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We present a preliminary investigation of compression of segmented 3D seismic volumes
for the rendering purposes. Promising results are obtained on the base of 3D discrete
cosine transforms followed by the SPIHT coding scheme. An accelerated version of the
algorithm combines 1D discrete cosine transform in vertical direction with the 2D wavelet
transform of horizontal slices. In this case the SPIHT scheme is used for coding the mixed
sets of cosine-wavelet coefficients.
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1. Introduction

In contemporary 3D seismic processing very large data arrays are involved. Effi-
cient compression algorithms in order to rapidly transmit and store the data are
needed. In the past decade a number of researchers investigated the problem of the
compression of seismic data arrays. Wavelet transforms were very successful with
compression of still images. Therefore the efforts to use these techniques for seismic
compression were quite natural6 10 16. However, results turned out much less im-
pressive than with image compression because of the great variability of seismic data
and the noisy background inherent in it even within the same volume. Moreover,
recently some researchers argued that the seismic signals are not wavelet-friendly
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at all 1 12. This happens because of the presence of oscillatory patterns in seismic
signals. By these reasons, local cosine transforms appear advantageous compared
to wavelets in seismic compression. In 1 12 17 local cosine bases using lapped DCT-
IV transforms 5 and adaptive segmentation were applied to the compression of 2D
seismic sections.

Another important research field concerned with seismic compression is pro-
cessing the compressed data. Recently the authors of the present paper reported
successful application of wavelet transform to the acceleration of 3D Kirchhoff mi-
gration 20.

In this paper we address an intrinsically complex problem of compression of
seismic data for the purposes of rendering the subsurface structures. To efficiently
visualize 3D structures, fast access to the data must be provided. Therefore the large
volume is segmented into comparatively small bricks, typically of size 32× 32× 32
samples. In order to produce a picture of a reasonable size on a computer monitor,
as many bricks as possible should be placed into the memory. It is hardly possible to
achieve that without a significant compression of the data bricks because of limited
capacity of the memory of even powerful contemporary computers.

We present an approach that is based on application of 3D DCT-II to the data
bricks and coding the produced coefficients by the SPIHT codec 13. An accelerated
version applies DCT-II only in the vertical direction while horizontal slices are
processed by 2D wavelet transforms.

2. Description of the algorithm

The compression of 3D seismic data for rendering purposes dictates a number of
specific requirements to the algorithm:

• The compression must be implemented on 3D data.
• A significant compression rate for the typical stacked or migrated seismic data

has to be achieved.
• Each small brick has to be compressed and uncompressed separately.
• While uncompressed, boundary discrepancies between adjacent bricks must be

minimized.
• (Last but not least.) Any developed algorithm is of no value for rendering if the

compression and, especially the decompression procedures are not implemented
in an extremely fast manner.

The above requirements prevented us from utilizing compression algorithms, which
have been reported in the literature. The main obstacle was that all the algorithms
handle unsegmented seismic arrays, set aside that almost all of them are targeted
on 2D seismic sections.

A typical data compression scheme consists of three stages: 1.Transform.
2.Quantization. 3.Coding. Due to specifics of our task we added one more stage:
4.Handling the boundaries between bricks.
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2.1. Transform

Experiments confirmed the suggestion in 1 12 that the the seismic signals are
trigonometric- rather than wavelet-friendly. Even while compressing unsegmented
data arrays, trigonometric transforms produced better results than the results with
wavelets. On the segmented arrays the advantage of trigonometric transforms over
the wavelet ones becomes overwhelming. By this reason we chose to apply the
discrete cosine transform (DCT).

The following two kinds of DCT are used in image compression:

(1) DCT-II of a signal f = {fn}N−1
n=0 , N = 2p is:

f̂ II(k) = b(k)
N−1∑
n=0

fn cos
[
kπ

N

(
n +

1
2

)]
, b(k) =

{
1/
√

2, if k = 0;
1, otherwise,

f II
n =

2
N

N−1∑

k=0

b(k)f̂ II(k) cos
[
kπ

N

(
n +

1
2

)]
.

(2) DCT-IV of the signal f is:

f̂ IV (k) =
N−1∑
n=0

fn cos
[

π

N

(
k +

1
2

)(
n +

1
2

)]
,

f IV
n =

2
N

N−1∑

k=0

f̂ IV (k) cos
[

π
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(
k +

1
2

)(
n +

1
2

)]
.

The signal fII = {f II
n }, which is restored from the DCT coefficients {f̂ II(k)} is

2N−periodic and

f II
n =

{
fn, if n = 0, . . . N − 1;
f−n−1, if n = −N, . . .− 1.

(2.1)

Thus, it provides an even extension of the signal f across its boundaries. Therefore
application of this transform to segmented images and 3D volumes reduces the
blocking effect. On the contrary, the restored signal fIV = {f IV

n } is 4N−periodic.
It is even across − 1

2 and odd across N − 1
2 . Therefore, application of the DCT-IV

transforms to a segmented data leads to severe boundary discrepancies. However,
this transform serves as a base for the so called local cosine bases 5, which are
windowed overlapped DCT-IV transforms. These bases were successfully exploited
in 1 12 17 for the compression of seismic data. However, because we had to compress
each brick separately, we could not use these lapped DCT-IV transforms. Our final
choice was to use the 3D DCT-II transforms of the whole 32×32×32 brick. We recall
that the JPEG image compression standard is based on 2D DCT-II transforms of
8×8 cells. Fortunately, this JPEG application stimulated development of a diversity
of fast algorithms for implementation of forward and inverse DCT-II. We perform
the 3D transform as subsequent application of 1D transform in each dimension.
The 1D transform is implemented using a fast algorithm described by Feig and
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Winograd in 9. The forward or the inverse 3D transforms of 1000 32 × 32 × 32
bricks takes about 7 seconds on the SGI Octane R12000 workstation with usage of
only one of two available processors.

A way to accelerate the implementation without a significant depletion of the
performance lies in combining DCT with a wavelet transform. It is justified by the
observation that the oscillatory patterns are mainly encountered along the vertical
axis of a seismic volume. Therefore it seems reasonable to apply the DCT only in
vertical direction and to apply a 2D wavelet transform to the horizontal slices of
32×32×32 bricks. In our experiments we tested two types of wavelet transforms: the
well-known 9/7 biorthogonal transforms by Daubechies 7 which are most frequently
used in image processing (these transforms are accepted by the new JPEG 2000
image compression standard) and a recently constructed transforms which we label
as 11/5 transform 3, (see Appendix). Both these transforms can be implemented in
a fast lifting manner (8 and Appendix).

2.2. Quantization and Coding

Many contemporary schemes of image compression are based on wavelet trans-
form of the image and the concept of zerotree coding by Shapiro 14. This concept
takes advantage of the self-similarity of wavelet coefficients across the decomposi-
tion scales and their decay toward high frequency scales and relates the coefficients
with quad-trees. It establishes the ancestor-descendant relationship between wavelet
coefficients of different scales, which are located at the same spatial area. The coeffi-
cients of finer scales in this relation are descendants of coefficients of sparser scales.
One of most efficient algorithms based on the zerotree concept is the so called SPIHT
algorithm by Said and Pearlman 13, who added to the Shapiro’s algorithm a set
partitioning technique. This algorithm combines adaptive quantization of wavelet
coefficients with coding. The algorithm presents a scheme for progressive coding of
coefficient values when most significant bits are coded first. This property allows
to flexibly control the compression rate. Moreover, the SPIHT coding procedure is
very fast and, that is of special importance to us, the decoding procedure is even
faster.

Recently Xiong et al. 18 19 argued that coefficients of the DCT-II of 8 × 8
cells possess some properties similar to the properties of coefficients of the 3-scale
2D wavelet transform. After labelling the 64 DCT coefficients as in Figure 1, the
parent-children relationship between DCT coefficients is established as follows: the
parent of a coefficient i is b i

4c, i = 1 . . . 63, while the set of four children associated
with the coefficient j is {4j, 4j + 1, 4j + 2, 4j + 3}, j = 1 . . . 15. By this reason
the usage of SPIHT codec in combination with the DCT-II could be efficient. Using
this observation, we applied 3D SPIHT algorithm 11 for coding DCT-II coefficients
of the 32× 32× 32 bricks. This is similar to a 5-scale 3D wavelet transform. Note
that results in 19 of image coding with usage of wavelets were superior to the DCT
results. On the contrary, in our experiments with seismic data the DCT-based
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Fig. 1. A 8× 8 DCT block can be treated as a depth-3 tree of coefficients .

scheme combined with the SPIHT codec produced better results.
A similar structure have the set of coefficients of the combined DCT-wavelet

transforms of the 32×32×32 bricks. Here we applied a 5-scale 2D wavelet transform
to horizontal 32 × 32 slices and the DCT-II to vertical segments of seismic traces
of length 32. SPIHT successfully coded such sets of coefficients.

2.3. Handling the boundaries

No one lossy algorithm which compresses fragments of a one- or multidimensional
signal separately can not completely avoid the so called blocking effect, i. e. the
boundary discrepancies between adjacent fragments. To reduce this effect, various
schemes of extension of signals are applied 4. Due to its symmetric properties, DCT-
II implicitly performs an even extension of a signal across boundaries. Nevertheless,
when a reasonable compression rate is achieved, the blocking effect becomes visible.
We succeeded in substantial reduction of this effect using some kind of interpolation
after decompression of adjacent bricks. To be specific, suppose that a signal x of
length 64 consists of two smooth fragments x = {x1

k}32k=1

⋃{x2
k}64k=33 and x1

32 differs
significantly from x2

33. Then we carry out two darning-stitches:

Mend of x1
32: We construct a cubic polynomial P 1(t), which interpolates the sam-

ples x1
29, x1

31, x2
33, x2

35 at the points 29, 31, 33, 35 and calculate an improved
sample x3

32 as the value of P 1(t) at the point 32:

x3
32 =

−x1
29 + 9x1

31 + 9x2
33 − x2

35

16
.

Mend of x2
33: A similar procedure we apply in order to adjust the sample

x2
33. We construct a cubic polynomial P 2(t), which interpolates the samples

x1
30, x3

32, x2
34, x2

36 at the points 30, 32, 34, 36 and calculate an improved sam-
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ple x3
33 as the value of P 2(t) at the point 32:

x3
33 =

−x1
30 + 9x3

32 + 9x2
34 − x2

36

16
.

The rest of samples of the improved signal x3 are left equal to the corresponding
samples of the signal x. If the discrepancy is large, it is advisable to mend more
samples at the vicinity of the break using polynomials of higher degrees and more
stitches. We illustrate this procedure in Figure 2.

20 25 30 35 40 45 50

 

 

 

 

 

Fig. 2. Amendment procedure applied to the samples xk, k = 31, 32, 33, 34.

3. Examples

We performed numerous experiments on a number of stacked SMP data volumes
with the sampling rate of 25m×25m×4msec using various wavelet and trigonomet-
ric transforms and coding schemes. The bit allocation for the initial data storage
was 32 bit per sample.

The results were evaluated both visually and through the so called peak signal
to noise ratio (PSNR) in decibels which is commonly used in image processing:

PSNR = 10 log10

(
N M2

∑N
k=1(xk − x̃k)2

)
dB, (3.2)

where N is the total number of samples in the volume, xk is an original sample and
x̃k is a reconstructed sample, M = maxk(xk)−mink(xk).

The experiments gave a strong evidence in favor of our approach. Typically,
implying the procedures described above, we achieved compression rate (CR) of
the 3D volumes at 1:128 (0.25 bit per pixel) practically without visible distortions
of images and blocking effects. To better illustrate results of compression, we present
a few figures which display a fragment of a stacked 2D seismic section. The original
fragment is displayed in Figure 3. In the following figures we illustrate results of
compression of this fragment with CR=1:100 (0.32 bit per pixel) using various
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transforms of the data. In all cases coefficients of the transforms were coded using
the SPIHT algorithm.

Figure 4: We display result of compression of the entire non-segmented section
using lapped DCT-IV with basic cell of size 32 × 32(left picture) and the 9/7
2D wavelet transform (right picture). The quality of the image reconstructed
from the wavelet transform is satisfactory (PSNR=29.64). But much better
quality is achieved by application of the lapped DCT-IV (PSNR=30.30). The
reconstructed image is hardly distinguishable from the original one. Regretfully,
both these methods can not be exploited for our final purpose (does not satisfy
to Requirement 3) , but it is advisable to use the lapped DCT-IV for the
compression of unsegmented seismic volumes.

Figure 5: We display result of application of the wavelet transform to the seg-
mented 32 × 32 section. We used the 5-scale the 9/7 wavelet transforms. Left
picture displays the reconstructed image without smoothing of boundaries,
(PSNR=27.72). The result with the smoothed boundaries is shown in the right
picture. It is better than the former one (PSNR=28.16) but still is remarkably
lower than in two previous examples. Moreover the visual appearance of the
images is poor. Application of the 11/5 wavelet transform and other wavelet
transforms produces a similar result.
Much better performance demonstrate the combined wavelet(horizontal)-DCT-
II(vertical) transforms. In this case different wavelet transforms produced dif-
ferent results. In most experiments the 11/5 transform outperformed the 9/7
transform.

Figure 6: We display result of application of the combined 9/7 wavelet -DCT-II
transform to the segmented 32 × 32 section. Left picture displays the recon-
structed image without smoothing of boundaries, (PSNR=28.68). The result
with the smoothed boundaries is shown in the right picture (PSNR=28.89).

Figure 7: We display result of application of the combined 11/5 wavelet -DCT-II
transform to the segmented 32 × 32 section. Left picture displays the recon-
structed image without smoothing of boundaries, (PSNR=28.83). The result
with the smoothed boundaries is shown in the right picture (PSNR=29.11).
Note that although PSNR for the combined transforms is inferior to PSNR
produced by the non-fragmented wavelet transform (Figure 4), the visual per-
ception of the images in Figure 6 and especially in Figure 7 is much better than
of the right image in Figure 4. Fine structures are revealed by the combined
transforms more distinctly than by the non-fragmented wavelet transforms,
not to mention the fragmented wavelet transforms. It confirms the observa-
tion that the DCT in vertical direction is more relevant to seismic data than
wavelet transforms. The combination of the 5/11 transform with the DCT pro-
duces higher PSNR than such a combination with the 9/7 instead of the 5/11
transform. The visual perception of the right image in Figure 7 is a little bit
better than that in Figure 6.
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Figure 8: The best performance among transforms of segmented 32 × 32 section
demonstrated 2D DCT-II. Left picture displays the reconstructed image with-
out smoothing of boundaries, (PSNR=29.65). The result with the smoothed
boundaries is shown in the right picture (PSNR=29.75). This PSNR is a little
bit higher than PSNR achieved by the non-segmented wavelet transform but
visual perception of the image is much better. The procedure of smoothing the
boundaries almost completely eliminated the blocking effect. This is our basic
algorithm.

1
     

 

 

 

 

 

Fig. 3. A fragment of a stacked SMP 2D seismic section with the sampling rate of 25m× 4msec.

Conclusions

We present preliminary results of our investigation of compression of 3D seismic
volumes for the rendering purposes. Set aside complications intrinsic in any kind
of seismic compression, this special objective imposes a number of additional re-
strictions. Nevertheless, we obtain good compression results applying 3D DCT-II
to the 32 × 32 × 32 data bricks and coding the coefficients of the transforms by
3D SPIHT algorithm. This algorithm, which was originally constructed for coding
coefficients of wavelet transforms, proved to be efficient for coding the coefficients
of the DCT. Our technique of smoothing boundaries between segments also proved
to be helpful. It removes almost completely the blocking effect. The algorithm is
fast but to provide rendering efficiency, further acceleration must be achieved. One
of the ways to make the transforms faster is to combine the DCT-II in vertical
direction with the 2D wavelet transforms to the horizontal slices. The 3D SPIHT
algorithm was used for coding the mixed sets of the coefficients. As a result we
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Fig. 4. Compression of the entire section. Left: lapped DCT-IV CR= 1:100, PSNR=30.30. Basic
cell is 32× 32. Right: 9/7 2D wavelet transform, CR=1:100, PSNR=29.64.

 
     

 

 

 

 

 

 
     

 

 

 

 

 

Fig. 5. Wavelet compression of the segmented 32×32 section, CR= 1:100. Left: without smoothing
of boundaries , PSNR=27.72. Right: Boundaries smoothed PSNR=28.16.

achieved a noticeable reduction of the computational cost of the implementation
with a minimal degradation of the quality. In most experiments the newly devised
5/11 wavelet transform outperformed the popular 9/7 transform, having the same
computational complexity as the latter one.
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Fig. 6. Combined 9/7 wavelet(horizontal)-DCT-II(vertical) compression of the segmented 32× 32
section, CR= 1:100. Left: without smoothing of boundaries , PSNR=28.68. Right: Boundaries
smoothed PSNR=28.89.

 
     

 

 

 

 

 

 
     

 

 

 

 

 

Fig. 7. Combined 11/5 wavelet(horizontal)-DCT-II(vertical) compression of the segmented 32×32
section, CR= 1:100. Left: without smoothing of boundaries , PSNR=28.83. Right: Boundaries
smoothed PSNR=29.11.
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Fig. 8. 2D DCT-II compression of the segmented 32 × 32 section, CR= 1:100. Left: without
smoothing of boundaries , PSNR=29.65. Right: Boundaries smoothed PSNR=29.75.

Appendix A. Lifting scheme of wavelet transform and the 5/11
filter

The lifting scheme of the biorthogonal wavelet transform of a signal x was intro-
duced by Sweldens 15. It provides tools for the design and efficient implementation
of the transforms. The lifting scheme of the decomposition of the signal x = {xk},
whose z−transform X(z) =

∑∞
k=−∞ z−kxk, consists of three steps:

Split The signal x is split into even and odd subarrays: e = {e(k) = x(2k)}, o =
{o(k) = x(2k + 1)}, k ∈ Z. In the z-transform domain this operation corresponds
to the following relation: E(z2)(X(z) + X(−z))/2, O(z2) = z(X(z)−X(−z))/2,

where E(z) and O(z) denote the z transforms of e and o, respectively.

Predict The even array e is used to predict the odd array o. Then, the new odd
array d is defined as the difference between the existing array o and the predicted
one. To be specific, we apply some prediction filter U to the array e, in order for
the result to approximate the array o. Then, we subtract this result from the array
o: D(z) = O(z)−U(z)E(z). Provided that the filter U is properly chosen, this step
results in decorrelation of the signal.

Update (lifting) The even array is updated using the new odd array that is being
convolved with the update filter whose transfer function we denote by V (z)/2:
S(z) = E(z) + 1

2V (z)D(z). Generally, the goal of this step is to eliminate aliasing
which appears when the original signal x is downsampled into e. By doing so e is
transformed into a downsampled and smoothed (low-pass filtering) replica s of x.
Note that d is the array of details, which complements the smoothed array s.
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The key issue in this scheme is how to properly choose the filters U and V .
Varying these filter we are able to design a diversity of wavelet transforms 2.

One of advantages of the lifting implementations of wavelet transforms is that
the reconstruction of the signal from the wavelet coefficients s and d is carried out
by the exact inversion of the decomposition steps:

Undo Lifting The even array E(z) = S(z)− V (z)/2 D(z) is restored.

Undo Predict The odd array O(z) = D(z) + U(z)E(z) is restored.

Undo Split It is the standard restoration of the signal from its even and odd
components. In the z domain it appears as: X(z) = E(z2) + z−1O(z2).

The lifting implementation of the biorthogonal wavelet transform is equivalent
to the standard implementation 7, which uses the analysis low- and high-pass filters
H̃(z) =

√
2(1 + zV (z2)Φ(−z)) and G̃(z) =

√
2zΦ(−z), respectively. The synthesis

low- and high-pass filters are H(z) =
√

2Φ(z) and G(z) =
√

2z−1
(
1− zV (z2)Φ(z)

)
,

respectively.

The 11/5 filter bank. For the design of the filters U and V we use the following
algorithm.

To predict a sample ok = x2k we construct a cubic polynomial P (t), which
interpolates the samples ek−1 = x2k−2, ek = x2k, ek+1 = x2k+2, ek+2 = x2k+4 at
the points 2k − 2, 2k, 2k + 2, 2k + 4 and calculate the prediction as the value of
P (t) at the point 2k + 1:

dk = ok − −ek−1 + 9ek + 9ek+1 − ek+2

16
.

The update filter in our scheme is the halved predict filter. So, we have:

sk = ek − −dk−2 + 9dk−1 + 9dk − dk+1

32
.

These detail d and smoothed s subarrays can be produced by the direct high-
pass and low-pass filtering the signal x by filters G̃ and H̃ of length 5 and 11,
respectively, followed by downsampling. The reconstruction can be implemented by
filtering the upsampled signals d and s by the synthesis filters G and H of length 11
and 5, respectively. However, the lifting implementation yields a significant saving of
computational cost. To correctly implement the wavelet transform near boundaries,
the signal must be extended across the boundaries 4. We do it in a manner similar
to the extension, which is carried out by DCT-II as it is described in (2.1).
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