complement of the subspace 2rC0
[1] in the space Π[N ]. The

signals from the set W1
[1] =

{

ϕ2r
[1],1[· − 2k]

}

, k = 0, ..., N/2− 1 form an orthonormal basis of the subspace
2rC1

[1].

Proposition 4.1. The orthogonal projections of a signal x ∈ Π[N ] onto the spaces 2rCµ[1], µ = 0, 1 are the

signals x
µ
[1] ∈ Π[N ] such that

xµ[1][k] =

N/2−1
∑

l=0

cµ[1][l]ϕ
2r
[1],µ[k − 2l], cµ[1][l] =

〈

x, ϕ2r
[1],µ[· − 2l]

〉

=
N−1
∑

k=0

gµ[1][k − 2l]x[k],

gµ[1][k] = ϕ2r
[1],µ[k], ĝµ[1][n] = ϕ̂2r

[1],µ[n], µ = 0, 1.

The DFTs ϕ̂2r
[1],µ[n] of the first-level cWPs are given in Eq. (3.5).

The transforms x → c0
[1]

⋃

c1
[1] and back are implemented using the analysis M̃c[n] and the synthesis

Mc[n] modulation matrices:

M̃c[n]
def
=

(

ĝ0
[1][n] ĝ0

[1]

[

n+ N
2

]

ĝ1
[1][n] ĝ1

[1]

[

n+ N
2

]

)

=

(

β̌[n] −β̌
[

n+ N
2

]

α̌[n] −α̌
[

n+ N
2

]

)

,

Mc[n]
def
=

(

β̌[n] α̌[n]

−β̌
[

n+ N
2

]

−α̌
[

n+ N
2

]

)

,

β̌[n] =

{

β[0], if n = 0;

−iβ[n], otherwise,
α̌[n] =

{

α[N/2], if n = N/2;

−iα[n], otherwise.

(4.1)

The sequences β[n] and α[n] are given in Eq. (2.3).
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Similarly to Eq. (2.5), the one-level cWP transform of a signal x and its inverse are:

(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

=
1

2
M̃c[−n] ·

(

x̂[n]

x̂[~n]

)

,

(

x̂[n]

x̂[~n]

)

= Mc[n] ·
(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

,

where ~n = n+N/2.

Define the p-filters

ql±[1]
def
= h

j
[1] ± ig

j
[1] = ψ2r

[1],l ± i ϕ2r
[1],l = Ψ2r

±[1],l, l = 0, 1.

Equation (3.4) implies that their frequency responses are

q̂0
+[1][n] =











(1 + i)
√

2, if n = 0;

2β[n], if 0 < n < N/2;

0 if N/2 ≤ n < N ,

q̂1
+[1][n] =











−(1 + i)
√

2, if n = N/2;

2α[n], if 0 < n < N/2;

0, if N/2 < n ≤ N .

q̂0
−[1][n] =











(1− i)
√

2, if n = 0;

2β[n], if N/2 < n < N ,

0 if 0 < n ≤ N/2;

q̂1
−[1][n] =











−(1− i)
√

2, if n = N/2;

2α[n] if N/2 < n ≤ N ;

0, if 0 ≤ n < N/2.

Thus, the analysis modulation matrices for the p-filters ql
±[1] are

M̃
q
+[n] =

(

q̂0
+[1][n] 0

q̂1
+[1][n] −

√
2(1 + i) δ[n−N/2]

)

= M̃[n] + i M̃c[n], (4.2)

M̃
q
−[n] =

(

(1− i)
√

2δ[n] q̂0
−[1][n]

0 q̂1
−[1][n]

)

= M̃[n]− i M̃c[n], (4.3)

where the modulation matrix M̃[n] is defined in Eq. (2.3) and M̃c[n] is defined in Eq. (4.1). Application of

the matrices M̃
q
±[n] to the vector (x̂[n], x̂[~n])T produces the vectors

(

ẑ0
±[1][n]1

ẑ1
±[1][n]1

)

=
1

2
(M̃q

±[n])∗ ·
(

x̂[n]

x̂[~n]

)

=

(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

∓ i
(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

.

Define the matrices M
q
±[n]

def
= M̃

q
±[n] = M[n]± iMc[n] and apply these matrices to the vectors

(ẑ0
±[1][n]1, ẑ

1
±[1][n]1)T . Here the modulation matrix M[n] is defined in Eq. (2.4) and Mc[n] is defined in

Eq. (4.1).

Proposition 4.2. The following relations hold

M
q
±[n] ·

(

ẑ0
±[1][n]1

ẑ1
±[1][n]1

)

= M[n] ·
(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

+ Mc[n] ·
(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

±i
(

Mc[n] ·
(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

−M[n] ·
(

ĉ0
[1][n]1

ĉ1
[1][n]1

))

= 2

((

x̂[n]

x̂[n+N/2]

)

±i
(

ĥ[n]

ĥ[n+N/2]

))

= 2

(

ˆ̄x±[n]
ˆ̄x±[n+N/2]

)

,

where h is the HT of the signal x ∈ Π[N ] and x̄± are the analytic signals associated with x.
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Proof. In Appendix section A. 2

Definition 4.3. The matrices M̃
q
±[n] and M

q
±[n] are called the analysis and synthesis modulation matrices

for the qWP transform, respectively.

Corollary 4.4. Successive application of filter banks defined by the analysis and synthesis modulation matrices

M̃
q
±[n] and M

q
±[n] to a signal x ∈ Π[N ] produces the analytic signals x̄± associated with x.

Corollary 4.5. A signal x ∈ Π[N ] is represented by the redundant orthonormal system

x[k] =
1

2

1
∑

µ=0

N/2−1
∑

l=0

(

yµ[1][l]ψ
2r
[1],µ[k − 2l] + cµ[1][l]ϕ

2r
[1],µ[k − 2l]

)

,

yµ[1][l] =
〈

x, ψ2r
[1],µ[· − 2l]

〉

, cµ[1][l] =
〈

x, ϕ2r
[1],µ[· − 2l]

〉

.

Thus, the system

F
def
=
{

ψ2r
[1],0[· − 2l]

}

⊕

{

ψ2r
[1],1[· − 2l]

}

⋃

{

ϕ2r
[1],0[· − 2l]

}

⊕

{

ϕ2r
[1],1[· − 2l]

}

form a tight frame of the space Π[N ].

4.2. Multi-level transforms

It was explained in Section 2.4.2 that the second-level transform coefficients y
ρ
[2] are

yρ[2][l] =
N−1
∑

n=0

x[n]ψ2r
[2],ρ[n− 4l], ψ2r

[2],ρ[n] =

N/2−1
∑

k=0

hµ[2][k]ψ2r
[1],λ[n− 2k] =⇒

yρ[2][l] =

N/2−1
∑

k=0

hµ[2][k − 2l] yλ[1][k], λ, µ = 0, 1, ρ =

{

µ, if λ = 0 ;

3− µ, if λ = 1.

The frequency responses of the p-filters h
µ
[2] are given in Eq. (2.6) and Eq. (3.6). Recall that ĥµ[2][n] = ĥµ[1][2n].

The direct and inverse transforms yλ[1] ←→ y2λ
[2]

⋃

y2λ+1
[2] are implemented using the analysis and synthesis

modulation matrices M̃[2n] and M[2n], that are defined in Eqs. (2.3) and (2.4) respectively:

(

ŷρ0
[2][n]2

ŷρ1
[2][n]2

)

=
1

2
M̃[−2n] ·

(

ŷλ[1][n]1

ŷλ[1][~n]1

)

,

(

ŷλ[1][n]1

ŷλ[1][~n]1

)

= M[2n] ·
(

ŷρ0
[2][n]2

ŷρ1
[2][n]2

)

,

where

ρ0 =

{

0, if λ = 0;

3, if λ = 1,
ρ1 =

{

1, if λ = 0;

2, if λ = 1,
~n = n+N/4.

The second-level transform coefficients c
ρ
[2] are

cρ[2][l] =

N−1
∑

n=0

x[n]ϕ2r
[2],ρ[n− 4l], ϕ2r

[2],ρ[n] =

N/2−1
∑

k=0

hµ[2][k]ϕ2r
[1],λ[n− 2k] =⇒
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cρ[2][l] =

N/2−1
∑

k=0

hµ[2][k − 2l] cλ[1][k], λ, µ = 0, 1, ρ =

{

µ, if λ = 0 ;

3− µ, if λ = 1.

We emphasise that the p-filters h
µ
[2] for the transform cλ[1] ←→ c2λ

[2]

⋃

c2λ+1
[2] are the same that the p-filters

for the transform yλ[1] ←→ y2λ
[2]

⋃

y2λ+1
[2] . Therefore, the direct and inverse transforms cλ[1] ←→ c2λ

[2]

⋃

c2λ+1
[2]

are implemented using the same analysis and synthesis modulation matrices M̃[2n] and M[2n]. Apparently,

it is the case also for the transforms zλ
±[1] ←→ z2λ

±[2]

⋃

z2λ+1
±[2] . The transforms to subsequent decomposition

levels are implemented in an iterative way:

(

ẑρ0
±[m+1][n]m+1

ẑρ1
±[m+1][n]m+1

)

=
1

2
M̃[−2mn] ·

(

ẑλ
±[m][n]m

ẑλ
±[m][~n]m

)

,

(

ẑλ
±[m][n]m

ẑλ
±[m][~n]m

)

= M[2mn] ·
(

ẑρ0
±[m+1][n]m+1

ẑρ1
±[m+1][n]m+1

)

,

where ρ0 =

{

2λ, if λ is even;

2λ+ 1, if λ is odd,
and vice versa for ρ1, ~n = n + N/2m+1 and m = 1, ...,M . By the

application of the inverse DFT to the arrays
{

ẑρ
±[m+1][n]m+1

}

, we get the arrays
{

zρ
±[m+1][k] = yρ[m+1][k]± i cρ[m+1][k]

}

of the transform coefficients with the qWPs Ψ2r
±[m+1],ρ.

Remark 4.1. We stress that by operating on the transform coefficients
{

zρ
±[m][k]

}

, we simultaneously operate

on the arrays
{

yρ[m][k]
}

and
{

cρ[m][k]
}

, which are the coefficients for the transforms with the WPs ψ2r
[m],ρ and

cWPs ϕ2r
[m],ρ, respectively. The execution speed of the transform with the qWPs

{

Ψ2r
±[m]

}

= ψ2r
[m] ± iϕ2r

[m] is

the same as the speed of the transforms with either WPs
{

ψ2r
[m]

}

or cWPs
{

ϕ2r
[m]

}

.

The transforms are executed in the spectral domain using the FFT by the application of critically sampled

two-channel filter banks to the half-band spectral components (x̂[n], x̂[n+N/2])T of a signal.

The diagrams in Figs. 4.1 and 4.2 illustrate the three-level forward and inverse qWPTs of a signal with

quasi-analytic wavelet packets, which use the analysis M̃q[n] and the synthesis Mq[n] modulation matrices,

respectively, for the transforms to and from the first decomposition level, respectively, and the modulation

matrices M̃[2mn] and M[2mn] for the subsequent levels.

Remark 4.2. The decomposition of a signal x ∈ Π[N ] down to the M -th level produces 2MN transform

coefficients
{

yρ[m][k]
}

⋃

{

cρ[m][k]
}

. Such a redundancy provides many options for the signal reconstruction.

Some of them are listed below.

• A basis compiled from either WPs
{

ψ2r
[m]

}

or
{

ϕ2r
[m]

}

.

– Wavelet basis.

– Best bases [14], Local discriminant bases [36,37].

– WPs from a single decomposition level.

• Combination of bases compiled from both
{

ψ2r
[m]

}

and
{

ϕ2r
[m]

}

WPs generates a tight frame of the space

Π[N ] with redundancy rate 2. The bases for
{

ψ2r
[m]

}

and
{

ϕ2r
[m]

}

can have a different structure.

• Frames with increased redundancy rate. For example, a combined reconstruction from several decom-

position levels.
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Fig. 4.1. Forward qWTP of a signal X down to the third decomposition level with quasi-analytic wavelet packets. Here ~n means
n + N/8.

Fig. 4.2. Inverse qWTP from the transform coefficients from the third decomposition level that results in restoration of the signal
X and its HT H(X).

The collection of WPs
{

ψ2r
[m]

}

and cWPs
{

ϕ2r
[m]

}

, which originate from discrete splines of different orders

2r, provides a variety of waveforms that are (anti)symmetric, well localized in time domain. Their DFT

spectra are flat and the spectra shapes tend to rectangles when the order 2r increases. Therefore, they can

be utilized as a collection of band-pass filters which produce a refined split of the frequency domain into
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bands of different widths. The (c)WPs can be used as testing waveforms for the signal analysis, such as a

dictionary for the Matching Pursuit procedures [32,5].

5. Two-dimensional complex wavelet packets

A standard design scheme for 2D wavelet packets is outlined in Section 2.5. The 2D wavelet packets are

defined as the tensor products of 1D WPs such that

ψ2r
[m],j,l[k, n] = ψ2r

[m],j [k]ψ2r
[m],l[n].

The 2m-sample shifts of the WPs
{

ψ2r
[m],j,l

}

, j, l = 0, ..., 2m − 1, in both directions form an orthonormal

basis for the space Π[N,N ] of arrays that are N -periodic in both directions. The DFT spectrum of such a

WP is concentrated in four symmetric spots in the frequency domain as it is seen in Fig. 2.3.

Similar properties are inherent to the 2D cWPs such that

ϕ2r
[m],j,l[k, n] = ϕ2r

[m],j [k]ϕ2r
[m],l[n].

5.1. Design of 2D directional WPs

5.1.1. 2D complex WPs and their spectra

The WPs
{

ψ2r
[m],j,l

}

as well as the cWPs
{

ϕ2r
[m],j,l

}

lack the directionality property which is needed

in many applications that process 2D data. However, real-valued 2D wavelet packets oriented in multiple

directions can be derived from tensor products of complex quasi-analytic qWPs Ψ2r
±[m],ρ.

The complex 2D qWPs are defined as follows:

Ψ2r
++[m],j,l[k, n]

def
= Ψ2r

+[m],j [k] Ψ2r
+[m],l[n],

Ψ2r
+−[m],j,l[k, n]

def
= Ψ2r

+[m],j [k] Ψ2r
−[m],l[n],

where m = 1, ...,M, j, l = 0, ..., 2m−1, and k, n = −N/2, ..., N/2−1. The real and imaginary parts of these

2D qWPs are

ϑ2r
+[m],j,l[k, n]

def
= Re(Ψ2r

++[m],j,l[k, n]) = ψ2r
[m],j,l[k, n]− ϕ2r

[m],j,l[k, n],

ϑ2r
−[m],j,l[k, n]

def
= Re(Ψ2r

+−[m],j,l[k, n]) = ψ2r
[m],j,l[k, n] + ϕ2r

[m],j,l[k, n],
(5.1)

θ2r
+[m],j,l[k, n]

def
= Im(Ψ2r

++[m],j,l[k, n]) = ψ2r
[m],j [k]ϕ2r

[m],l[n] + ϕ2r
[m],j [k]ψ2r

[m],l[n],

θ2r
−[m],j,l[k, n]

def
= Im(Ψ2r

+−[m],j,l[k, n]) = ϕ2r
[m],j [k]ψ2r

[m],l[n]− ψ2r
[m],j [k]ϕ2r

[m],l[n].
(5.2)

The DFT spectra of the 2D qWPs Ψ2r
++[m],j,l, j, l = 0, ..., 2m − 1, are the tensor products of the one-sided

spectra of the qWPs:

Ψ̂2r
++[m],j,l[p, q] = Ψ̂2r

+[m],j [p] Ψ̂2r
+[m],l[q]

and, as such, they fill the quadrant k, n = 0, ..., N/2 − 1 of the frequency domain, while the spectra of

Ψ2r
+−[m],j,l, j, l = 0, ..., 2m − 1, fill the quadrant k = 0, ..., N/2 − 1, n = −N/2, ...,−1. Fig. 5.1 displays

the magnitude spectra of the tenth-order 2D qWPs Ψ10
++[2],j,l and Ψ10

+−[2],j,l from the second decomposition

level.
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Fig. 5.1. Magnitude spectra of 2D qWPs Ψ10
+−[2],j,l (left) and Ψ10

++[2],j,l (right) from the second decomposition level.

Remark 5.1. The 2D qWPs Ψ2r
+±[m],j,l are the tensor products of 1D qWPs from the decomposition level

m. However, there are no problems to design the 2D qWPs as tensor products of 1D qWPs from different

decomposition levels such as Ψ2r
+±[m,s],j,l[k, n]

def
= Ψ2r

+[m],j [k] Ψ2r
±[s],l[n].

5.1.2. Directionality of real-valued 2D WPs

It is seen in Fig. 5.1 that the DFT spectra of the qWPs Ψ10
+±[m],j,l effectively occupy relatively small

squares in the frequency domain. For deeper decomposition levels, sizes of the corresponding squares decrease

in geometric progression. Such configurations of the spectra lead to the directionality of the real-valued 2D

WPs ϑ2r
±[m],j,l and θ2r

±[m],j,l.

Assume, for example, that N = 512, m = 3, j = 2, l = 5 and denote Ψ[k, n]
def
= Ψ2r

++[3],2,5[k, n] and

ϑ[k, n]
def
= Re(Ψ[k, n]). Its magnitude spectrum

∣

∣

∣
Ψ̂[j, l]

∣

∣

∣
, displayed in Fig. 5.2, effectively occupies the square

of size 40× 40 pixels centered around the point C = [κ0, ν0], where κ0 = 78, ν0 = 178. Thus, the WP Ψ is

represented by

Ψ[k, n] =
1

N2

N/2−1
∑

κ,ν=0

ωkκ+nν Ψ̂[κ, ν] ≈ ωκ0k+ν0n Ψ[k, n]

Ψ[k, n]
def
=

1

N2

19
∑

κ,ν=−20

ωkκ+nν Ψ̂[κ+ κ0, ν + ν0].

Consequently, the real-valued WP ϑ, whose magnitude spectrum is displayed in Fig, 5.2 (second from left),

is represented as follows:

ϑ[k, n] ≈ cos
2π(κ0k + ν0n)

N
Re(Ψ[k, n]) + cos

(

2π(κ0k + ν0n)

N
− π

2

)

Im(Ψ[k, n]).

The spectrum of the 2D signal ϑ comprises only low frequencies in both directions and it does not have

a directionality. But the 2D signal cos 2π(κ0k+ν0n)
N is oscillating in the direction of the vector ~D, which is

orthogonal to the vector ~V++[2],2,5 = 178~i + 78~j. The 2D WP ϑ[k, n] is well localized in the spatial domain

as is seen from Eq. (5.1) and the same is true for the low-frequency signal ϑ. Therefore, WP ϑ[k, n] can be

regarded as the directional cosine modulated by the localized low-frequency signal ϑ.

The same arguments are applicable to the 2D WPs ϑp
−[m],j,l[k, n] = Re(Ψp

+−[m],j,l[k, n]). Fig. 5.2 displays

the low-frequency signal ϑ, its magnitude spectrum and the 2D WP ϑ[k, n].
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Fig. 5.2. Magnitude spectra of 2D qWP Ψ[k, n] (left) and Re(Ψ) = ϑ[k, n] (second from left). Center: magnitude spectrum of
low-frequency signal ϑ[k, n]. Second from right: signal ϑ[k, n]. Right: 2D WP ϑ[k, n] (magnified).

Fig. 5.3. WPs ϑ10
+[2],j,l from the second decomposition level (left) and their magnitude spectra (right).

Fig. 5.4. WPs ϑ10
−[2],j,l from the second decomposition level (left) and their magnitude spectra (right).

Fig. 5.3 displays WPs ϑ10
+[2],j,l, j, l = 0, 1, 2, 3, from the second decomposition level and their magnitude

spectra, respectively. Fig. 5.4 displays WPs ϑ10
−[2],j,l, j, l = 0, 1, 2, 3, from the second decomposition level

and their magnitude spectra, respectively.
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Fig. 5.5. WPs ϑ10
+[3],j,l (left) and ϑ10

−[3],j,l (right) from the third decomposition level.

Fig. 5.5 displays the WPs ϑ2r
±[3],j,l from the third decomposition level.

6. Implementation of 2D qWP transforms

The spectra of 1D qWPs
{

Ψ2r
+[m],j

}

, j = 0, ..., 2m − 1, fill the non-negative half-band [0, N/2], and vice

versa for the qWPs
{

Ψ2r
−[m],j

}

, j = 0, ..., 2m − 1. Therefore, the spectra of 2D qWPs
{

Ψ2r
++[m],j,l

}

, j, l =

0, ..., 2m − 1 fill the quadrant [0, N/2 − 1] × [0, N/2 − 1] of the frequency domain, while the spectra of 2D

qWPs
{

Ψ2r
+−[m],j,l

}

fill the quadrant [0, N/2− 1]× [−N/2,−1]. It is clearly seen in Fig. 6.1.

Consequently, the spectra of the real-valued 2D WPs
{

ϑ2r
+[m],j,l

}

, j, l = 0, ..., 2m− 1, and
{

ϑ2r
−[m],j,l

}

fill

the pairs of quadrant Q+
def
= [0, N/2−1]× [0, N/2−1]

⋃

[−N/2,−1]× [−N/2,−1] and Q−
def
= [0, N/2−1]×

[−N/2,−1]
⋃

[−N/2,−1]× [0, N/2− 1], respectively (Fig. 6.1).

By this reason, no linear combination of the WPs
{

ϑ2r
+[m],j,l

}

and their shifts can serve as a basis in the

signal space Π[N,N ]. The same is true for WPs
{

ϑ2r
−[m],j,l

}

. However, combinations of the WPs
{

ϑ2r
±[m],j,l

}

provide frames of the space Π[N,N ].

6.1. One-level 2D transforms

The one-level 2D qWP transforms of a signal X = {X[k, n]} ∈ Π[N,N ] are implemented by a tensor-

product scheme mentioned in Section 2.5.

6.1.1. Direct transforms with qWPs Ψ2r
+±[1]

Denote by T̃h
± the 1D transforms of row signals from Π[N ] with the analysis modulation matrices M̃

q
±

which are defined in Eq. (4.2). Application of these transforms to rows of a signal X produces the coefficient

arrays

T̃h
+·X =

(

ζ0
+, ζ

1
+

)

, ζj+[k, n] = ηj [k, n]− i ξj [k, n],

T̃h
−·X =

(

ζ0
−, ζ

1
−

)

, ζj−[k, n] = ηj [k, n] + i ξj [k, n] = (ζj+[k, n])∗,
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Fig. 6.1. Magnitude spectra of qWPs Ψ10
++[1],j,l (left) and Ψ10

+−[1],j,l (right) from the first decomposition level.

ηj [k, n] =
〈

X[k, ·], ψ2r
[1],j [· − 2n]

〉

, ξj [k, n] =
〈

X[k, ·], ϕ2r
[1],j [· − 2n]

〉

, j = 0, 1.

Denote by Th
± the 1D inverse transforms with the synthesis modulation matrices M

q
±. Due to Propo-

sition 4.2, application of these transforms to rows of the coefficient arrays ζ± =
(

ζ0
±, ζ

1
±

)

, respectively,

produces the 2D analytic signals:

Th
±·(ζ0

±, ζ
1
±) = 2X̄± = 2(X± iH(X)), (6.1)

where H(X) is the 2D signal consisting of the HTs of rows of the signal X.

Denote by T̃v
+ the direct 1D transform determined by the modulation matrix M̃

q
+ applicable to columns

of the corresponding signals. The next step of the tensor product transform consists of the application of

the 1D transform T̃v
+ to columns of the arrays ζj , j = 0, 1. As a result, we get four transform coefficients

arrays:

T̃v
+·ζl+ = T̃v

+·
(

ηl − i ξl
)

=

{

(

α0,l − i β0,l
)

− i
(

γ0,l − i δ0,l
)

(

α1,l − i β1,l
)

− i
(

γ1,l − i δ1,l
)

=

{

Z
0,l
+[1] = Y

0,l
+[1] − iC

0,l
+[1], Y

0,l
+[1] = α0,l − δ0,l, C

0,l
+[1] = β0,l + γ0,l

Z
1,l
+[1] = Y

1,l
+[1] − iC

1,l
+[1], Y

1,l
+[1] = α1,l − δ1,l, C

1,l
+[1] = β1,l + γ1,l

,

αj,l[k, n] =

N−1
∑

λ,µ=0

X[λ, µ], ψ2r
[1],j [λ− 2k]ψ2r

[1],l[µ− 2n],

δj,l[k, n] =
N−1
∑

λ,µ=0

X[λ, µ], ϕ2r
[1],j [λ− 2k]ϕ2r

[1],l[µ− 2n],

βj,l[k, n] =
N−1
∑

λ,µ=0

X[λ, µ], ψ2r
[1],j [λ− 2k]ϕ2r

[1],l[µ− 2n],

γj,l[k, n] =

N−1
∑

λ,µ=0

X[λ, µ], ϕ2r
[1],j [λ− 2k]ψ2r

[1],l[µ− 2n], j, l = 0, 1.

Hence, it follows that
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Y j,l+[1][k, n] =
∑N−1
λ,µ=0 X[λ, µ]ϑ2r

+[1],j,l[λ− 2k, µ− 2n],

Cj,l+[1][k, n] =
∑N−1
λ,µ=0 X[λ, µ] θ2r

+[1],j,l[λ− 2k, µ− 2n],

Zj,l+[1][k, n] =
∑N−1
λ,µ=0 X[λ, µ] Ψ2r

++[1],j,l[λ− 2k, µ− 2n], j, l = 0, 1.

(6.2)

Remark 6.1. Recall that the DFT spectra of WPs ϑ2r
+[1],j,l and θ2r

+[1],j,l, j, l = 0, 1, which are the real and

imaginary parts of the qWP Ψ2r
++[1],j,l, are confined within the area Q+ of the frequency domain. It is seen

from Eq. (6.2) that if at least a part of the spectrum of a signal X ∈ Π[N,N ] is located in the area Q−,

then the signal X ∈ Π[N,N ] cannot be fully restored from the transform coefficients Zj,l+[1][k, n], although

their number is the same as the number of samples in the signal X. To achieve a perfect reconstruction, the

coefficients from the arrays Z
j,l
−[1] should be incorporated.

The coefficient arrays Z
j,l
−[1] are derived in the same way as the arrays Z

j,l
+[1]. The only difference is that,

for the 1D transform T̃h
− the modulation matrix M̃

q
− is used instead of M̃

q
+. For the transform T̃v

−, the

modulation matrix M̃
q
+ is used. Consequently, to derive the coefficient arrays Z

j,l
−[1], the transform T̃v

+

should be applied to columns of the arrays ζl− = (ζl+)∗. As a result, we get

Z
j,l
−[1] = Y

j,l
−[1] + iCj,l

−[1] =

N−1
∑

λ,µ=0

X[λ, µ],Ψ2r
+−[1],j,l[λ− 2k, µ− 2n], j, l = 0, 1.

6.1.2. Inverse transforms with qWPs Ψ2r
+±[1]

Denote by Tv
+ the 1D inverse transform with the synthesis modulation matrix M

q
+ applicable to columns

of the coefficient arrays. Denote by H(ζl±), l = 0, 1, the HTs of the arrays consisting of columns of the

coefficient arrays ζj±. Proposition 4.2 implies that

Tv
+·
(

Z
0,l
+[1]

Z
1,l
+[1]

)

= 2ζ̄l+, Tv
+·
(

Z
0,l
−[1]

Z
1,l
−[1]

)

= 2ζ̄l−,

where l = 0, 1 and ζ̄l± = ζl± + iH(ζl±) are analytic coefficient arrays. Denote by G a signal from Π[N,N ]

such that

T̃h
±·G =

(

H(ζ0
±), H(ζ1

±)
)

=⇒ Th
±·
(

H(ζ0
±), H(ζ1

±)
)

= 4(G± iH(G)). (6.3)

Equations (6.1) and (6.3) imply that the applications of the transforms Th
± to rows of the respective

coefficient arrays results in the following relations:

X+
def
= Th

+·
(

ζ̄0
+, ζ̄

1
+

)

= 4 (X + iH(X) + iG−H(G)) , (6.4)

X−
def
= Th

−·
(

ζ̄0
−, ζ̄

1
−

)

= 4 (X− iH(X) + iG +H(G)) .

Finally, we have the signal X restored by X = Re(X+ + X−)/8.

Figs. 6.2 and 6.3 illustrate the image “Barbara” restoration by the 2D signals Re(X±) and X = Re(X+ +

X−)/8. The signal Re(X−) captures edges oriented to north-west, while Re(X+) captures edges oriented

to north-east. The signal X perfectly restores the image achieving PSNR=313.8596 dB.

6.2. Multi-level 2D transforms

It was established in Section 4.2 that the 1D qWP transforms of a signal x ∈ Π[N ] to the second

and further decomposition levels are implemented by the iterated application of the filter banks, that are
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Fig. 6.2. Top: Partially restored “Barbara” image by Re(X+) (left) and by Re(X−) (right). Bottom: Magnitude DFT spectrum of
X+ (left) and spectrum of X− (right).

Fig. 6.3. Left: Original “Barbara” image. Right: Fully restored image by Re(X+ + X−)/8.

determined by their analysis modulation matrices M̃[2mn], m = 1, ...,M−1, to the coefficients arrays zλ
±[m].

The transforms applied to the arrays zλ
±[m] produce the arrays z

ρ
±[m+1], respectively. The inverse transform

consists of the iterated application of the filter banks that are determined by their synthesis modulation
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matrices M[2mn], m = 1, ...,M − 1, to the coefficients arrays z
ρ
±[m+1]. In that way the first-level coefficient

arrays zλ
±[1], λ = 0, 1 are restored.

The tensor-product of the 2D transforms of a signal X ∈ Π[N,N ] consists of the subsequent application

of the 1D transforms to columns and rows of the signal and coefficients arrays. By application of filter

banks, which are determined by the analysis modulation matrix M̃[2n] to columns and rows of coefficients

array Z
j,l
±[1], we derive four second-level arrays Z

ρ,τ
±[2], ρ = 2j, 2j + 1; τ = 2l, 2l + 1. The arrays Z

j,l
±[1] are

restored by the application of the filter banks that are determined by their synthesis modulation matrices

M[2n] to rows and columns of the coefficients arrays Z
ρ,τ
±[2], ρ = 2j, 2j + 1; τ = 2l, 2l + 1. The transition

from the second to further levels and back are executed similarly using the modulation matrices M̃[2mn]

and M[2mn], respectively. The inverse transforms produce the coefficients arrays Z
j,l
±[1], j, l = 0, 1, from

which the signal X ∈ Π[N,N ] is restored using the synthesis modulation matrices M
q
±[n] as it is explained

in Section 6.1.2.

All the computations are implemented in the frequency domain using the FFT. For example, the Matlab

execution of the 2D qWP transform of a 512× 512 image down to the sixth decomposition level takes 1.34

seconds. The four-level transform takes 0.28 second.

Summary The 2D qWP processing of a signal X ∈ Π[N,N ] is implemented by a dual-tree scheme. The

first step produces two sets of the coefficients arrays: Z+[1] =
{

Z
j,l
+[1]

}

, j, l,= 0, 1, which are derived using

the analysis modulation matrix M̃
q
+[n], and Z−[1] =

{

Z
j,l
−[1]

}

, j, l,= 0, 1, which are derived using the

analysis modulation matrix M̃
q
−[n]. Further decomposition steps are implemented in parallel on the sets

Z+[1] and Z−[1] using the same analysis modulation matrix M̃[2mn], thus producing two multi-level sets of

the coefficients arrays
{

Z
j,l
+[m]

}

and
{

Z
j,l
−[m]

}

, m = 2, ...,M, j, l = 0, 2m − 1.

By parallel implementation of the inverse transforms on the coefficients from the sets
{

Z
j,l
+[m]

}

and
{

Z
j,l
−[m]

}

using the same synthesis modulation matrix M[2mn], the sets Z+[1] and Z−[1] are restored, which,

in turn, provide the signals X+ and X−, using the synthesis modulation matrices M
q
+[n] and M

q
−[n],

respectively. Typical signals X± and their DFT spectra are displayed in Fig. 6.2.

Prior to the reconstruction, some structures, possibly different, are defined in the sets
{

Z
j,l
+[m]

}

and
{

Z
j,l
−[m]

}

, m = 1, ...M , (2D wavelet or Best Basis structures, for example) and some manipulations on the

coefficients, (thresholding, l1 minimization, for example) are executed.

7. Numerical examples

In this section, we present examples of application of the 2D qWPs to image restoration. The experiments

are aimed to confirm the feasibility of the qWPs for such problems rather than to achieve state-of-the-art

results. The examples illustrate the ability of the qWPs to restore edges and texture details even from

severely damaged images. Certainly, this ability stems from the fact that the designed 2D qWP transforms

provide a variety of 2D waveforms oriented in multiple directions, from perfect frequency resolution of these

waveforms and, last but not least, from oscillatory structure of many waveforms.

7.1. Denoising examples

One of the best image denoising methods is the BM3D algorithm ([16]), which exploits the non-local

self-similarity (NSS) and sparsity of images in a transform domain. This method is especially efficient with

restoration of moderately noised images. However, the BM3D tends to over-smooth and smear the image fine

structure and edges when noise is strong. Also, the BM3D is not success when the image contains many edges



ARTICLE IN PRESS

Please cite this article in press as: A. Averbuch et al., Analytic and directional wavelet packets in the space of periodic signals,
Appl. Comput. Harmon. Anal. (2023), https://doi.org/10.1016/j.acha.2023.06.006

JID:YACHA AID:1571 /FLA [m3L; v1.338] P.30 (1-42)

30 A. Averbuch et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Fig. 7.1. Top left: Original “Pentagon” image. Top right: Image corrupted by noise with σ = 40 dB, PSNR=16.09 dB. Bottom right:
The hybrid-restored image Xh, PSNR=27.29 dB. Bottom left: BM3D-restored image Xbm, PSNR=27.09 dB.

oriented in multiple directions. On the other hand, algorithms that use directional oscillating waveforms

provide an opportunity to capture lines, edges and texture details. Therefore, it is natural to combine the

qWP-based and BM3D algorithms in order to retain strong features of both algorithms and to get rid of

their drawbacks. The qWP-based denoising method (qWPdn) consists of multiscale qWP transform of the

degraded image, application of adaptive localized soft thresholding to the transform coefficients using the

Bivariate Shrinkage methodology [15], and restoration of the image from the thresholded coefficients from

several decomposition levels. The hybrid qWPdn–BM3D method consists of several iterations of qWPdn

and BM3D algorithms in a way that at each iteration, the output from one algorithm boosts the input to

the other. The scheme is outlined in Appendix.
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Fig. 7.2. Fragments of the images shown in Fig. 7.1.

A couple of following examples illustrate advantages of such a hybrid method over the original BM3D

algorithm.

7.1.1. Example I: “pentagon” image

The “Pentagon” image X of size 1024× 1024 was corrupted by additive Gaussian noise with σ=40 dB.

As a result, the PSNR of the corrupted image Xσ was 16.09 dB.

The corrupted image was restored by the BM3D and hybrid algorithms. For the latter algorithm, direc-

tional qWPs Ψ8
++[m] and Ψ8

+−[m] originating from the eighth-order discrete splines were used.

Figs. 7.1 and 7.2 display the outputs from the “Pentagon” image reconstruction by the hybrid and the

original BM3D algorithms. The hybrid-restored image Xh has PSNR=27.29 dB versus PSNR=27.09 dB for

the BM3D-restored image Xbm. Visually, image Xh is cleaner in comparison to Xbm and more fine details

are restored.

7.1.2. Example II: “barbara” image

We present two cases with the “Barbara” image. In one case, the image was corrupted by an additive

Gaussian noise with σ=40 dB and in the other, the noise was more intensive with σ=60 dB. In both cases,

the “Barbara” image was restored by the same scheme as the “Pentagon” image above.

Noise with σ=40 dB: Figs. 7.3 and 7.4 are the outputs from the image reconstruction by using the hybrid

qWPT-BM3D algorithm and the original BM3D algorithm. The qWPT-BM3D-restored image Xh has
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Fig. 7.3. Top left: Original “Barbara” image. Top right: Image corrupted by noise with σ=40 dB, PSNR=16.09 dB. Bottom right:
The hybrid-restored image Xh, PSNR=28.55 dB. Bottom left: BM3D restored image Xbm, PSNR=28.19 dB.

PSNR=28.55 dB versus PSNR=28.19 dB for the BM3D-restored image Xbm. Visually, the image Xh is

cleaner in comparison to Xbm and almost all edges and the texture structure are restored.

Noise with σ=60 dB: In this case, the PSNR of the corrupted image was 12.57 dB. The same operations

as in the previous case were applied to the corrupted image. Figs. 7.5 and 7.6 display results of the im-

age reconstruction by using the hybrid qWPT-BM3D algorithm and the original BM3D algorithm. The

hybrid-restored image Xh has PSNR=26.51 dB versus PSNR=26.34 dB for the BM3D-restored image Xbm.

Visually, the image Xh is much cleaner in comparison to Xbm and many edges and the texture structure

are restored.

7.2. Image restoration examples

In this section we present a few cases of image restoration using directional qWPs. Images to be restored

were degraded by blurring, aggravated by random noise and random loss of significant number of pixels.

In our previous work ([3] and Chapter 18 in [6]) we developed the image restoration scheme utilizing 2D

wavelet frames designed in Chapter 18 of [6]. In the examples presented below we use, generally, the same
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Fig. 7.4. Fragments of the images shown in Fig. 7.3.

scheme as in [6] with the difference that the directional qWPs designed in Section 6 are used instead of

wavelet frames.

7.2.1. Brief outline of the restoration scheme

Images are restored by the application of the split Bregman iteration (SBI) scheme [19] that uses the

so-called analysis-based approach (see for example [27]).

Denote by u = {u[κ, ν]} the original image array to be restored from the degraded array f = K u + ε,

where K denotes the operator of 2D discrete convolution of the array u with a kernel k = {k[κ, ν]}, and

ε = {ek,n} is the random error array. K∗ denotes the conjugate operator of K, which implements the discrete

convolution with the transposed kernel kT . If some number of pixels are missing then the image u should

be restored from the available data

PΛ f = PΛ (K u + ε), (7.1)

where PΛ denotes the projection on the remaining set of pixels.

The solution scheme is based on the assumption that the original image u can be sparsely represented

in the qWP domain. Denote by F̃ the operator of qWP expansion of the image u. To be specific, the 2D
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Fig. 7.5. Top left: Original “Barbara” image. Top right: Image corrupted by noise with σ=60 dB, PSNR=12.57 dB. Bottom right:
The qWPT–BM3D-restored image Xh, PSNR=26.51 dB. Bottom left: BM3D-restored image Xnd, PSNR=26.34 dB.

transform of the signal X with directional qWP Ψ2r
++[m] and Ψ2r

+−[m] down to level M is implemented to

generate two sets of the coefficients arrays
{

Z
j,l
+[m]

}

and
{

Z
j,l
−[m]

}

, m = 1, ...M, j, l = 0, ..., 2m − 1. In

each of the sets
{

Z
j,l
±[m]

}

either “Best Basis” or “basis”, which consist of shifts of all the WPs from the

decomposition level M , are selected. The bases are designated by B±[M ]. The number of the transform

coefficients Z±[B] associated with each basis is the same as the number N2 of pixels in the image. Thus,

C
def
= F̃ u = Z+[B]

⋃

Z−[B] is the set of the transform coefficients.

Denote by F the reconstruction operator of the image u from the set of the transform coefficients. We

get F C = u = Re(u+ + u−)/8, F F̃ = I, where I is the identity operator.

An approximate solution to Eq. (7.1) is derived via minimization of the functional

min
u

1

2
‖PΛ (K u− f)‖2

2 + λ
∥

∥F̃ u
∥

∥

1
, (7.2)

where ‖·‖1 and ‖·‖2 are the l1 and the l2 norms of the sequences, respectively. If x = {x[κ, ν]} , κ =

0, ..., k, ν = 0, ..., n, then
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Fig. 7.6. Fragments of the images shown in Fig. 7.5.

‖x‖1

def
=

k−1
∑

κ=0

n−1
∑

ν=0

|x[κ, ν]|, ‖x‖2

def
=

√

√

√

√

k−1
∑

κ=0

n−1
∑

ν=0

|x[κ, ν]|2.

Denote by Tϑ the operator of soft thresholding:

Tϑ x = {xϑ[κ, ν]} , xϑ[κ, ν]
def
= sgn(x[κ, ν]) max {0, |x[κ, ν]| − ϑ} .

Following [27], we solve the minimization problem in Eq. (7.2) by an iterative SBI algorithm. We begin with

the initialization u0 = 0, d0 = b0 = 0. Then,

uk+1 := (K∗ PΛ K + µ I) u = K∗ PΛ f + µF (dk − bk),

dk+1 = Tλ/µ(F̃ uk+1 + bk),

bk+1 = bk + (F̃ uk+1 − dk+1).

(7.3)

The linear system in the first line of Eq. (7.3) is solved by the application of the conjugate gradient algorithm.

The operations in the second and third lines are straightforward. The choice of the parameters λ and µ

depends on experimental conditions.
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Fig. 7.7. Top left: Source input - “Barbara” image. Top right: Blurred, PSNR=23.32 dB. Bottom right: After random removal of
50% of its pixels. PSNR=7.56 dB. Bottom left: The image restored by the directional qWPT. PSNR=32.09 dB.

7.2.2. Examples

Example I: “Barbara” blurred, missing 50% of pixels: The “Barbara” image was restored after it was

blurred by a convolution with the Gaussian kernel (MATLAB function

fspecial(‘gaussian’,[5 5])) and its PSNR became 23.32 dB. Then, 50% of its pixels were randomly

removed. This reduced the PSNR to 7.56 dB. Random noise was not added. The image was restored

by 50 SBI using the parameters λ = 0.0015, µ = 0.00014 in Eq. (7.3). The conjugate gradient solver

used 150 iterations. qWPs originating from discrete splines of sixth order were used. For “bases”,

8-samples shifts of all the WPs from the third decomposition level were selected. Matlab implemen-

tation of the restoration procedures took 59.6 seconds.

Fig. 7.7 displays the restoration result. The image is deblurred and the fine texture is restored

completely with PSNR=32.09 dB. Note that the best result in an identical experiment reported in

[6] achieved PSNR=30.32 dB.

Example II: “Barbara” blurred, added noise, missing 50% of pixels: The “Barbara” image was restored af-

ter it was blurred by a convolution with the Gaussian kernel (MATLAB function fspecial

(‘gaussian’,[5 5])). Random Gaussian noise with σ=10 dB was added and the image PSNR be-

came 22.08 dB. Then, 50% of its pixels were randomly removed. This reduced the PSNR to 7.53
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Fig. 7.8. Top left: Source input - “Barbara” image. Top right: Blurred and noised, PSNR=22.08 dB. Bottom right: After random
removal of 50% of its pixels. PSNR=7.53 dB. Bottom left: The restored image by the directional qWPT. PSNR=24.31 dB.

dB. The image was restored by 70 SBI using the parameters λ = 3, µ = 0.025 in Eq. (7.3). The

conjugate gradient solver used 15 iterations. qWPs originating from discrete splines of fourth order

were used. For the “bases”, 16-samples shifts of all the WPs from the fourth decomposition level

were selected. Matlab implementation of the restoration procedures took 51.9 seconds.

Fig. 7.8 displays the restoration result. The image is deblurred, noise is removed and the fine

texture is partially restored producing PSNR=24.31 dB. Note that the best result in an identical

experiment reported in [6] achieved PSNR=24.19 dB.

Example III: “Barbara” blurred, missing 90% of pixels: The “Barbara” image was restored after it was

blurred by a convolution with the Gaussian kernel (MATLAB function

fspecial(‘gaussian’,[5 5])) and 90% of its pixels were randomly removed. This reduced the PSNR

to 5.05 dB. The image was restored by 150 SBI using the parameters λ = 0.0025, µ = 0.000025

in Eq. (7.3). The conjugate gradient solver used 150 iterations. qWPs originating from discrete

splines of eighth order were used. For the “bases”, 16-samples shifts of all the WPs from the fourth

decomposition level were selected. Matlab implementation of the restoration procedures took 226.8

seconds.

Fig. 7.9 displays the restoration result. The image is deblurred and the fine texture is partially

restored. The output has PSNR=25.24 dB.
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Fig. 7.9. Top left: Source input - “Barbara” image. Top right: Blurred, PSNR=23.32 dB. Bottom right: After random removal of
90% of its pixels. PSNR=5.05 dB. Bottom left: The image restored by the directional qWPT. PSNR=25.24 dB.

8. Discussion

We presented a library of complex discrete-time wavelet packets operating in one- or two-dimensional

spaces of periodic signals. Seemingly, the requirement of periodicity imposes some limitations on the scope

of signals available for processing, but actually these limitations are easily circumvented. Any limited signal

can be regarded as one period of a periodic signal. In order to prevent boundary effects, the signals can be

symmetrically extended beyond the boundaries before processing and shrunk to the original size after that.

We used such a trick in the “Barbara” denoising examples.

On the other hand, the periodic setting provides a lot of substantial opportunities for the design and

implementation of WP transforms such as

• A unified computational scheme based on 1D and 2D FFT.

• Opportunity to use filters with infinite impulse responses, which enables us to design a variety of

orthonormal WP systems where WPs can have any number of local vanishing moments.

• The number of local vanishing moments does not affect the computational cost of the transforms im-

plementation.

• A simple explicit scheme of expansion of real WPs to analytic and quasi-analytic WPs with perfect

frequency separation.
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The library of qWP transforms described in the paper has a number of free parameters enabling the designer

to adapt the transforms to the problem under consideration:

• Order of the generating spline, which determines the number of local vanishing moments.

• Depth of decomposition, which in 2D case determines the directionality of qWPs. For example, fourth-

level qWPs are oriented in 314 different directions.

• Selection of an optimal structure, such as, for example, separate Best Bases in the real and imaginary

parts of 1D qWP transforms, separate “Best Bases” in positive and negative branches of 2D dual-tree

qWP transforms, a wavelet-basis structure or the set of all wavelet packets from a single level.

• Controllable redundancy rate of the signal representation. The minimal rate is 2 when one of options

listed in a previous item is utilized. However, several basis-type structures can be involved, for example,

all wavelet packets from several levels can be used for the signal reconstruction and results can be

averaged.

The goal of the paper is to design qWPs with an efficient computational scheme for the corresponding trans-

forms. A few experimental results highlight exceptional properties of these WPs. The directional qWPs are

tested on image restoration examples. In the denoising examples, compared the performance of the popular

BM3D denoising algorithm ([16]) with the performance of the hybrid qWP-BM3D algorithm, which exploits

best features of the BM3D and qWP-based methods. The hybris algorithm demonstrated an advantage over

the original BM3D algorithm.

The second group of experimental results dealt with the restoration of the “Barbara” image which was

blurred by convolving the image with a Gaussian kernel and degraded by removing randomly either 50%

or 90% of the pixels. The image was restored by using a constrained l1 minimization of the qWP transform

coefficients from a certain decomposition level and implemented via the split Bregman Iterations procedure.

In Example I with missing 50% of the pixels, the image was satisfactorily restored with PSNR-32.1 dB

and practically whole fine structure reconstructed although it was blurred even before the removal of the

pixels. Addition of the Gaussian noise with σ = 10 dB to the blurred image in Example II depleted the

reconstruction result. Although the noise became suppressed and the image was deblurred, most of the fine

structure was lost. Restoration results were better in Example III where, instead of adding noise, the number

of pixels missing from the blurred image was raised to 90%. The image was deblurred and an essential part

of fine structure was restored.

Summarizing, we can state that, having such a versatile and flexible tool at hand, we are prepared

to address multiple data processing problems such as signal and image deblurring and denoising, target

detection, segmentation, inpainting, superresolution, to name a few. In one of the applications, directional

qWPs are used with Compressed Sensing methodology for the conversion of a regular digital photo camera

to an hyperspectral imager. Preliminary results appear in [20].

Data availability

Data will be made available on request.
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Appendix A

A.1. Proof of Proposition 4.2

Proof. Let Mq def
= M

q
+.

Mq[n] ·
(

ẑ0
[1][n]1

ẑ1
[1][n]1

)

= (M[n] + iMc[n]) ·
((

ŷ0
[1][n]1

ŷ1
[1][n]1

)

− i
(

ĉ0
[1][n]1

ĉ1
[1][n]1

))

= M[n] ·
(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

+ Mc[n] ·
(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

+ i ~P [n] = 2

(

x̂[n]

x̂[~n]

)

+ i ~P [n],

~P [n]
def
= Mc[n] ·

(

ŷ0
[1][n]1

ŷ1
[1][n]1

)

−M[n] ·
(

ĉ0
[1][n]1

ĉ1
[1][n]1

)

.

The vector ~P [n] can be represented by ~P [n] = R[n] ·
(

x̂[n]

x̂[~n]

)

, where

R[n] =
1

2

(

Mc[n] · M̃[−n]−M[n] · M̃c[−n]
)

.

For n 6= 0 and ~n = n+N/2, the product Mc[n] · M̃[−n] is

Mc[n] · M̃[−n] =

(

−iβ[0][n] −iα[0][n]

iβ[0][~n] iα[0][~n]

)

·
(

β[0][−n] β[0][ ~−n]

α[0][−n] α[0][ ~−n]

)

(

−i|β[0][n]|2 − i|α[0][n]|2 −iβ[0][n]β[0][ ~−n]− iα[0][~n]α[0][ ~−n]

iβ[0][~n]β[0][−n] + iα[0][~n]α[0][−n] i|β[0][n]|2 + i|α[0][~n]|2

)

.

Equations (2.3) imply that

|β[0][n]|2 + α[0][n]|2 = 2
cos4r π n

N + sin4r π n
N

cos4r π n
N + sin4r π n

N

= 2,

β[0][~n]β[0][−n] + α[0][~n]α[0][−n] = 2
sin2r π n

N cos2r π n
N − cos2r π n

N sin2r π n
N

cos4r π n
N + sin4r π n

N

= 0,

β[0][n]β[0][ ~−n] + α[0][n]α[0][ ~−n] = 0.

Thus, for n 6= 0, the product Mc[n] · M̃[−n] = 2

(

−i 0

0 i

)

. Similarly, the product M[n] · M̃c[−n] =

2

(

i 0

0 −i

)

.

When n = 0, the product is Mc[0] · M̃[0] =

(√
2 0

0 −
√

2

)

·
(√

2 0

0 −
√

2

)

= 2I2 and, similarly, the

product M[0] · M̃c[0] = 2I2, where I2 is the 2× 2 identity matrix. As a result, we have
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R[n] = 2(1− δ[n])

(

−i 0

0 i

)

=⇒ ~P [n] =























(

0

0

)

, if n = 0;

2

(

x̂[n]/i

−x̂[n+N/2]/i

)

, otherwise.

For Mq def
= M

q
− the proof is similar. 2

A.2. Outline of hybrid denoising algorithm

Scheme of qWPdn The original image X of size N ×N is corrupted by additive Gaussian noise with the

standard deviation σ. The corrupted image Xσ is decomposed by the directional qWPs Ψp
++[m] and Ψp

+−[m]

originating from the p-order discrete splines down to (M+1)-th level. In this way, two sets
{

Z
j,l
+[m]

}

and
{

Z
j,l
−[m]

}

, m = 1, ...M + 1, j, l = 0, ..., 2m − 1, of the transform ş are produced. The transform ş from

the (M+1)-th level are used for the bivariate shrinkage of M-th-level ş, which are used for the shrinkage

of the ş from the (M-1)-th level, which in turn, are used for the shrinkage of the (M-2)-th-level ş. Then,

the reconstruction from the “cleaned” (M-2)-, (M-1)- and M-level ş is implemented, which produces three

restored images {Xs} , s = M − 2,M − 1,M . The final qWP-based approximated image XW is produced

as a weighted average of the three images Xs.

Boosting Denote by W and B the operators of application of the qWPdn, which is described above, and

BM3D denoising algorithms, respectively, to a degraded array A: W A = DW and B A = DB .

Assume that we have an array Xσ, which represents an image X degraded by additive Gaussian noise

with the standard deviation σ. Denote X̌0 def
= Xσ (in the above setting, W Xσ = XW ). The denoising

processing is implemented along the following boosting scheme.

First step: Apply the operators W and B to the input array X̌0: Y1
W = W X̌0 and Y1

B = B X̌0.

Iterations: i = 1, ..., I − 1

1. Form new input arrays X̌i
W =

X̌
0+Y

i
W

2 , X̌i
B =

X̌
0+Y

i
B

2 .

2. Apply the operators W and B to the new input arrays: Yi+1
W = W X̌i

B , Yi+1
B = B X̌i

W .

Estimations of the clean image: Three estimations are used:

1. The updated BM3D estimation X̃uB
def
= YI

B (hybrid1).

2. The updated qWPdn estimation X̃uW
def
= YI

W (hybrid2).

3. The hybrid estimation X̃H
def
= (YI

B + YI
W )/2 (hybrid3).
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