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AN OPERATIONAL CALCULUS
CONNECTED WITH PERIODIC SPLINES
UuDC 519.6

V.A. ZHELUDEV

Periodic splines of defect 1 with equally spaced nodes have a dual convolution
nature. On the one hand, they form a semigroup with respect to continuous con-
volution. On the other hand, if such a spline is written as a linear combination of
b-splines, then it can be regarded as a discrete convolution. This consideration led
to the construction, on the basis of such splines, of an operational calculus that is an
adequate mathematical apparatus for solving many problems in which various forms
of convolution appear, and in which the information about the objects under study
is in discrete form.

We introduce some notation. Suppose that w = e , 18 an even number,
v, = 2sin(zn/N), and ¥, = sin(zn/N)/(nn/N). The discrete Fourier transform

(DFT) of a vector a = {a,}) ' is T (a)=N"" Y w "™ a, . Here and below, Y,
stands for ZkN;Ol . The norm of a vector a is

—2ni/N

-1 2\1/2
(1) lall = (V')
We mention some known properties of the DFT:
k

(2) ak = E"w" Tn(a);

-1 e 2
(3) NS ab, = 3, T,@T, ) = |8l = Z,|T, ().
The discrete convolution of a vector a with a vector b and its DFT are:

-1

(4) axb= {N Zka,ukbk} R T (axb) =T, (a)T,(b).

We now introduce two nets on the x-axis:
Z={x,=k/N} and E ={x| = (k+p/2)/N}.

We denote by & the space of 1-periodic splines of degree p—1 and defect 1 with
nodes at the points xf ; and by M”(x) the central l-periodic &-spline of degree

p—11I1]

(5) Mxy= Y vPet,

R=—00

REMARK 1. The definition of the &-spline M7 (x) given by (5) can be extended to
arbitrary integer values of p. Here if p < 0, then M?(x) is a generalized function
[2]. In particular, M 0(x) is the periodically extended Dirac J-function. Let
(6) ml = (MP(x ), =T (m) = N S M (%),

n R
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The functions uﬂ were studied in (1], [3], and [4]. Recursion formulas and explicit
representations for the initial values of p are known. For us it is important that

(7) 0< K, |

» P
Uy, S, <up=1, k=K, (2/n),
where Kp is the Favard constant.

Every spline in &’ can be represented in the form
(8) S7(x) = N~' S q M7 (x — x,).

REMARK 2. Formula (8) can be extended also to values P < 0 according to Remark
1. Furthermore, it can be understood as the definition of a spline of nonpositive
order. .

It is clear from (8) that the spline $”(x) is completely determined by its order p
and by the vector q = {g, }(‘;\r ~! of its coefficients. Let {T, (q)}g’ = Q(S?), and call
this vector the image of the spline $¥(x).

The correspondence $”(x) & Q(S”) is one-to-one: given the vector Q, it is easy
to recover the spline &” with the help of (2) and (8). The passage from the space &
1o Q(&”) leads to a distinctive operational calculus. We present the basic formulas

for this operational calculus, Let s” = {$%(x,)}]~". We have

(9) T,(s") =T, (.
THEOREM 1. If S* € &, then its derivative satisfies (S e gP=5 .
(10) S' ) = N g M (x - 3.

Further, with the notation s™" = {(S¥ (x,))" Yo =L, the following relations hold:

(11) T,(0) =T,@(Nv,)',  T,6"7) = T,@(Nv,) u’™.
Suppose that Sedl:

(12) S'(0) = N7 S Mi(x - x,).

The integral : '

7180 = [ - ns0)dy

will be called the convolution_ of two l-periodic functions.

THEOREM 2. The convolution of two splines S' € &' and S* € & is 4 spline
St e gt
/ S .
(13) S(x) = NS M (x - x,).

N-1

Further, with the notation s™*? = (s (x,)}g  the following relations hold:

(14) T,0) = T,@T,(x), T =T,(@T,@u".

REMARK 3. Comparing (11) and (14), we can see that the operation of s-fold
differentiation can be regarded as the convolution of the spline §” with the spline
(15) Dx)=N'SdiM(x—x), T.(d)= (iNv,).

"

We have formulas of the Parseval equality type.

163



THEOREM 3. Suppose that S' e & and S? € & are splines defined by (8) and
(12). Then

(16) / 1’ ()8 (x) dx = 'z:,, Tn(q)ﬁ“ﬁuﬁ” .
0 }
For the convolution,
a7 fs" VS (0 dx = 5, | T, (@ T, 0P+

Hence, in particular
1 : '
a9 - @ ax = S0,

Discrete “Parseval equalities” can be obtained from (11) and (14).

THEOREM 4. Suppose that s e 6 and S* € & are splines defined by (8) and
(12). Then

(19) . | N“zjksp(xk)s’ (%) dx = X, T (@) T, 00w’
Hence, in particular, '
(20) N—lzk(SD(xk (S))Z — E |T(q |(up 5 NU)ZS

We consider some typical probiems whose SOluthIlS use the formulas above.
PrROBLEM 1 (the basic one). Splines $™(x) € ™ are given,

(21) S"(x) = NS, M™(x - x,),
along with a spline §'(x) € &', given by (12), and a vector z={z,}; .
It is required: a) to ﬁnd‘la spline §”(x) € & minimizing the functional
(8" = [ (870x) " ()" dx
under the condition :
EWS") = N'S, (8" +87(x,) — 2,)* < &%
b) to find a spline S?(x) € & minimizing the functional
7,(8%) = E(S")+ pI(s%);
7 c) to find a spline S?(x) € & satisfying the condmons |
S*Sp(xk)—zk, k=0, N-1.

SoLuTION OF PROBLEM 1b). Let r = {"k}o “and t= {tk}0 " . Then the solution
of Problem 1b) is the spline

(22) 8%z, x) = N 'S, g, (oM (x - %), alp)={a,(p)}g ",
T, (@
Tn(q(p)) - "(p) >
(23) A, (p) = pIT, P2 4|7, )P+

SOLUTION OF PROBLEM la). Let e(p) = (S:)’ }, Oy = the set of indices n such
that 7,(r) =0 and my(2) = ¥,c0. T (2)]”. ‘
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LEMMA 1. The function
| e(p) = 3 ZALOT, @65
" A,(p)

is strictly monotonically increasing, and e(0) = m,,(z) and lim proo €(P) = 2.

THEOREM 5. Problem 1a) has a solution for any value of & with m N(Z) < &t < llzl|”.
This solution is given by the spline Sﬁ {z, x) constructed according to (22) and (23),
and the value of the parameter p is found ﬁom the equation e{p) = e,

A solution of Problem 1¢) exists for any vector z if O, = @. This solution is
given by the spline S$5(z, x),-and for it

T(a(0)) = T(2)(u" 'T())™".
ProBLEM 2. a) Find a spline $?(x) € &” minimizing the functional
1(8") = fo l(.s""(x)‘".”)2 dx
under the condition
E(S")=N""T, (S (x, — z,) < &°.
b) Find a spline $*(x) € &” minimizing the functional
J,(8%) = E(S") + pI(S").
¢) Find a spline $”(x) € &” satisfying the conditions
S'x)=2,, k=0,...,N—-1.

SOLUTION OF PROBLEM 2b). This solution is given by the spline Sﬁ (z, x) con-
structed according to (22), with /=0, T, (r)=1,and

| A4,(p) = pINv, "™ 1 @2y

SOLUTION OF PROBLEM 2a). Since T (r) =1, it follows that m ~{#) =0, and the
problem has a unique solutio_n Sf,’ (z, x) that can be found in a way analogous to
that for the solution of Problem la) for all ¢ < [lz|j. ,

A solution of Problem 2c) also exists for any vector z. This solution is given by
the spline S{(z, x), and for it 7, (q(0)) = T, (2)/uy. _ o

RemARK 4, The spline Sf,’ {z, x} is an interpolation spline for the vector z. Splines
of type S;’ (z, x) are said to be smoothing. This concept first appeared in [5]. In the
same place it was established that for p = 2m the spline S;'" (z, x) is a solution of
the following problem (see also [6] and [7]). _ - '

PrOBLEM 3. a) Find a function f ¢ W," that minimizes the functional

1

10 = [ 0™y ax

under the condition i ,
' E(f)=N Ek(f(xk)—_zk) e :
'b) Find a function f € W) that minimizes the functional J,(f). Here W) is
the intersection of the space W#,”(0, 1) with the space of l-periodic functions. Note

that for p = 2m . .
T,(a(p) = (p(Nv,)™" +u,") "' T (2).
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REMARK 5. The explicit formulas established above for smoothing and interpola-
tion splines allow the construction of these splines without resorting to the solution of
systems of equations. Here it is natural to use fast Fourier transform algorithms. The
volume of computations hardly increases at all as the degree of the spline increases.
We note also that the explicit representation permitted a complete investigation of
the approximation and smoothing properties of splines. Here essential use was made
of results in [8]. : .

We now consider an approximate solution of a convolution integral equation. This
is a classical example of an ill-posed problem. We present an algorithm for solving
this problem that is stable and very efficient for computations. o

PrOBLEM 4. Suppose that 4 € W, fe WM oand g(x) = f*h(x). We
have at our disposal the following reference vectors on the interval [0, 1]:z =
{2, = g(x) +e 3", x, = k/N; b= {A(x)}0~'; and e = {g}g, a vector
of random errors about which it is known that |le] < e. It is required to construct
a family of functions f,(N, x) € W," such that f,(N, x) — f(x) in the norm of
W' as e— 0 and N — oo,

SOLUTION OF ProBLEM 4. Under the conditions of Problem 1 let p = 2m and
s! (x) = S(';(h, x), where S{](h, x) is an interpolation spline constructed according
to the scheme of Problem 2¢) from the data h. Let

1) =3 fo (S dx
i=0

Then a solution of Problem 1b) is given by a spline S;'"(N ,z,x) € &™ such that
in (22)

m
2Ap—i 2 2, pti2 . !
A (p) = p S ul (N ) TP, T, =T, (h)/4,.
— .
PROPOSITION 1. There is a constructive algorithm for choosing a parameter p =
ple, N) such that the family of splines S;‘;""(N . Z, X) is a solution of Problem 4.

REMARK 6. In practical applications, problems of the type of Problem 4 are most
often encountered on the “intervals” (—oo, co) and (0, co). The algorithm can be
modified in the standard way for these cases.

Problem 1 is a basis for solving a whole series of direct and inverse problems
connected with the solution of differential equations and difference equations with
constant coefficients and integro-differential equations, and of systems of such equa-
tions. We consider one such problem.

PROBLEM 5. Suppose that the function u(x, ¢) is a solution of the initial-value
boundary-value problem for the heat equation u;x = u: for x € [0, 1] under the
conditions u(0, t) = u(l, ), u(0, t): = u(l, t):, and u(x, 1) = g(x). Notation:
f(x) =ux,T), f¢€ W/, r >3, where T > 0 and 7 > 0 are certain given
numbers. We have at our disposal the following reference vector on the interval
[0,1]:z={z, = g{x,;) +ek}g]_l , X =k/N;and e= {ek}g'l , a vector of random
errors about which it is known that |le|| < &. It is required to construct a family of
continuous functions f,(N, x) such that f(N, x) = f(x) uniformly with respect
to xe[0,1] as ¢ — 0 and N — o0. -

We remark that Problem 5 is stable for T > t, while for T < 7 this problem
becomes ill-posed and requires regularization. This is an example of an inverse
problem.
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A problem of similar type was treated in [9). We formulate an auxiliary problem.
ProsLEM 6. Find a spline $7(z, x, 1) € 6" (x),

(24) Sy, %, ) =N LoqOM (x - x),  a(t) = {g, ()"
satisfying the conditions
Sy, %, ), =8z, %, 0%, k=0,...,N—1,

and minimizing the functional J L (S8) = E(S)) + pl (S,), where

1(s?) =f0'(sjj(z, x, T)"Ydx, B = NS (S0, x, ) -z,),
m<p, ., T>0,
A solution of Problem 6 is given by the spline Sﬁ (z, x, t) from (24), and T,,(q(t))
=B, exp(=G,1), G, = (Nv,)"2 /4’ , and
B - T, (znd exp(—1G,)
" A4,(p) _
4,(p) = pINY, " w20 exp(-2G, T) + (2)* exp(-2G, 7).

PROPOSITION 2. There is a constructive algorithm Jor choosing the parameter p =
p(e, N) such that the family of splines Sﬁ (z,x,T)€ &, p=2r, is a solution of
Problem 5. '
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STATISTICAL ANALYSIS
OF THE STAR CATALOGUE “ALMAGEST”
UDC 519.26+519.259 _
V. V. KALASHNIKOV, G. V. NOSOVSKIil, AND A. T. FOMENKO

1. Goal of the investigation. The numerical data resulting from astronomical obser-
vations and collected in Ptolemy’s Almagest has been of great interest to investigators
(see [1] and [2]). The contradictory character of this data has even given a basis for
doubting the authenticity of the measurements carried out for it [1]. In our paper
we consider the material contained only in the Almagest. We propose a method of

" analysis based on the detection of various types of errors committed by the observer,
The method not only removes many of the contradictions, but also enables us to
determine the time interval in which the star catalogue was compiled.

2. A preliminary analysis of the catalogue. The catalogue contains 1025 stars,
whose coordinates (the ecliptic longitude and latitude) are represented with an ac-
curacy of 10" (the accuracy claimed by its compiler). All the stars are grouped
according to constellations, arranged in a certain sufficiently natural order. The ver-
sion of the catalogue presented in the classical work of Peters and Knobel [3] was
analyzed; [3] also contains results on identification of stars in the Almagest with stars
in the modern sky, along with the real errors in determining the coordinates of the
stars. Far from all the stars in the catalogue have been identified with certainty. The
errors in the coordinates of some stars are too large (1° or more). Such stars are
not very informative. At the preliminary analysis stage the catalogue was “cleansed”
of such “doubtful” stars. This cleansing was realized both on the basis of results of
the analysis presented in [3] and on the basis of computations newly carried out by
us. The “cleansed” catalogue contained 864 stars in all, and was subjected to further
statistical investigation. It should only be mentioned that 2 of the 12 known stars of
the catalogue fell among the stars eliminated: Canopus.and Provindemiatrix.

NoTATION. [, and b, are the ecliptic longitude and latitude of the ‘ith star in
the “cleansed” catalogue. Let L,(f) and B(f) be the true values of the longitude
and latitude of this star in the year ¢, which are easy to find (using a computer)
by starting out from the contemporary coordinates of the stars and using the very
precise formulas of Newcomb and Kinoshita [4]. ' , _

. The thorough statistical analysis carried out in [1] showed that the longitudes /;
may have been not direct results of measurements, but of certain special recalcula-
tions (for example, due to a desire to “reduce” the catalogue to this or that date).
Therefore, the subsequent analysis related the accuracy properties of the latitude co-
ordinates alone. It turned out that these properties enable us to distinguish the groups
of “well” and “poorly” measured stars, and to obtain an interval of possible dating
of the Almagest.

We remark that the “original™ mean-square accuracy
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