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Spline-operational Calculus and Inverse Problem
for Heat Equations

V. A. ZHELUDEV

The periodic splines of defect 1 with the equidistant nodes are of dual
convolution nature. They are the semi-group in relation to the continuous
convolution. On the other side, such spline, being written as the linear
combination of the B-gplines, is the discrete convolution. This observation
makes it possible to use the periodic splines as the base for the peculiar
operational calculus -— we call it the spline-operational calculus (SOC).
The methods of SOC are very universal. They have displayed themselves as
very efficient -ories for the solving a number of problems of one- and multi-
dimensional numerical analysis. We enumerate some of these problems.

1. Constructing one- and multi-dimensional interpolating and smooth-
ing splines of arbitrary degree without solving the systems of the algebraic
equations. . ‘ ,

2. The similar problem in the case, when the integral averages of the
approximated function are known, may be with errors.

3. Asymptotic expansion the remainder of approximation functions and
its derivatives by above-mentioned splines.

4. The stable, efficient algorithms for solving the one- and multi-
dimensional convolution type integral equations of first and second kind,
as well as the systems of such equations and integral-differential equations.
We have as initial data the discrete indications with errors of the kernel and
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right side of the equations. The convergence of algorithms is proved and
the evaluation of the difference between the approximate solutions and the
exact solutions is obtained.

5. Approximate solving the boundary value problem for the ordinary
linear differential equations of arbitrary order with constant coeflicients if
we have ag initial data the discrete indications with errors of the right side
of the equations.

6. Approximate solving the Dirichlet and Neumann problems for the
Laplace and Poisson equations in a ring and in a rectangle if we have as
initial data the discrete indications with errors of the boundary conditions
and the ring side of the equations. The approximate solving the ill-posed
Cauchy problem for the Laplace equations in a ring.

7. Approximate solving the direct and inverse problems for the heat
and wave equations in an interval, and in a rectangle.

8. The means are found which make it possible in some cases during
the executing the fast Fourier transform to diminish essentially the size of
the array processed and to increase the speed of the processing.

Tt is not an exhaustive list of problems at all.

It is possible to say, that SOC is an adequate mathematical apparatus
for the solving a lot of linear problems, where a convolution appears in any
form and where we have an information on the continuous object in discrete
form and with errors. As a matter of fact SOC is a Fourier type analysis
adapted for such problems. As the formulae obtained via SOC are explicit
and contain the finite number of addends, they can be calculated simply
and studied in details. SOC methods can be applied successfully for the
solving a lot of ill-posed linear problems. '

In the present paper we give the main formulae of SOC in one-dimensio-
" nal case. As an example of application of the obtained formulae we consider
the ill-posed inverse problem for heal equation in the thin ring. Another
applications will be discussed in forthcoming papers of the author.
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§1. Auxiliary information.

Let us introduce some notations. Let N be an even number, w = £2mi/N
Vo = 2sin(wn/N), V,, = 28N - The Digerete Fourier Transform (DFT)

wn/N
of the vector a = {az}; ' is T,,(a) = A3 w ™a,. Here and below the

n-1
symbol 37, denotes Y. The norm of vector a is
k=0

' 1
: 1 o\ 7
(L1 o= (53, 4)"
We point out, some well known properties of DFT,

(1.2) o =) Ww™T(a),

18  FX,ah =Y T@T.®) = jal =3 [T

Discrete convolution of the vector a with the vector b and its DFT are
1
(1.4) axb= {fv‘ Zk a;ﬁkbk} ,  Tu(axb) = T,(a)T,(h).

Now we introduce two meshes on the z-axis: {z; = k/N},
{«? = (k+2)/N }. The symbol &? will denote the space of 1-periodic
splines of degree p-- 1, of defect 1, with nodes in the points &7, The symbol
MP(z) will denote the central 1-periodic B-spline of degree p — 1 [1}:

ne=--oo

(1.5) - MP(z)= Y VPerine,

Let us point out that the support of the B-spline can be described as
B —_ ~ 14 [ ]_9 — 1_)
supp M (m)_kzuw Qr, o ((k+2)/N, (k 2)/N).

On the interval Qf M?(z) = NegP(ah ™! f(p—- 1)), &y = 0.5(2+ |z]), where
the symbol 9 means the central difference with the step #
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Remark 1.1. The definition of the B-spline M?{x), given in formula
(1.5), can be extended to arbitrary integer values of p. Here, if p < 0, M*(x)
is a distribution [2]. In particular, M°(z) is the I-periodically extended &-
function of Dirac. =

Denote

(16) MP={M"(z)}y u¢:=Tn(M°)m-j~]§,—ka““‘°M”(m).

The functions u?, were studied in (1], [3], [4]. The recurrent formulae
and the explicit representations for' the initial values of p are known. It’s
important for us, that

: N
(1.7) 0 < fip-z =up p Sup Sug =1, Kp = Kp(;) ,

K, is the Favard constant.
There holds the representation for an arbitrary value of p:

I
w=S g, i=[p+1)/2, =L

k=0

If g(x) is any l-periodic continuous function, g = {g(:ck)}gr ! then
there exist the connection between the Fourier transform of the function g

1
ealg) = ] &2 g(y) dy,

and the DFT of the vecior g:

(1.8) ' T.(g) = z CntIN (9)

=00

It follows from the formulae (1.6), (1.8) that

(1.9) W= Y Vi

=—0v0



SPLINFE-OPERATIONAL CALCULUS 767

§2. The formulae of SOC.

Each spline 57 € &” can be represented in the following form:
) 1
(2.1) St (3}) = -ﬁ Zk qu”(az — LL‘k).

Remark 2.1. Formula (2.1) can be extended to arbitrary integer values
of p in conformity with Remark 1.1. If p < 0 this formula can be interprefed
as the definition of the spline of non-positive order. m

It can be seen from the formula (2.1), that the spline $7(2) is defined
completely by its order p and the vector q = {q, }gr ! of coefficients. Denote
{i‘"n(t_';[)}f,\r ~" = Q(57) and consider this vector as an image of the spline
87(z). The relation S?(z) «+ Q(5”) is a one-to-one mapping: the spline 57
can be restored simply via Q(S5?) with the help of formulae (1.2) and (2.1).
The mapping &?(z) « Q(&P) generates a peculiar operational calculus.
Let us write the main formulae of this calculus.

Denote $7 = {S?(z;)})"!. In accordance to the formula (2.1),

1 1
S (m) = W Z[ QM (zy, — 1) = N sy WM (@1-1)-
This is a discrete convolution and from (1.4) we have
2.2y To(8") = Tu(a)uy.
Proposition 2.1. If the spline 5 € &, then its derivative (§7)\) € Gr~+

# L a - &
(2.3) @) = 53 MY (@ - a).

e

N1 ,
If we denote 87 = {(_S"(':ck))(")} » then the following relations hold
-0
true:

(2.4) Tu(a®) = Tu(@)(ND),  Tp(8"7) = L (q)(iNw,) ul .

Proof. We obtain from the formmlae (2.1), (1.5) the expressions for the
Fourier coefficients:

1 .
25) en(s) = [ e 5y dy =
1}

1 .
= 20, @ [ My - ) dy = (@
: 0
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For the derivatives:

26) e ((SP)(’)) = (2min) T (Q)V? = (iNv, ) Ta(q)V?.

Comparing (2.6) and (2.5), we see that (57)) is a spline from &7~ *, which
can be written in the form (2.3) and T,,(q*) = Tn(q)(iNv,)*. The second
relation (2.4) follows from the formula (2.2). ™

Consider now the convolution of two splines. The continuous f x g we
understand as the convolution of distributions ([2]). If f,¢ are integrable
1-periodic functions then f * g(z) = fol flz — g{y)dy. It is well known
that for the convolution of two periodic functions

(2'7) cn(f *9) = cn(f)cn(g)'
Let spline §' € G
(2.8) S@) = 3 Mo —z), T

Proposition 2.2. The convolution of two splines $* € &' and S? € G? is
a spline 57+ ¢ @r+!;

1 . . * -
(2.9) S+ (z) = N Zk M (z—z),  §={i)y "
If we denote §*? = {§*P (.ﬁ:';c)}f,\r !, then there holds the relations
(2.10) CTnl) = Ta(@)Tu(r),  Tu(S™) = T(@)Tu(r)ul.

Proof. We obtain from the formulae (2.5), (2.7) the expressions for the
Fourier coefficients:

en(8% % 8') = € (57 )en(S') = Tu (@) Tu(r)V2H.

Comparing this formula and (2.5}, we see that S7%8" is a spline SP™ & &P,
which can be written in the form (2.9} and T,,(j) = T,,(q)T,.(r). The second
of the relations (2.10) follows from the formula (2.2). =

Remark 2.2. On comparing the formula (2.6) with the formula (2.10),
we see, that we can consider the differentiation of order s of the spline S?
as convolution with the spline

(2.11) D‘(m)=ﬁzkd;M (—ar) €67, To(d®) = (iNv,)’. ‘=

There also hold the equalities of Parseval type.
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Proposition 2.3. Let §' € &', §* ¢ & be the splines defined in (2.1),
(2.8). Then

1
(212) | s@s@is =3 T,
0 13
For the convolution we have
_ 1
1) (e @) =Y @,
0 n

Hence, in particular

@1 [ (e@0) de= X TP (i)

Proof. We can write, using the Parseval equality,

o0

fo §(@)S @) de= 3 ca(87)2(S) = Y Tu(@T,mveH =

= Z }:n Tosmt (@ Tp e (VI
{==o0

But Tnyn (q) = T,.(q), Tn+}w (r) = T,.(r). Therefore,
f SP(IB)SI(:’U) dy = Z :[n-{-Ni (q)Tn'i-Nl (l') Z Vf:’_::w =

=) Tu(@)T,{r)us®

in accordance to (1.9). The formulae (2.14) and (2.13) can be obtained from
“the formulae (2.6) and (2.10). »

The formulae (1.3) and (2.2) imply the discrete “Palrseval equalities,”

Proposition 2.4. Let §' € &' and §7 € &° be the splines defined in the
formulae (2.1), (2. 8) Then

(2.15) -K', 2. S @S e =Y T, ()T, (r)ulus,

Hence, in particular:

(216) 7 5, (@) =3 r@pe e,
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- Denote W the space consisting of periodic functions f so that f(*) €
L:(0,1), s =0,...,m. The norm is defined as

m a1 ) /2
W, = (Z fo (f (m)(i)) da;) )

i=0

Lemma 2.1. Let the spline 57(z) ¢ &7,
1 A 1 [ 1
§(2) = D aMi @ —a), a={ak’ 7 ={S"@)k"
Then ||5%||; < ('ﬂp"l)ml 1S*1i.
Proof. The formulae (2.14), (2.16) imply
1l
115715 = / (87 (@) do = |Tu(@)u? =
0 T
=3 T (@) [ /E)] < (1) 2 Y ITu@) ()" =
-y, 11 —
= (Kp-1} zﬁ Ek (S‘D(ﬂ"fc?.)2 = (fp-1) 2"SJ"’||2- w

Consider now a problem which is a base for solving a great deal of linear
problems, connected with the convolution.

§3. Basic problem.

Problem 3.1. The splines are S™(x) € 6™,

(3.1) §™(w) = % S tM™ ),

and $'(z) € &', which is defined in formmla (2.8), as well as a vector
z = {z}i". We need:

a) To find a spline S*(z) € &7, which provides a minimum for the
functional I(S?) = fel (8™(z) * S?(X)) dz by the condition

B($) = 5 30, (85 57)ae) ~ a]” < ”
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b} To find a spline $P(z) € &?, which provides a minimum for the
functional J,(S7) = E(87) + pI(S®). J,(57) = E(87)|pI(57).
c) To find a spline §7(x) € &?, which satisfies the conditions
(SI*SP)(IL‘]C):Z]“ kZO,,N—I ]

Solving Problem 3.1.b. Denote r = {r,})", t = {t:}2". Let us write
the unknown spline §7(z) in standard form:
SP(x) = % 5, e M?(x — x3). The formula, (2.13) implies

I(87) = 3 |Tu(Q)To (6) a2+
In view of formulae (1.3) and (2.10) we can write
(3.2) B(8") =Y ITu(a)Ta()ut ~ T, @)

The DFT of a vector a can be represented in the form T,.(a) = C,(a) —
i8,(a), where Cy,(a) and S, (a) are the cosine- and sine-DF'T, correspond-
ingly. Now write the functional

Jo(8?) = E(S?) + pI(§¥) =
=3 {r(Cn@® + 5u(@) (Ca(®) + 5u(0)7) e ] 4
+{Co@Cu) ~ S (@Sa @™ ~ Cua)] 4

2
+ [(Ca(@)Sa(r) + Su(@)Cu(x))u*) — 8, (=)] -
It is easy to verify that the functional J,(5?) reaches its minimum if

Oula(p)) = (CeE)Cn(®) + 5, ()5, ()

An(p) !
y — (Sﬂ(r)cn (Z) - Cn (r)Sn (z))uﬁ""
Sn(alp)) = yRE) ’
(3.3) An(p) = P]Tn(t)lzui(ﬁw_‘) + ITn(l')[z(U,f“)z_

These relations make it possible to formulate the proposition.

Theorem 3.1. The solution of Problem 3.1.b is the spline

B4 . S@o) =52 &M@ -n),  a() = (@),
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T, ()T (z)upt
Ay (P) ,

where the function A, (p) is defined by the formula (3.3). &

(3.5) T.(a(p)) =

Solving Problem 3.1.a. Denote e(p) = E(5%). Let oy be the set of
nambers n so that T,(r) = 0, ux (@) = 3 |Tw(z)], and gy be the set of

n€opn

numbers n so that T, (t) = 0.

Lemma 3.1. If the set qn is empty then the function

2
T, (t) T (z)un ™

An(p)* T ,%, tar(z)

increases strictly monotonously, moreover

p*?

(3.6) ep) =)

(3.7) e(0) = pn(a),  lim e(p) = [l

Proof. The relations (3.7) follow in an obvious way from (3.6). It is easy
to calculate the derivative

2
2p | T (6) T (1) T (2)ua® ™ 2t
A, (P)S

>0, Vp>0. W

(38 €=

n?nN

Denote by the symbol 9P the set of splines S from &7, so that (5 *
SH(z) = 0.

Theorem 3.2. If the set qy is empty then Problem 3.1.a has a unique
solution for every value of € satisfying the inequalities

(3.9) () < 6% < =]

This solution is the spline S%(z,x), which is built by the formulae
(3.3)—(3.5). The value of the parameter P can be found from the equation
e(P) = €2,

Proof. Denote by the symbol . the set of splines belonging to &? so that
the inequality (3.9) is satisfied. If § € 9 then E(S) = ||z||>. Therefore
S ¢ U.. In particular, S(z) = 0 ¢ 4.. Suppose, that the spline o
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provides inf I(5) on the space & and E(0) = h? < &®. There exists
such vmmlty C{o) in the N-dimensional space &%, that VS € C(o) the
inequality & 57, [((S — o) * 8)(zi)]” < (€% ~ h#)/2 bolds. In view of this
it is easy to verify that § € 4. Since 0 ¢ &l., there exists in this vicinity a
spline Sy so that I(S;) < I(c). Therefore, inf I{S) in the space & cannot
be reached on a spline for which E(S) < £%. This implies E(¢) = £2. By
the condition (3.9), the equation e(P’) = £* has a unique solution and for
the corresponding spline E(S}) = 2. Therefore, S%(z,z) is a solution of
Problem 3.1.a. =

Remark 3.1. Let 7 = 1/p, b(r) = e(1/7). It is easy to see, that b(r)
decreases monotonously and it is convex from below. Therefore in order
to find T' = 1/P from the equation (7"} = 2, the Newton method can be
used. R

Solving Problem 3.1.c. Suppose, that the set oy = @ and let us choose
p =0 in the formulae (3.3)-(3.5). Then we obtain the spline

(3.10) SB@e) = 5 3 aOM @),
T.(z)
Tn(q(0 ))—“;,"J,—;T( 3

This spline provides a solution of Problem 3.1.c with arbitrary data vector
z. If R” = @ then Problem 3.1.c has unique solution. If v : T,(r) = 0,
then Problem 3.1.c has a solution only for vectors z such that 7T, (z) = 0.
This solution is not a unique one. »

Point out one partlcular case. If we choose the spline S'(z) = 6(z)
(6-function) then B(S?) = L3 (87(x) — %)* and the solution of the
problem 3.1.c is the spline

1,.(z)

(3.11) S{;(z,m)=%quk(U)MP(a;_mk); Tn(q(O))— P

which interpolates the vector z at the points {x}.

On the base of Problem 3.1 it is possible to built up the numerical
solutions of the series of problems from the list given in the Inty oduction,
espevmlly of the ill-posed problems. Now we discuss one of these problems.



774 V. A. ZHELUDEV

§4. Numerical solution of the inverse problem for the heat
equation.

Let us consider the inverse problems for the heat equation in a thin homo-
geneous ring of radius 2 == 1/2x, provided the discrete data with stochastic
ervors. It is well known, that this problem is ill-posed and demand a reg-
ularization. We present now one of such regularizing algorithms, which is
based on the SOC methods. Let z € [0,1] be a distance from any initial
point of a ring. Then we can consider all functions involved as 1-periodic
by z.

Definition 4.1. The symbol U, will denote the linear operator which is
defined on the set of 1-periodic functions and U, f(z) = u(z, ¢), where u(z, t)
is a function 1-periodic in 2, and is a solution of the heat equation u; = w,,_
with the initial condition «(z,0) = f(z). =

Problem 4.1. Let the function f € W m > 3. Denote g(z) = U, f(z),
T > 0 be some given value. We have in our disposal the vector of indications
on the interval [0,1]: |

z = {z = glw) + e}y zy, == k[N, e={e}y '
is a vector. of stochastic errors. It is known that |je|| < e. Construct a family
of functions f.(N,z) € W’z" s0 that ife — 0, N — oo, then f.(N,z) — f(z)
in the metric of the space C™"!. m

The problems of such kind were studied in [5].

Definition 4.2. The symbol S, will denote the linear operator which is
defined on the set &7 and S,(z) = SP(z, t), where the spline 57(z,t) € &?(z)
satisfies the collocation conditions

(4..1) S*(zx,1), = S%(z4,t),,, k=0,...,N -1

and the initial condition S7(z,0) = SP(x).

"

Let us formulate now an auxiliary problem.

Problem 4.2. Find a spline
SP(z,t) = $,5%(z) ¢ &% (x),
N 1 S ) -
(4.2) 5(z,0) =) a®M(c~z), o) ={a®} "
1

if 57 (x) = W Zk @ MP(z — 2}, a={aly '
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Solution of Problem 4.2. Denote S(t) = {S?(zx,1)}) ', S.(t) =
{57(2z,t),, };;V“ ' The equality (4.1) is equivalent to T, (S(8)); = (84 (£)):
From the last one we obtain according to the formula (2.4)

(4.3)  Ta(a(®); = —GuTula(®)),  Ga = (Nv)ul? /ub.
The formula (4.3) implies

(4.4) T.(q(t)) = Tn(q)‘ exp(—G,t), n= 0,...,N—1. ]

Problem 4.3. Find a spline S%(N, z,z) € 6(z),

(4.5)  S2(N,z,2) = ;, D M @ -2}, alp) ={a(0)}s

which provides a minimum for the functional J,(S?) = E(S?) + pI(8*),
. L Wy 2
whete I(S7) = ¥ [ (S”(m)(")) dz = ||57|%,

3=0

B(S2) = & 3, (S:57(zm) — z)°. w

Solution of Problem 4.3. Denote 5%(x) = & 3, neM°(z - z1), T,,(r) =
exp(—G,7). Then, as it follows from solving the former problem, we can
write B(57) = £ 5, [(S° % %) (wy) - z]". Now we see that this problem is
a particular case of the basic problem 3.1.b. Therefore it’s possible to write
the solution:

T, (z)ul exp(—1G,)
A (p) ’

(4..6) To(q(p) =

An(p)=p3_u2™) (Nv ) + (u)? exp(—2G,7).  m

i=0

Proposition 4.1. There is a constructive algorithm for the choice of the
parameter p = ple,N) so that the family of splines S0(z,x,1T) € &,

= 2m, which is built by the formulae (4.5), (4.6), provides a solution
for Problem 4.1.

The convergence f,(N,z) — f(z) will be discussed in details at the
vext paragraph.
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§5. Convergence of the approximate solutions.

At this paragraph we show that the approximate solutions of the inverse
problem converge to the exact solution, provided the level of the errors
diminishes as well as the step of the mesh. A special algorithm will be
presented for choosing the regularization parameter p. To find the value of
the parameter p we shall use the generalized discrepancy principle [6], i7]-
In order to apply it we need some auxiliary propositions.

As approximate solutions of Problem 4.1 we shall use, according to §4,
the splines

(5.1) Sﬁ"‘(N,zgﬂc)b-j{; LM (@ — ), alp) = {Qulp)}y 7,

(52) To(a(e) = T?;(z)tsﬁzf:aal;(—v'(}'n)’ G = (N )22 fy2m.

m
An(p) = p Y ulP D (Nua)¥ + (u2™)” exp(—2G, 7).

i=0

Let S7™(f,z) be the spline which interpolates the function f at the
points {zy}, u(z,t) = U, f(z), and

(5.3) 8™ (u,x,t) = _11V Do QM (e —zy), Q) ={Q())}y ",

be the spline which interpolates the function u(z,t) at the points {x;} for
Yi>o0. If

1 -
G4)  S(Eo) =% MM (e-a),  h={m} ",
1 -
SeSim (Bw) = % D0 M (@~ m),  h(t) = {he(®)}] ",
then, in view of Problem 4.2, we can write
(5.5) T.(h(t)) = Tn(h) exp(-Gyt), Tn(h) = To(F) /ui",

where £ = {f(z)}) .



SPLINE-OPERATIONAIL CALCULUS T

Lemma 5.1. Let f € \’&7;“ Then

(5.6) s @2 < tsam-0) ™ |19

i =0,...,m, where the constants ko1 are defined hy the formula (1.7).

Proof. In view of formula (1.9), 2% = 3 V.24, n - Since V2 < 1, it follows

J=-m0

from the relation j > 4, that 4% < u2. Recall the well known _extremal
property of interpolating splines (see, for example, 8]): if f € W, then
“Sé"m (£, )™ “0 < ||£¢]|,- Hence we obtain the statement of our lemma

in the case ¢ = m. Let 0 < i < m. Then, in accordance to formulae (1.7),
(2.14) and (4.6),

N2 N i e
Jszr @ = 32 @ Puend (v jamy <
< (Rame1 )72 30 T (E)Pu (W)™ () =

= (a1 ) |34, m)(‘"”: < (kam-1)"* || £9) : :

Proposition 5.1 ([8]). Let f € Wi*. Then

(5.7 S, x)® = FO @)+ NOmH2 gy, 4=0,...,m-1,
ldi()] < ds ”f""" ”0 di =m P (m —1)... (i + 12" ™5y

Lemma 5.2. Let f € Wi, Then there exist constants K (N), K so that

68 1)l < KOOI < KU, Jim KOV) = (k)

Ag for the constant, one can choose
K(N} = (K2m-1 )mz + [(K’Zm*; )2/ (1 = (Kam-1 )2)] dgNtTEm,
Proof. In accordance to Proposition 5.1

IS5 (f, o, < £, -+ Nk fldo ()]l < I £llg + N_mﬂﬂ do “f(M) “o )
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Hence we have, in view of the inequality 2ab < ca® + ¢™1b?,
153™ (5, 2)ll5 < (kam-1) N Fll3+
(1= ) J 0
From the last relation and Lemma 5.1 we obtain
152™ (£, W2, < (Kam-1) ZIF I+
[t ) 5 [0
< [(fﬂzm—l )% (k2m 1) /(1 ~ (K2m-1 )2)] dg N | £,

Denote

. (69) B(N,z)=S.8(f,0) — 52" (uyz,7),  BN)={B(N,m};" -

Lerama 5.3. Let f € V/V‘g*, m > 3. Then there exist constants L{N) so,
that
IB(VIP < N°2m K (NI A

Here the coustant K (N) is defined in Lemma 5.2,
L(N) = (sz)z/K(N), dy = m1/2 (m _ 1) .. g.9%86m

Proof. Let us consider the difference (1) = S¥™(u,zy,t),—
S2m (u, zy, t) . Tt is obvious that S2™ (u, 2y, t); = u(wy, 1), In accordance
to Proposition 5.1,

827 (1, g, 1), = W(Bgy £y -+ N5 dy (4, 1),
(5.10) jda, 1)) < o fJut, ||

It is well known that the Fourier coefficients of the function u(x,t) are
(1) = ¢, (f) exp(-—4xw?n®t). Therefore

: 0 0
and we obtain finally

(5.12) lda (@, )] < dy || 1

0
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Thus,
Dy (t) = ulwe, 1), — ul@, t),, — N*5 ™ dy(my, £) =
= —~N25"" 4o (5, £).

From here we obtain the relation

(5.13) Tu(QUE)), + GRTH(Q(E)) = N**°™ ¢, (1),

ult) = ~Tu(do (),  dolt) = {dalzy, 1)},

Let us remark the inequality

(5.14) 3, e OF = da@® < (a2 )5 | ).

Solving the equation (5.13) with the initial condition 7, (Q(0)) = T, (h), we
obtain

(5'15) Tn (—Q(t)) == Tn(h(t)) -+ Nz'sgm (ﬁn (t)?
B, (t) == exp(-—~Gpt) /(; exp(Gn ) (8) do.

We estimate the value
(5.16) Z [®, (7)) = Z exp(-h-Gﬂ'r)/. exp( G, 8) o, (9) df
T F 3 0

<3 UOT $n(0) dO 2 STy, /OT 6O d§ =
o[ S 0w (]

We can write now, in view of formula (2.14),

2
<

IBAVI® =3 (7:(Q(r)) = T ()2 =

1111 m 2 = arr m 2
=N Y, e < e (raa 10 )
< N2 (g | 112,

Hence the assertion of the lemma follows. @
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Lemma 5.4. If there holds the inequality |le|| < e, then

1
B(Sy™ (£,0)) = 5 >, (57 (B, 7) — )" <

< fer (oo K(N)L(N)Ilfllfn)mr

Proof. By the condition of the Lemma, 2, = g(zx)+-er = S3™ (v, 2x, T)€x,

therefore _
VESE™ (£,2)) < 1B+ le]].

Hence the assertion of the lemma follows. B

Let e(p) = B(S2™), afp) = 1(S2™) = [|$7| 2,

=55 [ () e
i=0 70

m ’ .y 2
- E Zuz(zm-- i) (Nv )2i | T ()T (2)udm | _
" =0 " _ A (P)2

Point out that T, (r) = exp(—G,7) > 0, therefore p,(z) = 0 V.N. As it was
remarked above, the function e(p) increases strictly monotonously and

e =0,  lim e(p)= =1/

Tt is straightforward to verify that the function a(p) decreases strictly mo-
notonously and

(5.19) lin& pa{p) =0, lim a(p) = 0.
2 o

Denote

QU ¢,p) = elp) - [e + (V"2 L(W)a(o)?]

Theorem 5.1. If for a given vector z the condition

(5.20) e < ||z]*
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is satisfied, then the equation Q(N, e, p) = 0 has the unique solution p(N,¢)
with respect to the argument p.

Proof. The function Q(N,e, p) mcrea,ses monotonously, and Q(N,¢,0) <
—g?, lim Q(N,e,p) = ||z]]* — €*. Hence we obtain the statement of our

theorem [}

Let N,, be a sequence of natural numbers so that lim N, = co, and

n—oo

€n be a sequence of positive numbers so that hm gn = 0. Denote f,(z) =
527 (N, z,z), where the spline Sam is defined by formula (5.1).
We can prove the main result of thls paragraph.

Theorem 5.2, Let the function f € W;" m 2> 3, the periodic function

"

u(z,t) be a solution of the equation u) = uw with the mmal condition
u(z,0) = f(z), g(z) = u(z,), and 2} = A, 2 = {2 Wl n=1,2,...,
be two sequence of vectors so that 1\3,, 2o (g(x}) — z,';")2 < &2, If for an
arbitrary value of n the relations

(5.21) & < Jl="|?

are true, and p,, is a root of the equation

(5.22) e(p) = [en + (N2 (N, Jae)) "],

then f,, — f in the metric of the space C™ 1,

Proof. Since the spline f,(2) minimizes the functional J, = pI + E on the
space &

Jp(fp) < JP(ng (f, 56)) =
= PISEm D)+ YD (6,53 (0f ) — ) <
< PRI, + [e -+ 171, -2+ K L))

But, if p = p,,, and p,, is a root of the equation (5.22), we have

. e 1/2}2
pallfon s+ e+ [l s (092748 L)) ] <

< o K (W) £, + [eu + [ £, (I 2t K(N,,)L(Nn))lfz]z,
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Hence it follows directly

1fpa 1% < KNDHIFIE, < KA

Therefore the set of functions {f, }, n=1,2,..., belongs to a sphere in the
space W;" and, consequently, is compact in the space C™7 1. Therefore we
can choose from the sequence {f,. } any subsequence { f¥ } which converges
in the space C™ ' to any clement f.

Let us show that f = f. Suppose @t(x,t) = U,f(z), j(z) = @z, 1),
e (3,8) = Ue(f,., (2), gn(®) = un(z,7). Let, as above, SF™ (v, x,t) be the
spline interpolating the function u(z,%) on the mesh {z}}. We may write

5
U F = U flly <D I,
k=1

L = ”{UT}I - ]U'rfpnllor Ip = “U'Tfpn - ng(umms?)"m
Iy = "S‘rfpn - ng (unamiT)“g! Iy = ”ST.fpn - ng (u,m?f)”o!
I = U, f — ng (umma"')”o-

Consider the addends I, separately. The relations Iy — 0, Is — 0 are
obvious. There holds the inequality I, < U, || |F — f* I, < I1f - £,

- n
which follows directly from the formula (5.11). Therefore I; —— 0. It

follows from Lemma 2.1 that
- 1 n 1 12 2
I,f < (K’P“‘l ) * -ﬁ Zk (STan (mk) - S(Z) (uimk? T)) =

= (5p1) 5 30, e fon () — u(af, ) =

a1 =
= (k1) 55 D0, Befo @) — A + )’ <

< (K:‘p"‘l )_2 (6(;9,,;)1/2 4 gn)z =

= ("“7::—1 )“2 [2gn o (N121m+-5 L(Nn)a'(pn))1/2]2 e

7 oa

As for the addend I3 — repeating the speculations of Lemma 5.3, we can
obtain the inequality I2 < N5~ K(N)L(N)| f,. II%. —= 0, since ||, 12
are bounded.

Thus U, f = U, f and, since the kernel of the operator U, consist of zero
only, f = f. This fact holds for each subsequence of the sequence {f,,}.
Therefore the entire sequence {f,, } converges to the function f.
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"Thus, if we choose the values of the parameter p according to the scheme

given above, then the family of splines f, yields the solution of Problem

4.1,
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