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Abstract. We discuss here wavelets constructed from periodic spline
functions. Our approach is based on a new computational technique
named Spline Harmonic Analysis (SHA). SHA to be presented is a ver-
sion of harmonic analysis operating in the spaces of periodic splines of
defect 1 with equidistant nodes. Discrete Fourier Transform is a special
case of SHA. The continuous Fourier Analysis is the limit case of SHA
as the degree of splines involved tends to infinity. Thus SHA bridges the
gap between the discrete and the continuous versions of the Fourier Anal-
ysis. SHA can be regarded as a computational version of the harmonic
analysis of continuous periodic functions from discrete noised data. SHA
approach to wavelets yields a tool just as for constructing a diversity of
spline wavelet bases, so for a fast implementation of the decomposition
of a function into a fitting wavelet representation and its reconstruction.
Via this approach we are able to construct wavelet packet bases for refined
frequency resolution of signals. In the paper we present also algorithms
for digital signal processing by means of spline wavelets and wavelet pack-
ets. The algorithms established are embodied in a flexible multitasking
software for digital signal processing.

§1 Introduction

The objective of the paper is the presentation of techniques of adaptive signal
processing based on the spline wavelet analysis.

At present most popular wavelet schemes are based on the compactly sup-
ported orthonormal wavelet bases invented by Ingrid Daubechies [9]. Exploit-
ing the so called wavelet packets [12], [7], provides essential advantages because
these generate a library of bases and provide opportunities for adaptive repre-
sentation of signals. It should be pointed out that the compact support of basic
wavelets and the orthonormality of corresponding wavelet bases are not compat-
ible with the symmetry of the wavelets concerned. The lack of the symmetry is
a noticeable handicap when using the wavelets by Daubechies for signal process-
ing. To attain the symmetry one should sacrifice at least one of these properties.
In [8] the authors had constructed biorthogonal bases of compactly supported
symmetric wavelets. However, certain inconvenience of the construction lies in
the fact that dual wavelets belong to different wavelet spaces.

Early examples of wavelets were based on spline functions [11], [1], [10].
Later spline wavelets were shadowed by the wavelets by Daubechies. However,
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in numerous situations spline wavelets offer advantages before these latter. In
recent years spline-wavelet were subjected to the detailed study, mainly by C.
Chui with collaborators [2] – [7]. In particular, in [3] the authors succeeded
in constructing compactly supported wavelets in the spaces of cardinal splines.
The significant property of such spline wavelets, in addition to the symmetry,
is that their dual wavelets belong to the same spaces as the original ones.

We discuss in this paper periodic spline wavelets. Our approach to the
spline wavelet analysis is based on an original computational technique – the
so called Spline Harmonic Analysis (SHA) which is a version of the Harmonic
Analysis (HA) in spline spaces. SHA in some sense bridges the gap between
the continuous and discrete HA. It is rather universal technique applicable to a
great variety of numerical problems, not necessarily to wavelet analysis [21]– [24].
Application of the SHA techniques to wavelet analysis is found to be remarkably
fruitful. This approach has given a chance to construct a rich diversity of wavelet
bases as well as wavelet packet ones. Moreover, we present an efficient scheme
of decomposition into the wavelet representation and reconstruction of a signal,
based on SHA.

The paper consists of Introduction and four sections. In Section 2 we out-
line the properties of splines with equidistant nodes which will be of use for
wavelet analysis, especially the properties of B-splines. Section 3 is devoted
to the presentation of the SHA. In Section 4 we discuss the multiscale analy-
sis of splines. We establish the two–scale relation, construct orthogonal bases
in spline wavelet spaces and present a spectral algorithm for decomposition a
spline into frequency multichannel representation and reconstruction from this
representation. We introduce the high– and low–frequency wavelet spaces. In
Section 5 we construct the families of father and mother wavelets as well as
the spline wavelet packets. We discuss methods of the most informative digital
representation of signals by means of spline wavelets. There established a useful
quadrature formula.

Some results presented in the paper have been announced in the papers [16],
[17], [18]. On thee base of algorithms established in the paper we have developed
a flexible multitasking software for digital signal processing by means of spline
wavelets and wavelet packets. The software allows to process periodic signals
as well as non-periodic ones in the real time mode.

§2 Splines with equidistant nodes

This section is an introductory one. We outline here properties of polynomial
splines with equidistant nodes most of which are known [16], [17]. A function
pS(x) will be referred to as a spline of order p if

1)pS(x) ∈ Cp−2

2)pS(x) = Pk(x) as x ∈ (xk, xk+1), Pk(x) ∈ Πp−1
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Πp−1 is the space of polynomials whose degree doesn’t exceed p− 1. In what
follows we deal exclusively with splines whose nodes {xk} are equidistant xk =
hk, k = −∞, ...,∞ and denote this space by pS. These splines are referred to
as cardinal ones. The most significant advantages of these splines over others
are originated from the fact that in the space pS there exist bases each of which
consists of translates of a unique spline. One of such bases is of most importance
for our subject. We mean the basis of the B-splines.

2.1 The B-splines

We define the truncated powers as xk
+ =

(
1
2 (x + |x|)k.

The following linear combination of truncated powers:

pBh(x) =
h−p

(p− 1)!

p∑

l=0

(−1)l

(
p

l

)
(x− lh)p−1

+ .

is referred to as the B-spline. It is a spline of order p with nodes in the points
{hk}∞−∞.

Properties of B-splines.

1. supp pBh(x) = (0, hp).

2. pBh(x) > 0 as x ∈ (0, ph).

3. pBh(x) is symmetric about x = hp/2 where it attains its unique maximum.

4.
∫∞
−∞ pBh(x) dx =

∫ ph

0 pBh(x) dx = 1.

Point out a property concerned with discrete values of B-splines. Define discrete
and continuous moments of B-splines

µs( pBh)(t) = h

∞∑
r=−∞

(
h
(
t + r − p

2

))s

pB(h(t + r))

Ms( pBh) =
∫ ph

0

(x− hp/2)s
pBh(x) dx.

Proposition 1. [([17],[18]] Provided s ≤ p−1, the discrete moments µs( pBh)(t)
does not depend on t and coincide with the corresponding continuous moments
Ms( pBh). The moment

µp( pBh)(t) = (−1)p−1βh(t)hp + Mp( pBh) as t ∈ [0, 1]

and 1-periodic with respect to t; βp(t) is the Bernoulli polynomial of degree p
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This property will be of use in Section 5 to derive an important quadrature
formula.

The B-splines of any order can be computed immediately.
Define a function which will be of important concern in what follows

puh(ω) = h
∑

k

e−iωhk
pB((k + p/2)h). (2.1.1)

Due to the symmetry of B-splines, the functions puh(ω) are real-valued cosine
polynomials. These functions were extensively studied in [14], [15]. They are
related to the Euler-Frobenius polynomials [13].

Proposition 2. The functions puh(ω) are strictly positive, moreover

0 < Kp = puh(π/h) ≤ puh(ω) ≤ puh(0) = 1.

The constants Kp do not depend on h and lim
p→∞

Kp = 0.

The Fourier Transform of the B-spline is:

pB̂h(ω) =
∫ ∞

−∞
e−iωt

pBh(t) dt (2.1.2)

=
(1− e−iωh

iωh

)p

= e−
ipωh

2

( sin ωh/2
ωh/2

)p

. (2.1.3)

2.2 The B-spline representation of cardinal splines

Recall that pS denotes the space of cardinal splines of order p with their nodes
at the points {hk}∞−∞.

Proposition 3. [13] Any spline pS(x) ∈ pS can be represented as follows

pS(x) = h
∑

k

qk pBh(x− hk). (2.2.1)

Here and below
∑

k stands for
∑∞

k=−∞.

Remark 1. If x is any fixed value then the series(2.2.1) contains only p nonzero
addends. So, given a set of coefficients {qk}, values of the spline pS(x) can be
computed immediately.

spline. Provided the coefficients {qk}∞k=−∞ ∈ l2, the Fourier Transform of
the spline pS(x) is

pŜ(x) =
∫ ∞

−∞
e−iωxh

∞∑

k=−∞
qk pBh(x− hk)
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= h
∑

k

e−iωhkqk pB̂h(ω) = q̌(ω)e−
ipωh

2

( sin ωh/2
ωh/2

)p

,

q̌(ω) = h
∑

k

e−iωhkqk.

So, we can say that the approximation of a signal by a spline is, as a matter of
fact, a kind of low-pass filtering. Actually, the signal is being filtered into the
band [−1

2h , 1
2h ].

§3 Spline Harmonic Analysis

Harmonic Analysis (HA) is a powerful tool of mathematics for solving a great
diversity of theoretical and computational problems. HA techniques are best
suited for solving problems associated with the operators of convolution and of
differentiation. It stems from the fact that the basic functions of the conven-
tional HA – the exponential functions – are eigenvectors of these operators.

However, the conventional HA is not quite relevant for dealing with signals
of finite order of smoothness determined by a finite set of functionals (may be
noised) because of at least two reasons: 1) The basic functions of HA – the
exponential functions – are infinitely differentiable. 2) Practical computing the
coordinates – the Fourier coefficients or the Fourier integrals – put a lot of
problems.

To circumvent these obstacles it would be attractive to have a version of
HA which would deal with discrete issue data and would provide solutions of
problems as immediately computable functions of the smoothness required.

We present here such version of HA. It is based on periodic splines and we
name it the Spline Harmonic Analysis (SHA).

3.1 Periodic splines

We introduce some notations. In what follows we will assume the step of a mesh
involved to be h = 1/N , N = 2j . Throughout

∑j
k stands for

∑2j−1−1
k=−2j−1 . If a

sequence is furnished with the upper index j it will imply that it is 2j-periodic
(e.g. {uj

k}). Throughout we denote ω = e2πi/N . The direct and inverse Discrete
Fourier Transform (DFT) of a vector ~a = {ak} is

T j
r (~a) =

1
N

j∑

k

ω−rkak ak =
j∑
r

ωrkT j
r (~a). (3.1.1)

The discrete convolution of the vector ~a with a vector ~b = {bk} and its DFT are

~a ∗~b =
{

2−j

j∑

l

ak−lbl

}j

k
T j

r (~a ∗~b) = T j
r (~a) · T j

r (~b).
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To unify the notations in what follows we will denote the B-spline pB1/N (x) as
pBj(x)

Any 1-periodic cardinal spline of order p can be represented as follows

pS
j(x) =

1
N

j∑

k

qj
k pM

j(x− k/N) (3.1.2)

where
pM

j(x) =:
∑

l

pBj(x− l)

is an 1-periodic spline. We name it the periodic B-spline. The sequence of the
coefficients {qj

k} is N -periodic.
The properties of B-splines pM

j are being determined completely by these
of B-splines pBj . It should be noted only that if p > N then the supports
of adjacent splines pBj(x + l) and pBj(x + l + 1) overlap and, therefore, the
support of the periodic spline pM

j has no gaps in this case.
As for spectral properties, due to the periodicity, the B-spline pM

j is being
expanded into the Fourier series:

pM
j(x) =

∑
n

e2πinx e−πinp/N
( sin πn/N

πn/N

)p

.

This relation implies that if a spline pS
j is represented as in (3.1.2) then its

Fourier coefficients are

Cn( pS
j) =

∫ 1

0

e−2πinx
pS

j(x) dx (3.1.3)

= e−πinp/N
( sin πn/N

πn/N

)p

T j
n (~qj) =

(1− ω−n

2πin/N

)p

T j
n (~qj).

Recall that DFT {T j
n (~qj)} form an N -periodic sequence.

Denote by pVj the space of 1-periodic splines of order p with their nodes
in the points {k2−j}∞−∞. The relation (3.1.2) implies that the shifts { pM

j(x−
k/2j}j

k form a basis of pVj

3.2 Periodic ortsplines

To start constructing SHA we carry out a simple transformation. Let a spline
pS

j ∈ pVj be represented as follows

pS
j(x) =

1
N

j∑

k

qk pM
j(x− k/N). (3.2.1)
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Due to (3.1.1) we can write

qk =
j∑
r

ωrkT j
r (~q)

where ~q = {qk}j
k. Substituting it to (3.2.1) we come to the relation

pS
j(x) =

1
N

j∑

k

pM
j(x− k/N)

j∑
r

ωrkT j
r (~q)

=
j∑
r

T j
r (~q)

1
N

j∑

k

ωrk
pM

j(x− k/N).

Setting

ξr = T j
r (~q) =

1
N

j∑

k

ω−rkqk, (3.2.2)

pm
j
r(x) =

1
N

j∑

k

ωrk
pM

j(x− k/N), r = 0, ..., 2j − 1, (3.2.3)

we write finally

pS
j(x) =

j∑
r

ξr pm
j
r(x).

Point out at once the reciprocal relations

qk =
j∑
r

ωrkξr (3.2.4)

pM
j(x− k/N) =

j∑
r

ω−rk
pm

j
r(x), ,p M j(x) =

j∑
r

pm
j
r(x). (3.2.5)

We take some time to discuss properties of the splines pm
j
r which are basic

for our constructions.

Proposition 4. The sequence { pm
j
r(x)} is N -periodic with respect to r.

It follows immediately from 1-periodicity of the B-splines pM
j(x).

Eq. (3.2.5) implies
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Proposition 5. The splines { pm
j
r(x)}j

r form a basis of the space pVj .

It will be of use to compute the Fourier coefficients. Keeping in mind (3.1.3)
we write

Cn( pm
j
r) = e−πinp/N

( sin πn/N

πn/N

)p

· 1
N

∑

k

ω−k(n−r) (3.2.6)

= δr
n(modN) · e−πinp/N

( sin πn/N

πn/N

)p

= δr
n(modN)(1− ω−r)p 1

(2πin/N)p
.

So,

pm
j
r(x) = (1− ω−r)p

∑

l

e2πi(r+lN)x 1
(2πi(r + lN)/N)p

(3.2.7)

=
(N(1− ω−r)

2πi

)p

e2πirx
∑

l

e2πilNx 1
(r + lN)p

=
∑

l

e2πi(r+lN)(x−p/2N)
( sin π(r + lN)/N

(π(r + lN))/N

)p

= e2πi(x−p/2N)r(sinπr/N)p
∑

l

e2πilNx(π(r + lN)/N)−p.

Let us derive some consequences from (3.2.6), (3.2.7). First we denote

pu
j
r =: pm

j
r(p/2N) =

1
N

j∑

k

ω−rk
pM((p/2 + k)/N).

Substituting the identity pM
j(x) =

∑
l pBj(x − l) into the latter relation

we obtain

pu
j
r =

1
N

j∑

k

e−2πirk/N
∞∑

l=−∞
pBj((p/2 + k + lN)/N)

=
∞∑

n=−∞
e−2πirn/N

pBj

((p

2
+ n

)
/N

)
= pu1/N (2πr).

Recall that the function puh(ω) was defined in (2.1.1). So, dealing with the
N -periodic sequence pu

j
r we can compute it immediately and may refer to the

properties puh(ω) marked in Section 2. This sequence is of importance for us.
Substitution x = p/2N into (3.2.7) results in the identity

pu
j
r =

∑

l

( sin π(r + lN)/N
(π(r + lN)/N)

)p

= (N sin πr/N)p
∑

l

(−1)lp

(π(r + lN))p
.

The Parseval equality for the Fourier series entails the important relation
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Proposition 6. The inner product is

〈 pm
j
r, pm

j
s〉 = δs

r 2pu
j
r.

Corollary 1. The splines { pm
j
r}j

r form an orthogonal basis of pVj and the

splines
{

1
pm

j
r = pm

j
r/

√
2pu

j
r

}j

r
form an orthonormal one.

Proposition 7. The splines pm
j
r are eigenvectors to the shift operator. To be

specific

pm
j
r(x + l/N) = ωrl

pm
j
r(x). (3.2.8)

Proof: Eq. (3.2.3) implies

pm
j
r(x + l/N) =

1
N

j∑

k

ωrk
pM

j
(
x− (k − l)

N

)

= ωrl 1
N

j∑

k

ωrk
pM

j(x− k/N) = ωrl
pm

j
r(x).

Corollary 2. The splines 2
pm

j
r(x) = pm

j
r(x + p/2N)/ pu

j
r interpolate the expo-

nential functions µr(x) = e2πirx. Namely,

2
pm

j
r(l/N) = µr(l/N).

Indeed, (3.2.8) implies

pm
j
r((p/2 + l)/N) = e2πirl/N

pm
j
r(p/2N) = e2πirl/N

pu
j
r.

Let σj
n(x) =

∑j
r

nξr pm
j
r(x) be an orthogonal projection of the exponential

function µn(x) onto the space pVj . Then

nξr〈 pm
j
r, pm

j
s〉 = 〈µn, pm

j
s〉 ⇐⇒

nξrδ
s
r 2pu

j
r = Cn( pm

j
s) =⇒

nξr = δr
n(modN) · eπinp/N

( sin πn/N

πn/N

)p 1

2pu
j
r

.

Hence it follows
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Proposition 8. The spline

pσ
j
n(x) = δr

n(modN) · eπinp/N
( sin πn/N

πn/N

)p
pm

j
r(x)

2pu
j
r

.

is an orthogonal projection of the exponential function µn(x) onto the space

pVj provided n = r(modN).

Denote 3
pm

j
r(x) = pσ

j
r(x).

The latter properties relate the splines pm
j
r to the orthogonal exponential

functions µn(x) = e2πinx. We will see further that this relation is much more
intimate, but for the moment make a terminology remark.

As the splines { pm
j
r} form an orthogonal basis, it is pertinent to call these

Ortsplines (OS). The connection of OS with the operators of convolution and
of differentiation is related to this of µn(x). To be specific

Proposition 9. There holds the relation

pm
j
r(x)(s) = (N(1− ω−r))s

p−sm
j
r(x).

Proof: In accordance with (3.2.7)

pm
j
r(x)(s) = (1− ω−r)s(1− ω−r)p−s

∑

l

e2πi(r+lN)x (2πi(r + lN))s

(2πi(r + lN)/N)p

= [N(1− ω−r)]s p−sm
j
r(x).

Remark 2. Emphasize that OS p−sm
j
r(x) is a replica of OS pm

j
r(x) in the

space p−sVj .
Let us turn now to the convolution. Provided f , g are square integrable

1-periodic functions we mean under the convolution f ∗ g the following integral

f ∗ g(x) =
∫ 1

0

f(x− y) g(y) dy.

Recall that the Fourier coefficients

Cn(f ∗ g) = Cn(f) · Cn(g). (3.2.9)

Proposition 10. The convolution of the ortsplines is

qm
j
s ∗ pm

j
r(x) = q+pm

j
r(x) · δr

s .

The relation results immediately from (3.2.6) and (3.2.9).
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Corollary 3. Let a spline qσ
j(x) be given as

qσ
j(x) =

j∑
s

ηs qm
j
s(x).

Then the convolution is

qσ
j ∗ pm

j
r(x) = ηr · p+qm

j
r(x).

Emphasize that OS p+sm
j
r(x) is a replica of OS pm

j
r(x) in the space p−sVj .

Remark 3. We may interpret Proposition 9 and Corollary 3 as follows: OS
{ pm

j
r} are generalized eigenvectors of the operators of convolution and differen-

tiation unlike the exponential functions which are the conventional eigenvectors
of these operators.

The properties of OS established give rise to formulas related to correspond-
ing ones of HA.

Proposition 11. Given two splines of pVj

pS
j(x) =

j∑
r

ξr pm
j
r(x) (3.2.10)

pS̃
j(x) =

j∑
r

χr pm
j
r(x), (3.2.11)

there holds the Parseval equality

〈 pS
j , pS̃

j〉 =
j∑
r

ξrχr 2pu
j
r.

Proposition 12. Let a spline pS
j be given by (3.2.10) and qσ

j(x) =
∑j

s ηs qm
j
r(x) ∈

qVj . Then the convolution is

pS
j ∗ qσ

j(x) =
j∑
r

ξrηr p+qm
j
r(x) ∈ p+qVj .
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Proposition 13. Let a spline pS
j be given by (3.2.10). Then the derivative is

pS
j(x)(s) =

j∑
r

(N(1− ωr))sξr p−sm
j
r(x) ∈ p−sVj .

Remark 4. Proposition 11, Proposition 12 and Proposition 13 enable us to look
upon the expansion of a spline pS

j ∈ pVj with respect to OS basis (3.2.10) as
upon a peculiar HA of the spline. Moreover, OS { pm

j
r} acts as harmonics, and

the coordinates {ξr} as the Fourier coefficients or a spectrum of the spline.
We stress that, given the B-spline representation of the spline (3.1.2) the OS

representation can be derived at once by means of DFT (3.2.2) as well as the
reciprocal change (3.2.4). It is natural to employ in the process the Fast Fourier
Transform (FFT) algorithms.

We call this HA in spline spaces the Spline Harmonic Analysis (SHA). A
great deal of operations with splines rises to remarkable simplicity by means
of SHA. It provides a powerful and flexible tool to dealing with splines and,
moreover, with functions of finite order of smoothness when discrete (may be
noised) samples of these functions are available. Recently a promising field of
application of SHA has appeared – the spline wavelet analysis. We discuss it
further in details.

Point out that in [17] we have presented relations which allow to assert that
DFT is a special case of SHA whereas the continuous Fourier Analysis is a limit
case of SHA. In some sense SHA bridges the gap between the discrete and the
continuous versions of HA.

Remarks on SHA applications. SHA techniques can be applied success-
fully just as for solving problems of spline functions (interpolation, smoothing,
approximation) so also for problems associated with the operators of convolu-
tion and of differentiation (integral equations of convolution type, differential
equations with constant coefficients). When solving inverse problems it occurs
frequently the phenomena of ill-posedness. The SHA approach allows the im-
plementation of efficient regularizing algorithms. These applications of SHA
techniques are presented in [21] – [24].

§4 Multiscale analysis of a spline

4.1 Decomposition of a spline space into wavelet spaces

First we point out that the space pVj−1 is the subspace of pVj . The space
pWj−1 is the orthogonal complement of pVj−1 in the space pVj . So

pVj = pVj−1 ⊕ pWj−1.

The space pWj−1 is called usually the wavelet space.
The space pVj−1 can be in turn decomposed as

pVj−1 = pVj−2 ⊕ pWj−2.
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Correspondingly
pS

j−1(x) = pS
j−2(x)⊕ pW

j−2(x).

Iterating this procedure we obtain

pVj = pVj−m ⊕ pWj−m ⊕ pWj−m+1 ⊕ · · · ⊕ pWj−1 (4.1.1)

pS
j(x) = pS

j−m(x)⊕ pW
j−m(x)⊕ pW

j−m+1(x)⊕ · · · ⊕ pW
j−1(x). (4.1.2)

The relation (4.1.2) represents a spline as the sum of its smoothed out, “blurred”
version pS

j−m and “details” { pW
j−ν}ν=1. Emphasize that all addends in

(4.1.2) are mutually orthogonal.
We will call the decomposition of a spline pS

j(x) the multiscale analysis
(MSA) of this spline and, provided, the spline pS

j(x) = pS
j(f, x) is a spline

approximating a signal f , as MSA of the signal f .
Now, provided we are able to project a signal f onto the appropriate spline

space pVj , f → pS
j(f) and to decompose the spline pS

j(f), in accordance with
(4.1.1) we get an opportunity to process the signal in several frequency channels
simultaneously. If need be, the channels obtained which bandwidths arranged
accordingly to the logarithmic scale can be subdivided into more narrow chan-
nels by means of the so called wavelet packets. This subject will be discussed
later.

After a multichannel processing one needs to reconstruct the spline pro-
cessed from its multiscale representation of type (4.1.2) into the conventional
b-spline representation where its values can be computed immediately. It is
being implemented in accordance with the pyramidal diagram

pS
j−m −→ Sj−m+1 −→ · · · −→ Sj−2 −→ Sj−1 −→ Sj

pW
j−m ↗ W j−m+1 ↗ · · · ↗ W j−2 ↗ W j−1 ↗ (4.1.3)

The algorithms of such reconstruction to be established are of high-rate effi-
ciency as well.

SHA provides a powerful tool for developing the wavelet analysis. We start
with MSA, i.e., we establish algorithms to decompose a spline into an orthogonal
sum of type (4.1.2) and to reconstruct it.

4.2 Two-scale relations

We discuss first projecting a spline pS
j ∈ pVj onto the subspace pVj−1. Corre-

sponding algorithms result from the so called two-scale relations which correlate
ortsplines of the spaces pVj and pVj−1.

As a rule in what follows we will omit the index p· for splines belonging to
the spaces pVν . The term uν

r will stand for 2pu
ν
r .

Theorem 1. There hold the two-scale relations for r = 0, 1, ..., 2j−1 − 1:

mj−1
r (x) = bj

r mj
r(x) + bj

r−N/2 mj
r−N/2(x), bj

r = 2−p(1 + ω−r)p. (4.2.1)
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Proof: In accordance with (3.2.7) we have

mj−1
r (x) =

(N(1− ω−2r)
4πi

)p

e2πirx
∞∑

l=−∞
eπilNx 1

(r + lN/2)p

= 2−p(1 + ω−r)p
(N(1− ω−r)

2πi

)p

e2πirx
∞∑

ν=−∞
e2πiνNx 1

(r + νN)p

+ 2−p(1 + ω−(r−N/2))
(N(1− ω−(r−N/2))

2πi

)p

e2πi(r−N/2)x

·
∞∑

ν=−∞
e2πiνNx 1

(r −N/2 + νN)p

= 2−p(1 + ω−r)pmj
r(x) + 2−p(1 + ω−(r−N/2))pmj

r−N/2(x).

Remark 5. The relation (4.2.1) implies an identity which will be employed
repeatedly in what follows. Namely, writing this relation for the splines of order
2p with x = 2p/N , we have

2pu
j−1
r = 2pm

j−1
r (2p/N) = 4−p(1 + ω−r)2p

2pm
j
r(2p/N)

+ 4−p(1− ω−r)2p
2pm

j
r−N/2(2p/N).

But
2pm

j
r(2p/N) = 2pm

j
r(p/N)ωpr = ωrp

2pu
j
r

and we obtain finally

2pu
j−1
r = 4−pωrp

[
(1 + ω−r)2p

2pu
j
r + (−1)p(1− ω−r)2p

2pu
j
r−N/2

]

= |bj
r|2 2pu

j
r + |bj

r−N/2|2 2pu
j
r−N/2. (4.2.2)

Theorem 1 enables us to implement projecting a spline Sj(x) ∈ pVj onto
the space pVj−1.

Theorem 2. Let the spline

Sj−1(x) =
j−1∑

r

ξj−1
r mj−1

r (x)

be the orthogonal projection of a spline

Sj(x) =
j∑

l

ξj
l mj

l (x) ∈ pVj
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onto the space pVj−1. Then the coordinates are

ξj−1
r =

〈
Sj , mj−1

r

〉
/uj−1

r =
〈
Sj , (bj

r mj
r + bj

r−N/2 mj
r−N/2)

〉
/uj−1

r

=
1

uj−1
r

(
ξj
r uj

r bj
r + ξj

r−N/2 uj
r−N/2 b

j

r−N/2

)
. (4.2.3)

4.3 Ortwavelets

Now, we proceed to projecting a spline of pVj onto the space pWj−1. To do it
we need first of all a basis of the space pWj−1. We construct now an orthogonal
basis of pWj−1.

Theorem 3. There exists an orthogonal basis {wj−1
r (x)}j−1

r of pWj−1 ⊂ pVj

wj−1
r (x) = aj

r mj
r(x) + aj

r−N/2 mj
r−N/2(x), (4.3.1)

aj
r = ωr b

j

r−N/2 uj
r−N/2 = 2−pωr(1− ωr)p uj

r−N/2, (4.3.2)

moreover
‖wj−1

r ‖2 =
〈
wj−1

r , wj−1
r

〉
= vj−1

r

where vj−1
r = uj

r uj
r−N/2 uj−1

r is a 2j−1-periodic sequence.

Proof: The orthogonality of a spline wj−1
r to any wj−1

l , mj−1
l , l 6= r is readily

apparent from the orthogonality of the splines {mj
r}j

r each to another. We
should establish the orthogonality wj−1

r to mj−1
r . Due to (4.2.1) we write

〈mj−1
r , wj−1

r 〉 = bj
r aj

r uj
r + br−N/2 aj

r−N/2 uj
r−N/2

= ω−rbj
r bj

r−N/2 uj
r−N/2 uj

r − ω−rbj
r−N/2 bj

r uj
r−N/2 uj

r.

We have employed here the periodicity of the sequence uj
r, namely, the relation

uj
r−N/2−N/2 = uj

r. Moreover, ω−r−N/2 = ω−r · eπi = −ω−r. Therefore

〈mj−1
r , wj−1

r 〉 = 0.

Similarly, in view of (4.2.2) we can write

〈wj−1
r , wj−1

r 〉 = |aj
r|2uj

r + |ar−N/2|2uj
r−N/2

= uj
r uj

r−N/2(|bj
r|2 2pu

j
r + |bj

r−N/2|2 2pu
j
r−N/2) = vj−1

r .

We will call the splines wj−1
r the ortwavelets (OW). Note that the OW just

as the OS are eigenvectors of the operator of shift.
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Proposition 14. There holds the relation

wj−1
r (x + 2k/N) = ω2krwj

r(x). (4.3.3)

Proof: Since ω2k(r−N/2) = ω2kre−2πik = ω2kr, we have

wj−1
r (x + 2k/N) = aj

r mj
r(x + 2k/N) + aj

r−N/2 mj
r−N/2(x + 2k/N)

= ω2kr(aj
r mj

r(x) + aj
r−N/2 mr−N/2(x)) = ω2krwj−1

r (x).

Theorem 4. Let the spline

W j−1(x) =
j−1∑

r

ηj−1
r wj−1

r (x)

be the orthogonal projection of a spline

Sj(x) =
j∑

l

ξj
l mj

l (x) ∈ pVj

onto the space pWj−1. Then the coordinates are

ηj−1
r = 〈Sj , wj−1

r 〉/vj−1
r (4.3.4)

=
1

vj−1
r

(ξj
r uj

r aj
r + ξj

r−N/2 uj
r−N/2 ar−N/2) (4.3.5)

=
ω−r

uj−1
r

(ξj
r bj

r−N/2 − ξj
r−N/2 bj

r). (4.3.6)

Now we have carried out the first step of the decomposition

Sj(x) = Sj−1(x)⊕W j−1(x).

In the spectral domain we have split the frequency band [−N/2, N/2] into
the sub-band [−N/4, N/4] and two strips [−N/2,−N/4], [N/4, N/2]. Subjecting
the spline Sj−1 to the procedures suggested we carry out the second step and so
long until we get (4.1.2). The frequency band will be split in accordance with
the logarithmic scale.
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4.4 High- and low-frequency wavelet subspaces

If a refined frequency resolution in the strips [−N/2,−N/4], [N/4, N/2] is
wanted, we suggest to project a spline W j−1(x) ∈ pWj−1 onto two subspaces
l
pWj−2, h

pWj−2 one of which is an orthogonal complement of the other in pWj−1

and such that l
pWj−2 is, loosely speaking, concentrated at the frequency strips

[− 3N
8 ,−N

4 ], [N
4 , 3N

8 ] and h
pWj−2 in the strips [−N

2 ,− 3N
8 ], [ 3N

8 , N
2 ].

To construct these subspaces we start with bases.
Let us call the splines

hwj−2
r (x) = bj−1

r wj−1
r (x) + bj−1

r−N/4 wj−1
r−N/4(x) ∈ pWj−1,

r = 0, 1, ..., 2j−2 − 1, the high-frequency OW (HOW) and the splines

lwj−2
r (x) = 1aj−1

r wj−1
r (x) + 1aj−1

r−N/4 wj−1
r−N/4(x) ∈ pWj−1,

1aj−1
r = ω2rb

j−1

r−N/4 vj−1
r−N/4 = 2−pω2r(1− ω2r)pvj−1

r−N/4,

r = 0, 1, ..., 2j−2 − 1, the low-frequency OW (LOW).

Theorem 5. There hold the relations

〈 lwj−2
r , lwj−2

s 〉 = δs
r

lvj−2
r , 〈 hwj−2

r , hwj−2
s 〉 = δs

r
hvj−2

r

where
hvj−2

r = |bj−1
r |2vj−1

r + |bj−1
r−N/4|2vj−1

r−N/4 (4.4.1)

= (cos(2πr/N))2pvj−1
r + (sin(2πr/N))2pvj−1

r−N/4,

lvj−2
r = |aj−1

r |2vj−1
r + |aj−1

r−N/4|2vj−1
r−N/4 (4.4.2)

= (sin(2πr/N))2p(vj−1
r−N/4)

2vj−1
r + (cos(2πr/N))2p(vj−1

r )2vj−1
r−N/4(v

j−1
r )2.

Moreover, 〈 lwj−2
r , hwj−2

s 〉 = 0 ∀r, s.

Corollary 4. The splines { lwj−2
r (x), hwj−2

r (x)}j−2
r form an orthogonal basis of

the space pWj−1.
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Proof: The relations 〈 iwj−2
r , kwj−2

s 〉 = 0 if r 6= s, i = l, h, k = l, h are readily
apparent due to the orthogonality of the OS {wj−1

r } each to another. The
formulas (4.4.1), (4.4.2) are evident also. Let us examine the inner product

〈 hwj−2
r , lwj−2

r 〉 = ω−2r(bj−1
r bj−1

r−N/4 vj−1
r vj−1

r−N/r−bj−1
r−N/4 bj−1

r vj−1
r−N/4 vj−1

r ) = 0.

We have exploited the fact that vj−1
r−N/4−N/4 = vj−1

r , just as bj−1
r .

These results enable us to decompose the wavelet space pWj−1 into an
orthogonal sum of spaces. To be specific, define the space lWj−2 ⊂ pWj−1 as
lWj−2 =: span{ lwj−2

r (x)}j−2
r and the space hWj−2 ⊂ pWj−1 as hWj−2 =:

span{ hwj−2
r (x)}j−2

r . It can be verified immediately that

pWj−1 = lWj−2 ⊕ hWj−2.

It is reasonable that the space lWj−2 to be referred as to the low-frequency
wavelet subspace and the space hWj−2 as to the high-frequency wavelet sub-
space. The space lWj−2 is “concentrated” at the bands [− 3

8N ,−N
4 ], [N

4 , 3
8N ],

whereas hWj−2 at [− 1
2N ,− 3

8N ], [ 3
8N , 1

2N ].
If need be we can decompose in a similar manner one (or both) of the sub-

spaces lWj−2, hWj−2 into orthogonal sums of subspaces llWj−3⊕ hlWj−3 and
lhWj−3 ⊕ hhWj−3 respectively and to iterate this process.

Proposition 14 entails the following fact.

Proposition 15. There hold the relations

iwj−2
r (x + 4k/N) = ω4kr · iwj−2

r (x), i = l, h.

Similar formulas hold for ikwj−3
r , i = l, h; k = l, h.

To project a spline

W j−1(x) =
j−1∑

r

ηj−1
r wj−1

r (x) ∈ pWj−1

onto the spaces lWj−2 and hWj−2 one should act in a way similar to that used
for establishing (4.2.3) and (4.3.4). So, we have

W j−1(x) = lW j−2(x)⊕ hW j−2(x),

hW j−2(x) =
j−2∑

r

hηj−2
r

hwj−2
r (x),

hηj−2
r =

1
hvj−2

r

(
ηj−1

r vj−1
r b

j−1

r + ηj−1
r−N/4 vj−1

r−N/4 b
j−1

r−N/4

)

lW j−2(x) =
j−2∑

r

lηj−2
r

lwj−2
r (x),

lηj−2
r =

1
lvj−2

r

(
ηj−1

r vj−1
r

1aj−2
r + ηj−1

r−N/4 vj−1
r−N/4

1aj−2
r−N/4

)
.
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4.5 Reconstruction of a spline

Let a spline pS
j(x) be given in the decomposed form. It is required to re-

construct it in the conventional form suited for computation. To be specific,
suppose we have two splines

Sj−1(x) =
j−1∑

r

mj−1
r (x)ξj−1

r ∈ pVj−1,

Wj−1(x) =
j−1∑

r

wj−1
r (x)ηj−1

r ∈ pWj−1.

Let Sj(x) = Sj−1(x) ⊕Wj−1(x). We are able to come up with the following
assertion.

Theorem 6. There hold the relations

Sj(x) =
1
N

j∑

k

qj
k M j(x− k/N) =

j∑
r

ξj
r pm

j
r(x), (4.5.1)

ξj
r = bj

r ξj−1
r + aj

r ηj−1
r , qj

k =
j∑
r

ωkrξj
r . (4.5.2)

Proof: Due to (4.2.1) we can write

Sj−1(x) =
j−1∑

r

ξj−1
r

(
bj
r mj

r(x) + br−N/2 mj
r−N/2

)
=

j∑
r

ξj−1
r bj

r mj
r(x).

Similarly, (4.3.1) entails

W j−1(x) =
j∑
r

ηj−1
r aj

r mj
r(x).

These two relations imply (4.5.1), (4.5.2).

By this means, given the representation of a spline in the form (4.1.2), it
is possible to reconstruct it into the conventional form (4.5.1) in line with the
diagram (4.1.3).

The algorithm suggested allows a fast implementation.

Remark 6. To compute values and display graphically the spline

Wj−1(x) =
j−1∑

r

wj−1
r (x)ηj−1

r

one may carry out the suggested reconstruction procedure assuming ξj−1
r = 0.
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§5 Wavelets and multichannel processing a signal

In Section 4 we have carried out decomposition of a spline belonging to pVj

into into the set of its projections onto the subspaces pVj−m, pWj−m. Now we
are going to process the spline in these subspaces. To do it we need relevant
bases of the subspaces pVj−m, pWj−m. We start with the space pVj .

5.1 Father wavelets

Definition 1. A spline sϕj(x) ∈ pVj will be referred to as the father wavelet
(FW) if its shifts sϕj(x − k/2j), k = 0, 1, ..., 2j − 1 form a basis of the space

pVj . Two FW are said to be the dual ones if 〈 sϕj(·−k/2j), σϕj(·− l/2j)〉 = δl
k.

We establish conditions to a spline to be the FW and to two FW to be the dual
ones.

Theorem 7. A spline

sϕj(x) = 2−j/2

j∑
r

sρj
r mj

r(x) (5.1.1)

is the FW if and only if sρj
r 6= 0 ∀r. Two FWs are dual each to the other if and

only if
sρj

r
σρj

r 2pu
j
r = 1. (5.1.2)

Proof: Let a spline sϕj(x) be written as in (5.1.1) Due to (3.2.8) we have

sϕj(x− k/2j) = 2−j/2

j∑
r

sρj
r ω−krmj

r(x). (5.1.3)

Hence it follows

sρj
r mj

r(x) = 2−j/2

j∑

k

ωkr sϕj(x− k/2j).

These two relations imply the first assertion. Indeed, if some of {ρj
r} are zero,

then the dimension of the span{ sϕj(x− k/2j)} is less than 2j ; if all of {ρj
r} are

nonzero then all of mj
r belong to the span. To establish the second assertion

write the inner product keeping in mind (5.1.3):

〈 sϕj(· − k/2j), σϕj(· − l/2j)〉 = 2−j

j∑
r

sρj
r

σρj
r 2pu

j
r ω(l−k)r.

The latter sum is equal to δl
k if and only if (5.1.2) holds.

The following assertion relates the coordinates of a spline with respect to a
FW basis with these in the OS one.
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Theorem 8. Let

sϕj(x) = 2−j/2

j∑
r

sρj
r mj

r(x)

be a FW and a spline Sj(x) is expanded with respect to the two bases

Sj(x) =
j∑

k

sqj
k

sϕj(x− k/N) =
j∑
r

ξj
r mj

r(x).

Then

sqj
k = 2−j/2

j∑
r

ωrk ξj
r/

sρj
r, ξj

r = 2−j/2 sρj
r

j∑

k

sqj
k ω−rk. (5.1.4)

Proof: Let us employ (5.1.3) once more

Sj(x) =
j∑

k

sqj
k

sϕj(x− k/N)

=
j∑

k

sqj
k 2−j/2

j∑
r

sρj
r ω−rk mj

r(x)

=
j∑
r

mj
r

sρj
r 2−j/2

j∑

k

ω−rk sqj
k.

Hence

ξj
r = 2−j/2 sρj

r

j∑

k

sqj
k ω−rk.

The second relation of (5.1.4) can be obtained immediately by means of DFT.

Proposition 16. If FW σϕj is dual to FW sϕj then

sqj
k = 〈Sj , σϕj(· − k/2j)〉.

Remark 7. Eq. (5.1.4) implies that to make the change from a FW basis to
the OS one or the reciprocal change, one have to carry out DFT. Of course, it
should be employed a FFT algorithm.

We present some examples of FWs.
Examples
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1. B-spline. Suppose 1ρj
r = 1. Then we can derive immediately from

Eq.(3.2.5) that 1ϕj(x) = 2−j/2M j(x).

2. FW dual to 1ϕj(x). Suppose 2ρj
r = 1/ 2pu

j
r. Then, in accordance with

Eq. (5.1.2) the FW 2ϕj(x) is dual to 1ϕj(x).

Emphasize that if Sj(x) =
∑j

k
2qj

k
2ϕj(x− k/N) then

2qj
k = 2−j/2

∫ p/N

0

Sj(x− k/N)M j(x) dx.

Provided Sj(x) = Sj(f, x) is an orthogonal projection of a function f onto
the spline space pVj , we have

2qj
k = 2−j/2

∫ p/N

0

f(x− k/N)M j(x) dx.

3. Setting 3ρj
r = ( 2pu

j
r)
−1/2 we obtain the self-dual FW 3ϕj(x) those shifts

form an orthonormal basis of pVj [1], [10].

4. Interpolating FW. If we set 4ρj
r = 1/ pu

j
r then FW 1ϕj(x) = 2−j/2

pL
j(x),

pL
j(x) is so called fundamental spline, namely

pL
j((k + p/2)/N) =

{
1 ifk = 0
0 ifk = 1, ..., N − 1

Therefore the spline

Sj(x) =
j∑

k

zk pL
j(x− k/N)

interpolates the vector {zk}j
k. To be specific, Sj(k/N + p/2N) = zk∀k.

5.2 Mother wavelets

We present here a family of bases of the space pWj−1. The contents of this
section is related to that of the Subsection 5.1 where we have introduced FWs.

Definition 2. A spline sψj−1(x) ∈ pWj−1 will be referred to as the mother
wavelet (MW) if its shifts sψj−1(x− k/2j−1), k = 0, 1, ..., 2j−1 − 1 form a basis
of the space pWj−1. Two MW are said to be the dual ones if

〈
sψj−1(· − k/2j−1), σψj−1(· − l/2j−1)

〉
= δl

k.

We will establish conditions to a spline to be MW and to two MW to be dual
ones.
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Theorem 9. A spline

sψj−1(x) = 2(1−j)/2

j−1∑
r

sτ j−1
r wj−1

r (x) (5.2.1)

is a MW if and only if sτ j−1
r 6= 0 ∀r. Two MW are dual each to the other if

and only if
sτ j−1

r
στ j−1

r vj−1
r = 1 ∀r. (5.2.2)

Proof: Let a spline sψj−1(x) be written as in (5.2.1). Due to (4.3.3) we have

sψj−1(x− k/2j−1) = 2(1−j)/2

j−1∑
r

sτ j−1
r ω−2krwj−1

r (x).

Hence it follows

sτ j−1
r wj−1

r = 2(1−j)/2

j−1∑

k

ω2kr sψ(x− k/2j−1).

These two relations imply the first assertion of the theorem. To establish the
second assertion, we write the inner product

〈
sψj−1(·−k/2j−1), σψj−1(·−l/2j−1)

〉
= 21−j

j−1∑
r

sτ j−1
r

στ j−1
r vj−1

r ω2(l−k)r = δk
l

provided (5.2.2) holds.

The following assertion relates the coordinates of a spline with respect to a
MW basis with these in the OW one.

Theorem 10. Let

sψj−1(x) = 2(1−j)/2

j−1∑
r

sτ j−1
r wj−1

r (x) (5.2.3)

be a MW and a spline W j−1(x) ∈ pWj−1 is expanded with respect to the two
bases

W j−1(x) =
j−1∑

k

spj−1
k

sψj−1(x− 2k/N) =
j−1∑

r

ηj−1
r wj−1

r (x). (5.2.4)

Then

spj−1
k = 2(1−j)/2

j−1∑
r

ω2rkηj−1
r / 2τ j−1

r , (5.2.5)

ηj−1
r = sτ j−1

r 2(1−j)/2

j−1∑

k

spj−1
k ω−2rk. (5.2.6)
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Proof: Substituting (5.2.3) into (5.2.4) we obtain in view of (4.3.3)

W j−1(x) =
j−1∑

k

spj−1
k 2(1−j)/2

j−1∑
r

ω−2kr sτ j−1
r wj−1

r (x)

=
j−1∑

r

wj−1
r (x) · sτ j−1

r 2(1−j)/2

j−1∑

k

spj−1
k ω−2kr.

This implies (5.2.6). Carrying out DFT we derive hence (5.2.5).

Remark 8. If MW σψj−1 is dual to MW sψj−1 then for any spline W j−1(x)
given as in (5.2.4)

spj−1
k =

〈
W j−1, σψj−1(· − k/2j−1)

〉
.

Provided the spline W j−1(x) is an orthogonal projection of a spline Sj(x) onto
pWj−1,

spj−1
k =

〈
Sj , σψj−1(· − k/2j−1)

〉
.

Remark 9. Theorem 10 implies that to make the change from a MW basis to
the OW one or the reciprocal change, one has to carry out DFT.

Present some examples of MW.
Examples

1. B-wavelet. Suppose 1τ j−1
r = 1 ∀r . The determining feature of wavelet

1ψj−1(x) is the compactness (up to periodization) of its support. To
be precise, supp1ψj−1(x) ⊆ ((−2p)/N, (2p − 2)/N)(mod1). The wavelet
ψj−1(x) = 2(−1+j)/2· 1ψj−1(x) is a periodization of the B-wavelet invented
by Chui and Wang [3].

2. MW dual to 1ψj−1(x). Suppose 2τ j−1
r = 1/vj−1

r . Then, in accordance
with Eq. (5.2.2), the MW 2ψj−1(x) is dual to 1ψj−1(x).

Emphasize that if Sj(x) = Sj−1(x)⊕W j−1(x) and

W j−1(x) =
j−1∑

k

2pj−1
k

2ψj−1(x− 2k/N) (5.2.7)

then
2pj−1

k =
∫ (2p−2)/N

−2p/N

Sj(x− 2k/N) 1ψj−1(x) dx.

Provided Sj(x) = Sj(f, x) is an orthogonal projection of a function f onto
the spline space pVj we have

2pj−1
k =

∫ (2p−2)/N

−2p/N

f(x− 2k/N) 1ψj−1(x) dx. (5.2.8)
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3. Setting 3τ j
r = (vj−1

r )−1/2 we obtain the self-dual MW 3ψj−1(x) those
shifts form an orthonormal basis of pWj−1. This MW as a periodization
of the Battle–Lemarié wavelet ([9], [24].

4. Cardinal MW. If we set 4τ j−1
r = 1/(uj

r uj
r−N/2) then we obtain MW

4ψj−1(x) = 2(1−j)/2
2pL

j(x + 1/N)(p), where 2pL
j(x) is the fundamental

spline of the degree 2p−1 introduced in Subsection 7. MW 2(1−j)/2 4ψj−1(x)
is a periodization of the cardinal wavelet suggested by Chui and Wang in
[2].

5.3 Wavelet packets

Now we discuss briefly bases in the low- and high-frequency wavelet spaces
lWj−2 and hWj−2.

Just as in previous sections we can find splines whose shifts form bases of the
subspaces lWj−2 and hWj−2. For example, a spline l

sψ
j−2(x) ∈ lWj−2 will

be referred to as the low-frequency MW (LMW) if its shifts l
sψ

j−2(x−k/2j−2),
k = 0, 1, ..., 2j−2 − 1 form a basis of the space. Two LMW are said to be the
dual ones if 〈

l
sψ

j−2(· − k/2j−2), l
σψj−2(· − l/2j−2)

〉
= δl

k.

Theorem 11. A spline

l
sψ

j−2 = 2(2−j)/2

j−2∑
r

l
sτ

j−2
r

lwj−2
r (x)

is the LMW if and only if l
sτ

j−2
r 6= 0 ∀r. Two MW are dual each to the other

if and only if
l
sτ

j−2
r

l
στ j−2

r · lvj−2
r = 1∀r.

There holds an assertion related to Theorem 8 and Theorem 10.
Point out that, setting l

1τ
j−2
r = 1, we obtain the LMW of minimal support,

so to say, B-LMW.
Similar considerations can be conducted in the space hWj−2. We are now

able to construct a diversity of bases of the space pWj−1 for refined frequency
resolution of a certain signal f under processing. For example, one of such bases
may be structured as follows:

{ l
sψ

j−2(x−k/2j−2)}j−2
k , { lh

σψj−3(x−l/2j−3)}j−3
l , { hh

γ ψj−3(x−ν/2j−3)}j−3
ν .

The MWs of type { l
sψ

j−2, lh
σψj−3, hh

γ ψj−3} are called the wavelet packets (com-
pare with [7].
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5.4 Digital processing a periodic signal by means of spline wavelets

We discuss here a scheme of processing a periodic signal f(x) belonging to Cp.
The commonly encountered situation is when the array of samples is available:
~f j = {f j

k = f(p/2N + k/N)}j
k. The goal of the processing is to transform the

original data array into a more informative array. We will process the signal by
means of spline wavelets of order p.

First we establish a quadrature formula. Denote

F ν
k =

∫ p/N

0

f(x− k/N)Mν(x) dx. (5.4.1)

Theorem 12. If f ∈ Cp and p < N/2 then

F j
k = 2−j

j∑

l

f((l + p/2− k)/N)M j((l + p/2)/N) + pG
j ,

where pG
j = O(N−p) as p is an even and pG

j = o(N−p) as p is an odd number.

Proof: Without loss of generality assume that k = 0. Provided p < N/2, inside
the interval [−1/2, 1/2] the periodic B-spline pM

j(x) coincides with B-spline
pB

j(x). Therefore, the Proposition 1 is valid for pM
j as well as for the cardinal

B-splines pBj . Namely ∀t ∈ [0, 1]

1
N

j∑

l

[(t + l − p/2)/N ]sM j((t + l)/N) = µs(t),

µs(t) = Ms =
∫ p/N

0

(x− p/2N)sM j(x) dx ifs < p,

µp(t) = N−p(−1)p−1βp(t) + Mp,

βp(t) is the Bernoulli polynomial. If f ∈ Cp we may write

F j
0 =

∫ p/N

0

f(x)M j(x) dx

=
p∑

s=0

f (s)(p/2N)
s!

∫ p/N

0

(x− p/2N)sM j(x) dx + o(N−p)

=
p∑

s=0

f (s)(p/2N)
s!

Ms + o(N−p).

Distinguish now two cases.
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1.The number p is even. Then

1
N

j∑

l

f((l + p/2)/N)M j((l + p/2)/N) =
1
N

j∑

l

f(l/N)M j(l/N)

=
1
N

j∑

l

M j(l/N)
p∑

s=0

f (s)(p/2N)
s!

((l − p/2)/N)s + o(N−p)

=
p∑

s=0

f (s)(p/2N)
s!

µs(0) + o(N−p)

=
p∑

s=0

f (s)(p/2N)
s!

Ms +
N−pβp(0)

p!
f (p)(p/N) + o(N−p)

= F j
0 +

N−pβp(0)
p!

f (p)(p/N) + o(N−p).

2.The number p is odd. Then

1
N

j∑

l

f((l + p/2)/N)M j((l + p/2)/N)

=
1
N

j∑

l

f((l + 1/2)/N)M j((l + 1/2)/N)

=
1
N

j∑

l

M j((l + 1/2)/N)
p∑

s=0

f (s)(p/2N)
s!

((l + 1/2− p/2)/N)s + o(N−p)

=
p∑

s=0

f (s)(p/2N)
s!

µs(1/2) + o(N−p)

=
p∑

s=0

f (s)(p/2N)
s!

Ms +
N−pβp(1/2)

p!
f (p)(p/N) + o(N−p)

= F j
0 +

N−pβp(1/2)
p!

f (p)(p/N) + o(N−p).

If p is an odd number then βp(1/2) = 0. Hence it follows that for the odd p

F j
k = 2−j

j∑

k

f((l + p/2− k)/N)M j((l + p/2)/N) + o(N−p).
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Corollary 5. If f ∈ Cp then

T j
r (~F j) = T j

r (~f j) pu
j
r + pg

j ,

where ~F j = {F j
k}j

k and pg
j = O(N−p) as p is an even and pg

j = o(N−p) as p is
an odd number.

The assertion becomes apparent if we note that the expression 2−j
∑j

k f((l+
p/2− k)/N)M j((l + p/2)/N) is a discrete convolution.

Theorem 13. Suppose f(x) is an 1-periodic, integrable signal and ψν(x) ∈ Wν

is the B-wavelet. Let F ν
k be defined as in (5.4.1) and

Φν
k =:

∫ (p−1)/2ν

−p/2ν

f(x− k/2ν)ψν(x) dx.

Then the following relations hold

T j−1
r (~F j−1) = T j

r (~F j)bj
r + T j

r+N/2b
j
r+N/2, (5.4.2)

F j−1
k =

j−1∑
r

ω2krT j−1
r (F j−1) =

j∑
r

ω2krbj
rT j

r (~Fj),

T j−1
r (~Φj−1) = T j

r (~F j) aj
r + T j

r+N/2(~F j) aj
r+N/2, (5.4.3)

Φj−1
k =

j−1∑
r

ω2krT j−1
r (~F j−1) =

j∑
r

ω2kr aj
r T j

r (~F j).

Proof: Let Rν(x) be the FW dual to the B-spline Mν(x) and Ψν(x) be the MW
dual to the B-wavelet ψν(x) If the spline Sj(f, x) is the orthogonal projection
of a signal f onto the spline space pVj then

Sj(f, x) =
j∑

k

F j
k R(x− k/N) =

j∑
r

ξj
rm

j
r(x),

ξj
r = =

1
uj

r

T j
r (~F j), T j

r (~F j) = ξj
r uj

r.

Similarly if projections of the signal f onto the spaces pVj−1, pWj−1 are:

Sj−1(f, x) =
j−1∑

r

ξj−1
r mj−1

r (x),

W j−1(f, x) =
j−1∑

r

ηj−1
r wj−1

r (x)
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then
T j−1

r (~F j−1) = ξj−1
r uj−1

r , T j−1
r (~Φj−1) = ηj−1

r vj−1
r .

Now we see that (5.4.2) and (5.4.3) are immediate consequences of (4.2.3) and
(4.3.4) respectively.

Remark 10. If f ∈ Cp then it is natural to employ Corollary 5.
As a result of the first step of decomposition we have derived the set {Φj−1

k }j−1
k

from the array {F j
k}j

k. We stress that the value Φj−1
k carries an information on

the behavior of the signal f in the frequency strips [−N/2,−N/4], [N/4, N/2]
and in the spatial interval [ 2(k−p)

N , 2(k+p−1)
N ]. By a similar means we acquire the

values {Φj−ν
k }j−ν

k , ν = 2, ...,m.

Remark 11. If f ∈ Cp then it is natural to employ Corollary 5.
By this means we have transformed the original array {f j

k}j
k into the array

Dj =
{{Φj−ν

k }j−ν
k , ν = 1, ..., m, {F j−m

k }j−m
k

}

those terms are localized in spatial and frequency domains.

Remark 12. We have described transformation of the original array {f j
k} into

the array Dj associated with B-splines and B-wavelets. The elements of this
array appear usually as most informative ones. However, for some special pur-
poses, arrays associated with other FW–MW bases could be of use. The algo-
rithms established in the paper allow to perform corresponding transformation
straightforward as well as transformations to arrays allied with wavelet packets.

5.5 Reconstruction of a signal

We dwell now on the situation that is reciprocal to the situation considered in
the previous section. We want to reconstruct a signal from the array Dj . The
case in point is an approximate reconstruction, of course.

Consider first a single step of the reconstruction.
Problem. The arrays {F j−1

k }, {Φj−1
k } are available, where

F j−1
k =

∫ p/2j−1

0

f(x− k/2j−1)M j−1(x) dx,

Φj−1
k =

∫ p/2j−1

−p/2j−1
f(x− k/2j−1)ψj−1(x) dx,

f(x) is any 1-periodic integrable signal. The coefficients {qj
k}j

k are wanted of
the spline

Sj(f, x) = 2−j

j∑

k

qj
kM j(x− k/2j) (5.5.1)
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which is an orthogonal projection of the signal f onto the space pVj .
Emphasize that written as in (5.5.1), a spline Sj(f, x) can be computed and,

if need be, displayed graphically immediately.
Solution to the Problem
Carrying out the fast Fourier transform we obtain the arrays {T j−1

r (~F j−1)}
and {T j−1

r (~Φj−1)}. Then, using the line of reasoning similar to that of Subsec-
tion 5.4, we can maintain that, if the splines

Sj−1(f, x) =
j−1∑

k

ξj−1
r mj−1

r ,

W j−1(f, x) =
j−1∑

r

ηj−1
r wj−1

r (x),

are orthogonal projections of the signal f onto the spaces pVj−1
pWj−1 corre-

spondingly, then

ξj−1
r = T j−1

r (~F j−1)/uj−1
r ,

ηj−1
r = T j−1

r (~Φj−1)/vj−1
r .

Now Theorem 6 enables us to write desired coefficients

qj
k =

j∑
r

ωkr(bj
r ξj−1

r + aj
r ηj−1

r ).

In this manner, given the arrays {Φj−ν
k }, ν = 1, ...,m, {F j−m

k } we are able
to reconstruct the spline Sj(f, x) which is an orthogonal projection of the signal
f onto pVj . By the similar way the spline Sj(f, x) can be reconstructed when
arrays associated with wavelet packets are available.

In conclusion point out that algorithms suggested can be extended straight-
forward to the multidimensional case.
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