Periodic Splines, Harmonic Analysis and
Wavelets

Valery A. Zheludev

Abstract. We discuss here wavelets constructed from periodic spline
functions. Our approach is based on a new computational technique
named Spline Harmonic Analysis (SHA). SHA to be presented is a ver-
sion of harmonic analysis operating in the spaces of periodic splines of
defect 1 with equidistant nodes. Discrete Fourier Transform is a special
case of SHA. The continuous Fourier Analysis is the limit case of SHA
as the degree of splines involved tends to infinity. Thus SHA bridges the
gap between the discrete and the continuous versions of the Fourier Anal-
ysis. SHA can be regarded as a computational version of the harmonic
analysis of continuous periodic functions from discrete noised data. SHA
approach to wavelets yields a tool just as for constructing a diversity of
spline wavelet bases, so for a fast implementation of the decomposition
of a function into a fitting wavelet representation and its reconstruction.
Via this approach we are able to construct wavelet packet bases for refined
frequency resolution of signals. In the paper we present also algorithms
for digital signal processing by means of spline wavelets and wavelet pack-
ets. The algorithms established are embodied in a flexible multitasking
software for digital signal processing.

81 Introduction

The objective of the paper is the presentation of techniques of adaptive signal
processing based on the spline wavelet analysis.

At present most popular wavelet schemes are based on the compactly sup-
ported orthonormal wavelet bases invented by Ingrid Daubechies [9]. Exploit-
ing the so called wavelet packets [12], [7], provides essential advantages because
these generate a library of bases and provide opportunities for adaptive repre-
sentation of signals. It should be pointed out that the compact support of basic
wavelets and the orthonormality of corresponding wavelet bases are not compat-
ible with the symmetry of the wavelets concerned. The lack of the symmetry is
a noticeable handicap when using the wavelets by Daubechies for signal process-
ing. To attain the symmetry one should sacrifice at least one of these properties.
In [8] the authors had constructed biorthogonal bases of compactly supported
symmetric wavelets. However, certain inconvenience of the construction lies in
the fact that dual wavelets belong to different wavelet spaces.

Early examples of wavelets were based on spline functions [11], [1], [10].
Later spline wavelets were shadowed by the wavelets by Daubechies. However,
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in numerous situations spline wavelets offer advantages before these latter. In
recent years spline-wavelet were subjected to the detailed study, mainly by C.
Chui with collaborators [2] — [7]. In particular, in [3] the authors succeeded
in constructing compactly supported wavelets in the spaces of cardinal splines.
The significant property of such spline wavelets, in addition to the symmetry,
is that their dual wavelets belong to the same spaces as the original ones.

We discuss in this paper periodic spline wavelets. Our approach to the
spline wavelet analysis is based on an original computational technique — the
so called Spline Harmonic Analysis (SHA) which is a version of the Harmonic
Analysis (HA) in spline spaces. SHA in some sense bridges the gap between
the continuous and discrete HA. It is rather universal technique applicable to a
great variety of numerical problems, not necessarily to wavelet analysis [21]— [24].
Application of the SHA techniques to wavelet analysis is found to be remarkably
fruitful. This approach has given a chance to construct a rich diversity of wavelet
bases as well as wavelet packet ones. Moreover, we present an efficient scheme
of decomposition into the wavelet representation and reconstruction of a signal,
based on SHA.

The paper consists of Introduction and four sections. In Section 2 we out-
line the properties of splines with equidistant nodes which will be of use for
wavelet analysis, especially the properties of B-splines. Section 3 is devoted
to the presentation of the SHA. In Section 4 we discuss the multiscale analy-
sis of splines. We establish the two—scale relation, construct orthogonal bases
in spline wavelet spaces and present a spectral algorithm for decomposition a
spline into frequency multichannel representation and reconstruction from this
representation. We introduce the high— and low—frequency wavelet spaces. In
Section 5 we construct the families of father and mother wavelets as well as
the spline wavelet packets. We discuss methods of the most informative digital
representation of signals by means of spline wavelets. There established a useful
quadrature formula.

Some results presented in the paper have been announced in the papers [16],
[17], [18]. On thee base of algorithms established in the paper we have developed
a flexible multitasking software for digital signal processing by means of spline
wavelets and wavelet packets. The software allows to process periodic signals
as well as non-periodic ones in the real time mode.

§2 Splines with equidistant nodes

This section is an introductory one. We outline here properties of polynomial
splines with equidistant nodes most of which are known [16], [17]. A function
pS(x) will be referred to as a spline of order p if

1),S(x) € cr2
2),S(x) = Pi(z) asz € (z,Tp+1), Pulz) €Il
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I, is the space of polynomials whose degree doesn’t exceed p — 1. In what
follows we deal exclusively with splines whose nodes {zx} are equidistant x; =
hk, k = —oo0,...,00 and denote this space by ,S. These splines are referred to
as cardinal ones. The most significant advantages of these splines over others
are originated from the fact that in the space ,S there exist bases each of which
consists of translates of a unique spline. One of such bases is of most importance
for our subject. We mean the basis of the B-splines.

2.1 The B-splines

We define the truncated powers as 2% = (5(z + |:1:|)k
The following linear combination of truncated powers:

8o = o S0 (§) ot

1=0
is referred to as the B-spline. It is a spline of order p with nodes in the points

{hk}>_.

Properties of B-splines.

1. supp By (z) = (0, hp).

2. p,Bu(z) > 0 as z € (0,ph).

3. pBn(x) is symmetric about x = hp/2 where it attains its unique maximum.
4. [ pBu(z)dx = fé)h »Bn(z)dr = 1.

Point out a property concerned with discrete values of B-splines. Define discrete
and continuous moments of B-splines

ph
M,(,By) = /0 (¢ — hp/2)" , Ba(x) da.

Proposition 1. [([17],[18]] Provided s < p—1, the discrete moments ps( ,Bp)(t)
does not depend on t and coincide with the corresponding continuous moments
M (pBp). The moment

tp(pBr)(t) = (=1)P7' B, (AP + M, (,Bp,) ast € [0,1]

and 1-periodic with respect to t; 3, (t) is the Bernoulli polynomial of degree p
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This property will be of use in Section 5 to derive an important quadrature
formula.

The B-splines of any order can be computed immediately.

Define a function which will be of important concern in what follows

pun(w) =hY_ e " B((k+p/2)h). (2.1.1)
k

Due to the symmetry of B-splines, the functions ,up(w) are real-valued cosine
polynomials. These functions were extensively studied in [14], [15]. They are
related to the Euler-Frobenius polynomials [13].

Proposition 2. The functions ,un(w) are strictly positive, moreover
0 < Kp = pup(r/h) < pup(w) < pup(0) = 1.

The constants K, do not depend on h and lim K, = 0.

p—oo

The Fourier Transform of the B-spline is:

oo

JBu(w) = / =9t By (t) dt (2.1.2)

— 00

a5 T

2.2 The B-spline representation of cardinal splines

Recall that ,S denotes the space of cardinal splines of order p with their nodes
at the points {hk}>_.

Proposition 3. [13] Any spline ,S(z) € ,S can be represented as follows

pS(@) =h> qi pBu(x — hk). (2.2.1)
k

Here and below ), stands for Y ;2 .

Remark 1. If z is any fixed value then the series(2.2.1) contains only p nonzero
addends. So, given a set of coefficients {gx}, values of the spline ,S(x) can be
computed immediately.

spline. Provided the coefficients {qx}7>
the spline ,S(x) is

_ oo € l2, the Fourier Transform of

pg(x) = / e~ wrp, Z qk pBn(x — hk)
> k=—o0
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—iw 5 . _ipwh /Sinwh/2\P
= h;e hqu th(w):q(w)e 2 (T/Q)’
hze—iwhqu.
k

So, we can say that the approximation of a signal by a spline is, as a matter of
fact, a kind of low-pass filtering. Actually, the signal is being filtered into the

band [;—i, ﬁ]

q(w)

83  Spline Harmonic Analysis

Harmonic Analysis (HA) is a powerful tool of mathematics for solving a great
diversity of theoretical and computational problems. HA techniques are best
suited for solving problems associated with the operators of convolution and of
differentiation. It stems from the fact that the basic functions of the conven-
tional HA — the exponential functions — are eigenvectors of these operators.

However, the conventional HA is not quite relevant for dealing with signals
of finite order of smoothness determined by a finite set of functionals (may be
noised) because of at least two reasons: 1) The basic functions of HA — the
exponential functions — are infinitely differentiable. 2) Practical computing the
coordinates — the Fourier coefficients or the Fourier integrals — put a lot of
problems.

To circumvent these obstacles it would be attractive to have a version of
HA which would deal with discrete issue data and would provide solutions of
problems as immediately computable functions of the smoothness required.

We present here such version of HA. It is based on periodic splines and we
name it the Spline Harmonic Analysis (SHA).

3.1 Periodic splines

We introduce some notations. In what follows we will assume the step of a mesh
. . j—1_
involved to be h = 1/N, N = 27. Throughout ) stands for ZZ]:fzjl,l. If a
sequence is furnished with the upper index j it will imply that it is 2/-periodic
(e.g. {uz.}). Throughout we denote w = e?™/N _ The direct and inverse Discrete

Fourier Transform (DFT) of a vector @ = {ay} is
. 1 d J .
T)(@) =+ zk:wrkak ap = zrjwkz? (@). (3.1.1)
The discrete convolution of the vector @ with a vector b = {b} and its DFT are

j .
axb= {Q_jzakflbl}; Z"j(d’*_)) =T/(a) 'Z"j(_))’
]
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To unify the notations in what follows we will denote the B-spline , B,y () as
pBi(z)
Any 1-periodic cardinal spline of order p can be represented as follows

b5 () = < D al yM (a — /) (3.12)
k

where

ZP i(x—1)

is an 1-periodic spline. We name it the periodic B-spline. The sequence of the
coefficients {q].} is N-periodic.

The properties of B-splines ,M J are being determined completely by these
of B-splines ,B;. It should be noted only that if p > N then the supports
of adjacent splines ,B;(x + ) and ,B;(x + | + 1) overlap and, therefore, the
support of the periodic spline ,M7 has no gaps in this case.

As for spectral properties, due to the periodicity, the B-spline ,M7 is being
expanded into the Fourier series:

Z 2mina —Trznp/N(Slnﬂ"n/N)
/N

This relation implies that if a spline ij is represented as in (3.1.2) then its
Fourier coefficients are

1
Co(p57) = / e=2minT Gl (z) dar (3.1.3)
0

1 —-n
_ _m-”p/N(smﬂn/N)PTj 5y _ (1 —w )ij i
¢ /N (@) 2min/N n(@)-
Recall that DFT {7,(¢’)} form an N-periodic sequence.
Denote by ,V7 the space of 1-periodic splines of order p with their nodes
in the points {k277}>_. The relation (3.1.2) implies that the shifts { ,M7(z —
k/27}4 form a basis of ,V7

3.2 Periodic ortsplines

To start constructing SHA we carry out a simple transformation. Let a spline
»57 € pV7 be represented as follows

257 (z) = %qu oM (z — k/N). (3.2.1)
k
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Due to (3.1.1) we can write

J
= W)
T
where ¢ = {qx}%. Substituting it to (3.2.1) we come to the relation

() = ! Z I(x —k/N) Zukw ()
k

- 277(‘7)% > W™, M (z — k/N).

r k
Setting
1 J
_ _ —rk
&=T/D) = Zk:w Qs (3.2.2)
i L o i
i (z) = N;w oMi(z—k/N), r=0,..,2 -1, (3.2.3)
we write finally
J
) =) & pmid(2)
Point out at once the reciprocal relations
J
=Y whe (3.2.4)
oM (z — k/N) = Zw rk ), M ()= ,mi(). (3.2.5)

We take some time to discuss properties of the splines ,m? which are basic
for our constructions.

Proposition 4. The sequence { ,mi (z)} is N-periodic with respect to r.

It follows immediately from 1-periodicity of the B-splines ,M7(z).
Eq. (3.2.5) implies



8 V.Zheludev

Proposition 5. The splines { ,mJ(z)} form a basis of the space ,V’.

It will be of use to compute the Fourier coefficients. Keeping in mind (3.1.3)
we write

) rin sinmn/N\pP 1 kln—r
k

sinn/N\?
/N )

o

(2min/N)P’

07 (modN) ~e_”mp/N(

= 4, (modN)(1—w™")P

So,
1
(2mi(r +IN)/N)P

pmj (.’E) _ (1 _ wfr)p Z e27ri(r+lN):v

I
l

_ N(l B wiT) p 2mire 2milNx 1
N ( 2mi ) ¢ zl:e (r+IN)P

_ Z 2mi(rHIN) (2—p/2N) (sinw(r + lN)/N>p
]

(3.2.7)

(r(r+1IN))/N
_ 627ri(:1:7p/2N)T(Sin mr/N)P Zezmle(ﬂ(T +IN)/N)7P.
l

Let us derive some consequences from (3.2.6), (3.2.7). First we denote
, , 1 Z
il =yl (p/2N) = = SR M((p/2 4 K)/N).
k

Substituting the identity ,M’(z) =, ,B;(z — ) into the latter relation
we obtain

oo

1 ! —2mir
¢ TNy L uBi((/2+ k+IN)/N)
k

J
pUr

l=—00

Z e~ 2mirn/N ij((g + n) /N) = pui/N(277).
n=—oo
Recall that the function ,up(w) was defined in (2.1.1). So, dealing with the
N-periodic sequence ,ul we can compute it immediately and may refer to the
properties pup(w) marked in Section 2. This sequence is of importance for us.
Substitution z = p/2N into (3.2.7) results in the identity

J oS (ST A NN eSS (DT
i =3 (a(r + IN)/N) )’ = @sinmr/n) Xl: (w(r +IN))P”

The Parseval equality for the Fourier series entails the important relation
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Proposition 6. The inner product is

Corollary 1. The splines {,m/}] form an orthogonal basis of ,V’ and the

i Imd = J
splines {pmr = p,ml/1/ 2pu

J
] } form an orthonormal one.
T

Proposition 7. The splines ,mJ are eigenvectors to the shift operator. To be
specific
omi(z+1/N) =W ymi(x). (3.2.8)

Proof: Eq. (3.2.3) implies

(e 1) ]sz:wrkpMj(x_(k];z))
k

[ A 0
= wZN;LUkpMj(sc—k/N):wlpmi(x).

Corollary 2. The splines 2mi.(x) = p,mi(x+p/2N)/ pul interpolate the expo-
nential functions p,(x) = 2™, Namely,

2, j —
pMr(l/N) = pr (L/N).
Indeed, (3.2.8) implies

s ((p/2+D)/N) = N i (p/2N) = 27N Ll

r

Let o) (x) = Zi "¢, pmi(x) be an orthogonal projection of the exponential
function p,(x) onto the space V7. Then

n£7‘<pmg;7 pmg> = (lin, pmg> —
"6 07 gpul = Culpm]) =
n _ e  rinp/N (SIDTR/NAP 1
& 0y (modN) - e (77m/N ) —

2pW

Hence it follows
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Proposition 8. The spline

J

sin Wn/N)Ppmi(x)
2pW

200 (z) = 07 (modN) - e”mp/N< /N
™

is an orthogonal projection of the exponential function p,(x) onto the space
pV7 provided n = r(modN).

Denote 2mi(z) = ,0i(x).

The latter properties relate the splines ,mJ to the orthogonal exponential
functions p, () = €2™"%. We will see further that this relation is much more
intimate, but for the moment make a terminology remark.

As the splines {,m?} form an orthogonal basis, it is pertinent to call these
Ortsplines (OS). The connection of OS with the operators of convolution and
of differentiation is related to this of u,(x). To be specific

Proposition 9. There holds the relation

(@) = (N(1 = w™))* posmi(2).

Proof: In accordance with (3.2.7)

(2mi(r + IN))®
omi(r + IN)/N)P

pmi(x)(S) — (1 _ wfr)s(l o wfr)pfs Z 627Ti(r+lN):z:<
l

= N —w ) pami(a).
|
Remark 2. Emphasize that OS ,_smi(z) is a replica of OS ,mi(z) in the
space p,SVj.

Let us turn now to the convolution. Provided f, g are square integrable
1-periodic functions we mean under the convolution f * g the following integral

1
fro@) = [ 1= o) dy
0
Recall that the Fourier coefficients

Cn(f * g) = Cn(f) : Cn(g)' (3'2~9)

Proposition 10. The convolution of the ortsplines is
g * pml(z) = gipml(z) - 6.

The relation results immediately from (3.2.6) and (3.2.9).
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Corollary 3. Let a spline ,07(z) be given as

000 (2) = Zns ML (z).

Then the convolution is
g0 % pmi () =1y - pygmi(z).
Emphasize that OS ,1sm/(z) is a replica of OS ,m (z) in the space ,_ V7.

Remark 3. We may interpret Proposition 9 and Corollary 3 as follows: OS
{pm{,} are generalized eigenvectors of the operators of convolution and differen-
tiation unlike the exponential functions which are the conventional eigenvectors
of these operators.

The properties of OS established give rise to formulas related to correspond-
ing ones of HA.

Proposition 11. Given two splines of ,V7

pSI (@) = > & pmi(x) (3.2.10)
P @) = Y X pmi(a), (3.2.11)

there holds the Parseval equality
J

<ij7 p§j> = Z@E%U?

T

Proposition 12. Let a spline ,57 be given by (3.2.10) and 407 (z) = Zi Ns gmi(z) €
4V?. Then the convolution is

J
pS x g0’ (x) = Z&m p+aM7 (%) € pigV.
T
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Proposition 13. Let a spline ,S7 be given by (3.2.10). Then the derivative is
S (@)D =Y (N(1 = W) psmi(a) € posV.

T

Remark 4. Proposition 11, Proposition 12 and Proposition 13 enable us to look
upon the expansion of a spline ,57 € ,V7 with respect to OS basis (3.2.10) as
upon a peculiar HA of the spline. Moreover, OS {,m?} acts as harmonics, and
the coordinates {¢.} as the Fourier coefficients or a spectrum of the spline.

We stress that, given the B-spline representation of the spline (3.1.2) the OS
representation can be derived at once by means of DFT (3.2.2) as well as the
reciprocal change (3.2.4). It is natural to employ in the process the Fast Fourier
Transform (FFT) algorithms.

We call this HA in spline spaces the Spline Harmonic Analysis (SHA). A
great deal of operations with splines rises to remarkable simplicity by means
of SHA. It provides a powerful and flexible tool to dealing with splines and,
moreover, with functions of finite order of smoothness when discrete (may be
noised) samples of these functions are available. Recently a promising field of
application of SHA has appeared — the spline wavelet analysis. We discuss it
further in details.

Point out that in [17] we have presented relations which allow to assert that
DFT is a special case of SHA whereas the continuous Fourier Analysis is a limit
case of SHA. In some sense SHA bridges the gap between the discrete and the
continuous versions of HA.

Remarks on SHA applications. SHA techniques can be applied success-
fully just as for solving problems of spline functions (interpolation, smoothing,
approximation) so also for problems associated with the operators of convolu-
tion and of differentiation (integral equations of convolution type, differential
equations with constant coefficients). When solving inverse problems it occurs
frequently the phenomena of ill-posedness. The SHA approach allows the im-
plementation of efficient regularizing algorithms. These applications of SHA
techniques are presented in [21] — [24].

84  Multiscale analysis of a spline
4.1 Decomposition of a spline space into wavelet spaces

First we point out that the space ij ~! is the subspace of ij . The space
W71 is the orthogonal complement of ,V7~1 in the space ,V7. So

V= Ve witt,

The space ,WW/~1 is called usually the wavelet space.
The space ,V7 ~! can be in turn decomposed as

V= Ve W
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Correspondingly
P @) = pS7 7 (2) ® W (2).
Iterating this procedure we obtain
V= 0 mg Wit g Wit gL g Wit (4.1.1)

SS9 (@) = S (@) @ W (@) @ W @) @ @ W ). (41.2)
The relation (4.1.2) represents a spline as the sum of its smoothed out, “blurred”
version 577 and “details” {,W97"},_;. Emphasize that all addends in
(4.1.2) are mutually orthogonal.

We will call the decomposition of a spline ,S57(z) the multiscale analysis
(MSA) of this spline and, provided, the spline ,S57(x) = ,S7(f,z) is a spline
approximating a signal f, as MSA of the signal f.

Now, provided we are able to project a signal f onto the appropriate spline
space pVI, f — ,S7(f) and to decompose the spline ,S7(f), in accordance with
(4.1.1) we get an opportunity to process the signal in several frequency channels
simultaneously. If need be, the channels obtained which bandwidths arranged
accordingly to the logarithmic scale can be subdivided into more narrow chan-
nels by means of the so called wavelet packets. This subject will be discussed
later.

After a multichannel processing one needs to reconstruct the spline pro-
cessed from its multiscale representation of type (4.1.2) into the conventional
|-spline representation where its values can be computed immediately. It is
being implemented in accordance with the pyramidal diagram

LSITT Gl L gi=2 gl g

ij—m/‘Wj—Tn-‘rl/Y'../!Wj—Q/ Wj_1/ (4.1.3)

The algorithms of such reconstruction to be established are of high-rate effi-
ciency as well.

SHA provides a powerful tool for developing the wavelet analysis. We start
with MSA i.e., we establish algorithms to decompose a spline into an orthogonal
sum of type (4.1.2) and to reconstruct it.

4.2 Two-scale relations

We discuss first projecting a spline ,57 € ,V7 onto the subspace ,V7~1. Corre-
sponding algorithms result from the so called two-scale relations which correlate
ortsplines of the spaces ,V7 and V771

As a rule in what follows we will omit the index ,- for splines belonging to
the spaces ,V”. The term u” will stand for g,ul.

Theorem 1. There hold the two-scale relations for r = 0,1,...,2771 — 1:

i () = Womd (@) + by yml_y (), =2 hw T (42)
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Proof: In accordance with (3.2.7) we have

; N1 —w2")\? , . >0 ) 1
Jj—1 — 2mire TNz
mp (@) ( Ami ) ¢ lzz_:we (r + IN/2)
= 2*?(1 + w*T)P(N(l — wir)>pe27rirx i 62772'1/Nx 1
2mi = (r+vN)P

—(r—N/2
" 27p(1+w7(r7N/2))<N(17(’; ( /)))p62ﬂ'i(r7N/2)z
YINA

Z e27riVNx 1
(r—N/2 f UN)P

v=—00

= 27P(1+w " Pmi(e) + 27P(1+w” CTNPml ().

Remark 5. The relation (4.2.1) implies an identity which will be employed
repeatedly in what follows. Namely, writing this relation for the splines of order
2p with z = 2p/N, we have
opul 1 = opml H(2p/N) =47P(1+w")* 5yml(2p/N)
+ 47P(1—wT)?P 2. 5 (2D/N).
But » ' 4
2pm(2p/N) = 2pm].(p/N)w"" = W' 550

and we obtain finally

)t =47PWP[(1+ w )P gpul + (—1)P(1—w ") 21)“{-_1\//2]

= (601 2pud + [0y ol 2ptt] iy o (4.2.2)
Theorem 1 enables us to implement projecting a spline S7(z) € ,V7 onto
the space V771
Theorem 2. Let the spline

j—1

F @)= 3 & mi (@)

T
be the orthogonal projection of a spline
J

S(a) =& mi(x) € V7

l
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onto the space ,V?~!. Then the coordinates are

G = (50, Yl = (S, Ol 4y )

1 R . . i
== (Gl bl + €0y jol_nnbrny2)- (4.2.3)

4.3 Ortwavelets

Now, we proceed to projecting a spline of ,V7 onto the space ,W/ 1. To do it
we need first of all a basis of the space , W’ ~1. We construct now an orthogonal
basis of ,WJ~1.

Theorem 3. There exists an orthogonal basis {wi~!(x)}.~! of ;Wi=1 C V7

wiTHz) = aim{(m)—l—aiil\,/QmiiN/z(x), (4.3.1)

al = Wbyl =2 (=W Pl (43.2)

moreover ‘ ' ‘ ‘
lwl=H* = (wi ™t wl™h) = ol

J

where vi~1 = ul Uy o ul~t is a 29~ -periodic sequence.

Proof: The orthogonality of a spline w’~! to any wljfl, m{717 [ # r is readily

apparent from the orthogonality of the splines {mi}] each to another. We
should establish the orthogonality wi=1 to mZ~!. Due to (4.2.1) we write

j—=1 ,,J-1 _ J =7 0,0 —J J
<mr ) Wy > - b’l" ay Uy + bT*N/2 a’rfN/Q urfN/Q
_ —r15 1. J j__ . ,—rd VI J
= w'b by Ny U Ny U = Wby o O U U

We have employe_d here the periodicity of the sequence u/, namely, the relation

ul. Moreover, w™""N/2 = =" . ¢™ = —~". Therefore

“LN/%N/Q =
(mi~H wi™t) = 0.
Similarly, in view of (4.2.2) we can write
Wil =l ul + el

= ui ui_N/g(\bﬂQ 210“1 + |bi_1\//2|2 2pui_N/2) = Ufﬂ;l'

We will call the splines w’i =1 the ortwavelets (OW). Note that the OW just
as the OS are eigenvectors of the operator of shift.
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Proposition 14. There holds the relation

wi ™Yz + 2k/N) = W?F wi(z). (4.3.3)
Proof: Since w?F(r=N/2) — (,2kre=2mik — ,2k7 we have
w) T @ +2k/N) = almi(z+2k/N)+al_y,ml_y,(x+2k/N)
= WQkT(aZ m]r(x) + ai_N/g mrfN/2(x)) = wzkrwz_l(x)'

Theorem 4. Let the spline

Jj—1
Wit a) = wl (@)

be the orthogonal projection of a spline
§9(x) =Y &l mi(z) € V7
1

onto the space ij ~1. Then the coordinates are

B = (S (43.4)
1 , B

= i1 (& ua) + gZ,N/z ui—N/2 arfN/Z) (4.3.5)

- Y gy N 436

- uj_l (gr TfN/Q_frfN/Q r)‘ ( +- )

Now we have carried out the first step of the decomposition
Si(x) = ST x) e Wi ().

In the spectral domain we have split the frequency band [-N/2, N/2] into
the sub-band [-N/4, N/4] and two strips [-N/2, —N/4], [N/4, N/2]. Subjecting
the spline 57! to the procedures suggested we carry out the second step and so
long until we get (4.1.2). The frequency band will be split in accordance with
the logarithmic scale.
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4.4 High- and low-frequency wavelet subspaces

If a refined frequency resolution in the strips [—N/2,—N/4], [N/4,N/2] is
wanted, we suggest to project a spline W7=1(z) € ,W7~! onto two subspaces
i,Wj -2 ;’Wj ~2 one of which is an orthogonal complement of the other in ,/7/~!
and such that i,Wj ~2 is, loosely speaking, concentrated at the frequency strips

[f%,f%], [%,%} and ZWj*Q in the strips [f%,f%], [%,%]
To construct these subspaces we start with bases.

Let us call the splines

Mod =) = bl () + 6L wl () € W,

r=0,1,...,227% — 1, the high-frequency OW (HOW) and the splines
wi=%(z) = ol twiTY(z) 4+ ! ar N/4 :}\,M(x) e Wit
o=t = w2TBf,jV/4 vi:]lVM = 27PW¥ (1 — W )Pyl N/4,
r=0,1,...,277% — 1, the low-frequency OW (LOW).

Theorem 5. There hold the relations

<le 2 lw] 2> 57§ IUVZFZ’ <h,wg 2 hw] 2> 57% hv7j;72
where
h -1
vI7% = | Pl 1—|—|b] /4| vr N/ (4.4.1)

= (Cos(27'r7‘/N))2p’UZ_l + (Sin(?’fr?"/N))?p'Ui ]1\[/4»

lvi

RO (4.4.2)

12 1
= Jal  Poit el Tl P

r— N/4

= (sin(27rr/N))2p(vj }V/4)2v£_1 + (COS(2WT/N))2p(vZ—1)2vJ }V/4(v£—1)2.

Moreover, (‘wi=2 hwi=2) =0 Vr, s.

Corollary 4. The splines {'wi~2(z), "wi~2(z)}~2 form an orthogonal basis of
the space ;W71
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Proof: The relations (‘wi=2, kwi=2) =0 if r # s, i=1,h, k=1 h are readily
apparent due to the orthogonality of the OS {w/~!'} each to another. The
formulas (4.4.1), (4.4.2) are evident also. Let us examine the inner product

h,j—2 1, =2\ _  —2r(pj—13j—1 Jj—1 j—1 j—1,5—1 j—1
("w)™%, "w] ) =w T (b b N/aUr ”r N/r by _Nnya U7 rN/4vT ) =0.

We have exploited the fact that UT le/4 N4 = =07t just as b1 M

These results enable us to decompose the wavelet space ,V’/~! into an
orthogonal sum of spaces. To be specific, define the space ‘W72 C VL as
"Wi=% =: span{‘w)~2(x)}4~2 and the space "Wi=2 C WiTl as MWi=2 =
span{ "wi=2(x)}J72. It can be verified immediately that

W_j 1 _ lw_] 2 hwj—Q.

It is reasonable that the space ‘W7~2 to be referred as to the low-frequency
wavelet subspace and the space "W7~2 as to the high-frequency wavelet sub-
space. The space "W7~2 is “concentrated” at the bands [— g%, — &, [&, &1,
whereas "Wi=% at [— 75, — 5% ), [exs 7v)-

If need be we can decompose in a similar manner one (or both) of the sub-
spaces ‘W72, "WI~=2 into orthogonal sums of subspaces “W7=3 @ M)Ni—3 and
hyi=3 g hyi=3 respectively and to iterate this process.

Proposition 14 entails the following fact.

Proposition 15. There hold the relations
wl=2(x 4+ 4k/N) = w*" i =2(z), i=1,h.
Similar formulas hold for *wi=3 i =1,h; k=1, h.

To project a spline
Wi—1( an Lwi=Y(z) e ;Wi

onto the spaces ‘W7~2 and "W7~2 one should act in a way similar to that used
for establishing (4.2.3) and (4.3.4). So, we have

W/ t(z) = "W (x) @ "W (a),
j—2
W) = 3 el ),
1 i1 i1 1
2 1 —177 1 —Jj—
7712 = }1}] 2(”3« vl by +777J~ Nja Vr— N/4b7‘ N/4)
W) = S e ),

1 )

j—2  _ j—1,5—1 1—-5-2 j—1 1—j—2

] T - (el ] +’7r N/4Ur N/4 ar—N/4)'
T
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4.5 Reconstruction of a spline

Let a spline ,57(x) be given in the decomposed form. It is required to re-
construct it in the conventional form suited for computation. To be specific,
suppose we have two splines

SN (= Zmﬂl ()&t e Y,

j—1

Wil () = S wi )y e W,

T

Let S%(z) = S971(x) @ W/=1(z). We are able to come up with the following
assertion.

Theorem 6. There hold the relations

Si(x) = %Zqi M’ (x —k/N) = Z i (z (4.5.1)
k

J
g =b ey ol q = Zw”gi. (4.5.2)
Proof: Due to (4.2.1) we can write
) J . . .
S Zfﬂ (bl mi @)+ bz l_yy) = D6 blmi()
Similarly, (4.3.1) entails
W=l ZnJ Lad mi(x)

These two relations imply (4.5.1), (4.5.2). B

By this means, given the representation of a spline in the form (4.1.2), it
is possible to reconstruct it into the conventional form (4.5.1) in line with the
diagram (4.1.3).

The algorithm suggested allows a fast implementation.

Remark 6. To compute values and display graphically the spline

Jj—1

W) = wl ™ (@)l

T

one may carry out the suggested reconstruction procedure assuming &~! = 0.
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85  Wavelets and multichannel processing a signal
In Section 4 we have carried out decomposition of a spline belonging to ,V”
into into the set of its projections onto the subspaces ,V7=™, ;JW7~™. Now we
are going to process the spline in these subspaces. To do it we need relevant
bases of the subspaces V=™, ,W/~™._ We start with the space ,V7.

5.1 Father wavelets

Definition 1. A spline *¢’(x) € ,V7 will be referred to as the father wavelet
(FW) if its shifts S (xz — k/27), k = 0,1,...,29 — 1 form a basis of the space
V. Two FW are said to be the dual ones if (57 (- —k/27), i (-—1/27)) = &L.

We establish conditions to a spline to be the FW and to two FW to be the dual
ones.

Theorem 7. A spline
pl(a) =279 plmi(x) (5.1.1)
is the FW if and only if ®*p) # 0 Vr. Two FWs are dual each to the other if and
only if o 4
Spl OB gpul = 1. (5.1.2)
Proof: Let a spline *¢’(x) be written as in (5.1.1) Due to (3.2.8) we have
J
(= k/2) =272 " plw T ml (x). (5.1.3)
Hence it follows
J
“pimi (@) = 27923 Wk i (o — k2.
k
These two relations imply the first assertion. Indeed, if some of {pi} are zero,
then the dimension of the span{ *p’(x — k/27)} is less than 27; if all of {p/} are

nonzero then all of m! belong to the span. To establish the second assertion
write the inner product keeping in mind (5.1.3):

J
<s¢j(. _ k/2j), U@j(' _ l/2j)> =97 Z spg; 077; 21’“?‘ w(lfk)r.

The latter sum is equal to 6. if and only if (5.1.2) holds. W

The following assertion relates the coordinates of a spline with respect to a
FW basis with these in the OS one.
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Theorem 8. Let
J
W) =223 ol (x)
T

be a FW and a spline S (z) is expanded with respect to the two bases
S (@)= *q) *¢ (x —k/N) =Y & mi(x).
k T

Then
sql =279/2 Zw’”k &/%pl, g =27925p) Z ‘gl wm (5.1.4)
r k

Proof: Let us employ (5.1.3) once more

Hence _
J

é-?’ _ 27.]/2 SP?«Z SQi; Wk
k

The second relation of (5.1.4) can be obtained immediately by means of DFT.
|

Proposition 16. If FW ¢/ is dual to FW ¢’ then
‘g = (57, 797 (- = k/2).

Remark 7. Eq. (5.1.4) implies that to make the change from a FW basis to
the OS one or the reciprocal change, one have to carry out DFT. Of course, it
should be employed a FFT algorithm.

We present some examples of FWs.

Examples
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1. B-spline. Suppose 'pl = 1. Then we can derive immediately from
Eq.(3.2.5) that ¢/ (x) = 279/2MI ().

2. FW dual to '¢’(z). Suppose ?pl = 1/o,ul. Then, in accordance with
Eq. (5.1.2) the FW 297 (z) is dual to 1o’ ().

Emphasize that if S7(z) = ch 2¢] 209 (x — k/N) then
‘ o (PN 4
2ql :2_3/2/ S (x — k/N)M’ (z) d.
0

Provided S7(x) = S7(f, ) is an orthogonal projection of a function f onto
the spline space ,V7, we have

] p/N
2] = ij/z/ Flx — k/N)M (z) da.
0

3. Setting 3pl = (2,u’)"'/2 we obtain the self-dual FW 37 (z) those shifts
form an orthonormal basis of ,V7 [1], [10].

4. Interpolating FW. If we set 4pl = 1/ ,ui then FW ¢/ (z) = 2779/2 LI (z),
pL?(z) is so called fundamental spline, namely

, 1 ifk=0
pLJ((k+p/2)/N):{o ifk:l,...,N—l

Therefore the spline
. j .
S (z) = Z 2k pL? (x — k/N)
k

interpolates the vector {z }fc To be specific, S (k/N + p/2N) = 2, Vk.

5.2 Mother wavelets
We present here a family of bases of the space ij —1. The contents of this

section is related to that of the Subsection 5.1 where we have introduced FWs.

Definition 2. A spline *¢7=1(z) € ,W/=1 will be referred to as the mother
wavelet (MW) if its shifts S¢I =1 (z — k/2771), k = 0,1,...,2771 — 1 form a basis
of the space ;W =1, Two MW are said to be the dual ones if

T =R/, T = 12T = 6

We will establish conditions to a spline to be MW and to two MW to be dual
ones.
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Theorem 9. A spline
j—1
Sl () = 207D/2N eyl () (5.2.1)

is a MW if and only if *7=1 # 0 Vr. Two MW are dual each to the other if
and only if

srimtorlThelTt = 1 (5.2.2)

Proof: Let a spline *17~1(x) be written as in (5.2.1). Due to (4.3.3) we have

j—1
Swj—l(x _ k./2j—1) — 2(1—j)/2 Z sTg_lw_QkT’wi_l(l‘).

Hence it follows
j—1
sTﬂ'qwfﬂ;l — 9(1—j)/2 Zw2kr sz — k/2j71).

These two relations imply the first assertion of the theorem. To establish the
second assertion, we write the inner product

Jj—1

O e I O T VRS A W A e

provided (5.2.2) holds. B

The following assertion relates the coordinates of a spline with respect to a
MW basis with these in the OW one.

Theorem 10. Let

j—1

s’l/)j_l(l') — 2(1_j)/2 Z Srg_lwi_l(aj) (523)

be a MW and a spline Wi=1(z) € ,Wi~1 is expanded with respect to the two
bases

J—1
i) = e - S, 029
k
Then
7j—1
Spifl — 2(17j)/2 ZWQTknifl/QTgil, (525)

= ¢J121J/22”1* (5.2.6)
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Proof: Substituting (5.2.3) into (5.2.4) we obtain in view of (4.3.3)

j—1 j—1
Wj_l(l‘) — Z Sp?q_l 2(1—]‘)/2 Zw—ri STg_lwz_l(l‘)
k r
Jj—1 Jj—1
- ng—l(x) sl 9(1=35)/2 Z Spi—lw—2kr.
r k

This implies (5.2.6). Carrying out DFT we derive hence (5.2.5). B

Remark 8. If MW 797~1 is dual to MW %y7~! then for any spline W7=1(x)
given as in (5.2.4)

P = (W e - g2,

Provided the spline W7~1(z) is an orthogonal projection of a spline S7(x) onto
ij7 1 ’ . 1 . . o
p = (87, T = k/27TH).

Remark 9. Theorem 10 implies that to make the change from a MW basis to
the OW one or the reciprocal change, one has to carry out DFT.

Present some examples of MW.

Examples

1. B-wavelet. Suppose '77~! = 1 Vr . The determining feature of wavelet
Lpi=1(z) is the compactness (up to periodization) of its support. To
be precise, supp'y’~1(z) C ((—2p)/N, (2p — 2)/N)(mod1). The wavelet
Y= (x) = 2(-149)/2. 1pi =1 () is a periodization of the B-wavelet invented
by Chui and Wang [3].

2. MW dual to *¢7~'(z). Suppose 274~ = 1/vi~!. Then, in accordance
with Eq. (5.2.2), the MW 2¢771(x) is dual to ¢/ ~1(z).

Emphasize that if S7(z) = S~ (z) ® W/~ (z) and

j—1
Wit(z) = Z 2p§;1 I~z — 2k /N) (5.2.7)
k
then
- (2p72)/N . .
o / S (x — 2k/N) "7 () da.
—2p/N

Provided S7(x) = S7(f,x) is an orthogonal projection of a function f onto
the spline space ij we have

, (2p—2)/N _
= / [z —2k/N) "W (z) da. (5.2.8)
—2p/N
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3. Setting 37/ = (vi~1)~Y/2 we obtain the self-dual MW 37~ (zx) those
shifts form an orthonormal basis of ,W/~1. This MW as a periodization
of the Battle-Lemarié wavelet ([9], [24].

4. Cardinal MW. Tf we set i1 = 1/(ul uZ_N/2) then we obtain MW
pi=H(x) = 20972y L (z + 1/N)®)| where 9,L7(z) is the fundamental
spline of the degree 2p—1 introduced in Subsection 7. MW 2(1=1)/2 47 —1(z)
is a periodization of the cardinal wavelet suggested by Chui and Wang in
[2].

5.3 Wavelet packets

Now we discuss briefly bases in the low- and high-frequency wavelet spaces
Wi=2 and "wWi—2,

Just as in previous sections we can find splines whose shifts form bases of the
subspaces ‘W72 and "WJ=2. For example, a spline ‘¢/=2(x) € WI~2 will
be referred to as the low-frequency MW (LMW) if its shifts L9 =2(x —k/2772),
k=0,1,..,2772 — 1 form a basis of the space. Two LMW are said to be the
dual ones if

(L2~ ky272), L2 12 = o),
Theorem 11. A spline
=
L7 DY L g

is the LMW if and only if L7=2 # 0 Vr. Two MW are dual each to the other
if and only if

273—2 375_2 . lvﬁ_z = 1Vr.

There holds an assertion related to Theorem 8 and Theorem 10.

Point out that, setting {772 = 1, we obtain the LMW of minimal support,
so to say, B-LMW.

Similar considerations can be conducted in the space "W7~2. We are now
able to construct a diversity of bases of the space ,W7~! for refined frequency
resolution of a certain signal f under processing. For example, one of such bases
may be structured as follows:

{72 @—k/2 N7 {0 P e/ 270, (M a2

The MWs of type { g7 =2, thqpi=3, hhypi=3} are called the wavelet packets (com-
pare with [7].
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5.4 Digital processing a periodic signal by means of spline wavelets

We discuss here a scheme of processing a periodic signal f(x) belonging to CP.
The commonly encountered situation is when the array of samples is available:
fi= {fl = f(p/2N + k/N)}].. The goal of the processing is to transform the
original data array into a more informative array. We will process the signal by
means of spline wavelets of order p.

First we establish a quadrature formula. Denote

/N
P = /O F@ — k/N)M? () da. (5.4.1)

Theorem 12. If f € C? and p < N/2 then
Fl =277 f((l+p/2—k)/N)M (L +p/2)/N) + G,
1

where ,G? = O(N~?) as p is an even and ,G? = o(N~P) as p is an odd number.

Proof: Without loss of generality assume that k = 0. Provided p < N/2, inside
the interval [—1/2,1/2] the periodic B-spline ,M7(z) coincides with B-spline
»B7(z). Therefore, the Proposition 1 is valid for ,M7 as well as for the cardinal
B-splines ,B; . Namely Vt € [0, 1]

Z (t+1—p/2) /NP MI((t +1)/N) = g (1),
l

p/N )
ps(t) = M, :/ (x —p/2N)°M’(z)dx  ifs <p,
0

pp(t) = N_p(_l)p_lﬁp(t) + My,

Bp(t) is the Bernoulli polynomial. If f € C? we may write
, p/N .
- / F(2) M (z) da
0

P p(s) p/N .
S [ (p/2N) /0 (z — p/2N)* M7 (z) da: + o(NP)

s!
s=0

Distinguish now two cases.
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1.The number p is even. Then

J

Z I+ p/2)/N)MJ (L4 p/2)/N) = %Z F(I/N)YMI(1/N)
l l

Z i(1/N) Zf PIND (1 py2) NY* + o)

(s)
= Z MMS(O) +o(N7P)

s!
s=0

P () -p
oy SNy N pﬁ!P(O)f(p)(p/N)-i-O(N_p)

= 7 + 00 0 ) 4 o),

2.The number p is odd. Then

(L+p/2)/N)M?((I + p/2)/N)

2=

(1+1/2)/N)M’((I + 1/2)/N)

Z\H

o
g

= w12 S TN s oy vy o
l s=0

(s
- Zf PPN 1172+ o(N )

(o) >
Zf P/2N +%;(1/2)f(1’)(p/N)+o(pr)

= Fg+

Nﬂ;!(lmf(p) (p/N) + o(N7P).

If p is an odd number then 3,(1/2) = 0. Hence it follows that for the odd p

Fl =273 " f((l+p/2 = k)/N)M((1 +p/2)/N) + o(N 7).
k
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Corollary 5. If f € CP then
T (F) = T3(F) i + g,

where FJ = {F,j}fc and g’ = O(N~P) as p is an even and pg’ = o(N~P) as p is
an odd number.

The assertion becomes apparent if we note that the expression 277 Zi fl(l+
p/2 —k)/N)M’((l +p/2)/N) is a discrete convolution.

Theorem 13. Suppose f(x) is an 1-periodic, integrable signal and ¢ (z) € WY
is the B-wavelet. Let F}/ be defined as in (5.4.1) and

(p—1)/2"
oY = /_ Flo = k)20 (2) da.

p/2v

Then the following relations hold

TI-V(FI=Y) = T3 (F9)bi. +7+N/2 ! N/ (5.4.2)
j—1
F]z 1 Zwﬂcr?—j 1 Fj 1 ZkaTb]Tj
7)Y = T/ (F)al +T+N/2(*j)a1w/2, (5.4.3)

j—1

(I)i—lzz QkTTj 1 F_] 1 ZWri )

T

Proof: Let R¥(z) be the FW dual to the B-spline M¥(x) and ¥ (z) be the MW
dual to the B-wavelet 4" (z) If the spline S7(f,z) is the orthogonal projection
of a signal f onto the spline space ,V7 then

J

S/(fx) = > F) Rx—k/N)= Zgﬂmﬂ

k
g = :*TJ(FJ) T (F) = & u].

T
U/T
Similarly if projections of the signal f onto the spaces ,V7=1 ,Wi=1 are:
j—1

SN = Y G miT (),

I

Wil (fL) = an fwl



Periodic Splines and Wavelets 29

then
TVF) =g, T @) = e,
Now we see that (5.4.2) and (5.4.3) are immediate consequences of (4.2.3) and
(4.3.4) respectively.
|

Remark 10. If f € CP then it is natural to employ Corollary 5. S
As a result of the first step of decomposition we have derived the set {®7, "}/
from the array {F g }i We stress that the value q)i*l carries an information on
the behavior of the signal f in the frequency strips [-N/2, —N/4|, [N/4, N/2]
2(13\7;;)’ 2(k-|;\;;—1)]

and in the spatial interval | . By a similar means we acquire the

values {®] "1 ", v=2,...,m.

Remark 11. If f € C? then it is natural to employ Corollary 5.
By this means we have transformed the original array {f}; into the array

Dl = {{q)i_y}i;_u’ v=1,..,m, {Flz_m}i_m}
those terms are localized in spatial and frequency domains.

Remark 12. We have described transformation of the original array { f,g} into
the array D’ associated with B-splines and B-wavelets. The elements of this
array appear usually as most informative ones. However, for some special pur-
poses, arrays associated with other FW-MW bases could be of use. The algo-
rithms established in the paper allow to perform corresponding transformation
straightforward as well as transformations to arrays allied with wavelet packets.

5.5 Reconstruction of a signal

We dwell now on the situation that is reciprocal to the situation considered in
the previous section. We want to reconstruct a signal from the array D’. The
case in point is an approximate reconstruction, of course.

Consider first a single step of the reconstruction.
Problem. The arrays {F] '}, {®] "'} are available, where

- p/2971 , ,
F7t = / flx —k/27HMI~ () de,
0
- p/2971 . ‘
pivl — / . fw— k2 @) d,
—p J—

f(z) is any I-periodic integrable signal. The coefficients {qi}fC are wanted of
the spline

SI(fox) =270 gl M (x— k/27) (5.5.1)
k
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which is an orthogonal projection of the signal f onto the space ,V7.

Emphasize that written as in (5.5.1), a spline S7(f, ) can be computed and,
if need be, displayed graphically immediately.

Solution to the Problem

Carrying out the fast Fourier transform we obtain the arrays {77~ 1(F7=1)}
and {77=1(®7~1)}. Then, using the line of reasoning similar to that of Subsec-
tion 5.4, we can maintain that, if the splines

j—1
SNy = Y G mi
k

j—1
Wi (fx) = Y ni Tt wl T (@),

are orthogonal projections of the signal f onto the spaces ,V7 -1 WL corre-
spondingly, then

€= T
W= @

Now Theorem 6 enables us to write desired coefficients
J
, r i i _—
=3 W +alni ).
T

In this manner, given the arrays {@iil’}, v=1,..,m, {F,gim} we are able
to reconstruct the spline S7(f, ) which is an orthogonal projection of the signal
f onto ,V7. By the similar way the spline S7(f,z) can be reconstructed when
arrays associated with wavelet packets are available.

In conclusion point out that algorithms suggested can be extended straight-
forward to the multidimensional case.

Acknowledgements. I thank the organizers of the Workshop, especially Pro-
fessor J.Zeevi and Mrs. D. Maos for the invitation and the support of my
participation in the Workshop.

I am indebted to Professor C.K. Chui for useful discussions.

This work has been supported by Russian Foundation for Basic Researches
under research grant No.93-012-49.

Valery A. Zheludev
School of Mathematical Sciences, Tel Aviv University, Israel
zhel@math.tau.ac.il



Periodic Splines and Wavelets 31

[1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

References

Battle, G. A block spin construction of ondelettes.Part I. Lemari’e func-
tions, Comm. Math. Phys. 110 (1987), 601-615.

Chui, C. K. and Wang, J. Z., A cardinal spline approach to wavelets, ,
Proc. Amer. Math. Soc. 113 (1991), 785-793.

C. K. Chui and Wang, J. Z., On compactly supported spline wavelets and
a duality principle, Trans. Amer. Math. Soc. 330 (1992), 903-915.

C. K. Chui and Wang, J. Z., A general framework of compactly supported
splines and wavelets, , J. Appr. Th. 71 ( 1992), 263-304.

Chui, C. K., An introduction to wavelets , Academic Press, San Diego CA,
1992.

Chui, C. K. and Wang, J. Z., Computational and algorithmic aspects of
cardinal spline-wavelets,, Appr.Th.Appl. 9, no.1 (1993).

, Chui, C. K. and Li, Chun, Nonorthogonal wavelet packets, STAM J. Math.
Anal. 24 (1993), 712-738.

Cohen, A., Daubechies, 1., Feauveau, J.-C., Biorthogonal bases of com-
pactly supported wavelets, , Comm. Pure Appl. Math., 45(1992), 485-560.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math. 41 (1988), 909-996.

Lemarié, P. G., Ondelettes a localization exponentielle,, J. de Math. Pure
et Appl. 67 (1988) 227-236.

Y. Meyer, Ondelettes, fonctions splines et analyses graduées, Rapport
CEREMADE No0.8703, Université Paris Dauphin, 1987.

Y. Meyer, Wavelets & Applications, STAM, Philadelphia, 1993.

1. J. Schoenberg , Cardinal spline interpolation, CBMS, 12, STIAM,
Philadelphia, 1973.

1. J. Schoenberg, Contribution to the problem of approximation of equidis-
tant data by analytic functions, Quart.Appl. Math. 4 (1946), 45-99, 112-
141.

Yu. N. Subbotin, On the relation between finite differences and the corre-
sponding derivatives, Proc.Steklov Inst. Math. 78 (1965), 24-42.



32

[16]

[17]

V.Zheludev

V. A. Zheludev, Spline Harmonic Analysis and Wavelet Bases, in, MATH-
EMATICS OF COMPUTATION 1943-1993: a Half-Century of Compu-
tational Mathematics Proc. Sympos. Appl. Math. 48 (W.Gautcshi, ed.),
Amer. Math. Soc.,Providence, RI, 1994, 415-419.

V. A. Zheludev, Periodic splines and wavelets,, Contemporary Mathemat-
ics, 190, Mathematical Analysis, Wavelets and Signal Processing, M. E. H.
Ismail, M. Z. Nashed, A. I. Zayed, A. F. Ghaleb (eds.) , Amer. Math. Soc.,
Providence, 1995, 339-354.

V. A. Zheludev, Wavelets based on periodic splines, Russian Acad. Sci.
Doklady. Mathematics 49, (1994), 216-222.

V. A. Zheludev, Asymptotic formulas for local spline approximation on a
uniform mesh., Soviet. Math. Dokl. 27, (1983), 415-419.

V. A. Zheludev, Local spline approximation on a uniform grid, Comput.
Math. and Math. Phys. 5 (1989).

V. A. Zheludev, An Operational calculus connected with periodic splines,
Soviet. Math. Dokl. 42 (1991), 162-167.

V.A.Zheludev, Spline-operational calculus and inverse problem for heat
equation, in Colloq. Math. Soc. J. Bolyai, 58, Approximation Theory, J.
Szabados, K. Tandoi ( eds.), 1991, 763-783.

V. A. Zheludev, Spline-operational calculus and numerical solving con-
volution integral equations of the first kind, Differ.Equations 28 (1992),
269-280.

V. A. Zheludev, Periodic splines and the fast Fourier transform, Com-
put.Math. and Math Phys. 32, (1991), 149-165.



