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ASYMPTOTIC FORMULAS FOR

 LOCAL SPLINE APPROXIMATION ON A UNIFORM MESH
uncs: ,

4

V. A, ZHELUDEV

There have recently appeared local schemes for spline approximation of functions
which, unlike interpolation schemes, are based on the construction of a spline S
approximating a function f as a linear combination of B-splines with coefficients /,( f)
given explicitly as functionals of . The simplest local scheme is that of Schoenberg [1], in
which a spline is constructed on a uniform mesh with step a, and [,(f) = f(1,). This
scheme ensures an approximation of order O(a?) for f C,. To get a higher order of
approximation it is necessary to choose the functionals in a more complicated way (see
[21-[5]). In these references the /,(f) are chosen so that the spline Sy is exact on
polynomials of degree n < r ( is the degree of the spline). Furthermore, if f € C,5<n,
then

(1) lr® = $2) . = Masizo( £9, @y, ).

We note, however, that the general formulas obtained in [2]-[5] for [ {f) are so
complicated that they can hardly be used in practice except for the case r = 3, which is
what is done there. Moreover, this approach does not permit us to get satisfactory values
for the constant M in (1), nor to observe how the constructed splines approximate
smoother functions f € C,, s > n. In the book [5] it was possible to get good estimates
only on a uniform mesh for a cubic spline that is exact on third degree polynomials by
means of techniques employing a computer,

Another approach is used in the present note. New properties established by the author
for B-splines constructed on a uniform mesh lead to asymptotic formulas in powers of «

for the elementary splines of Schoenberg, and to fairly sharp estimates of the remainder
~ terms. These formulas permit us in turn to explicitly construct splines ensuring an
approximation of £ of order o(a’) for f € C,11» where r < p. Asymptotic formulas are
obtained for these splines in powers of e, along with fairly sharp estimates of the
remainder terms. The degree of the constructed splines is any number m = p + 1.

The function '

! PR

m =_ % IR LA R _ m—1
o BO=gT 2 V()6 s
is a B-spline of degree m — 1 on a uniform mesh with step «. B-splines were first
considered by Schoenberg in {6]. There it was observed that B(¢) is the probability
density for a sum of independent random variables distributed uniformly on [0, a]. The
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following properties of B-splines noted in [6] and [7] are consequences of this fact:
1) B/*(t) = 0, and supp B,'(¢) = (0, am).

2) I
nt _L s _ S nm
[ a‘L (t —am/2)'B (1) dt, .
then
2) wr=0, oy =m/i2.

Pushing this further, we can find also the subsequent moments
,_ m(5m = 2} = m(35m? — 42m + 16)

@ " 240 ¢ 4032 ’
 m(175m® — 420m* + 404m — 144)
B 34560 ;

all the odd moménts are Zero.
The formulas-

m—1 . m—1

o §0 B (a(T + 1)) =1, o 20 a{r + r)B(a(r+r)) = %nl, | T e [0,1],

are known (see [8]). From them it is clear that we can define a random variable Z7(1)
“inscribed” in the distribution B, namely:

P{ZM(T) =a(r +r)} = aBM( a7 + 1)), T € [0,1].
The mathematical expectation E(Z'(r)) = am/2 is independent of 7.

THEOREM 1. All the moments of the random variable Z}'(7) through order m — 1 are
independent of T € [0, 1] and coincide with the corresponding moments of the continuous

distribution with density By'(t):

m—1 am
t

o 2‘0 (alr + 7)) B a(r + 1)) =f0 “B;"(t).dt, "> s,

REMARK. Obviously, the central moments of Z}*(7) coincide with those of the distribu-
tion B™(¢). This gives us the identity ‘

m—1

(4) a D (r+r—m/2)YBr(alr+r))=0p), s<m
r=0 '

Let f be a continuous function. | :
Let N = [t/a] and f;” = f(a({ + m/2)). We consider splines ‘of degree m — 1 and
defect 1 of the form o

N
S =me X @Bt - ak),
k=N—m+l
where the @, are linear combinations of the values £". The derivative satisfies
N L
Sr()'=a X N BrT( - ak).
k=N—m+s+1
Consider first an elementary spline of the kind studied by Schoenberg:
N o
s =a 3 fPEN - ak).
k=N—m+1
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It is known (see [1]) that S7(1) = f(1) + o(a) for f € C|, while for f € C,
Sp(e) = f(2) + (&mf” /24)(¢) + o(a?).
The formulas (4) enable us to establish the next result.

THEOREM 2. Let f € C srp If M > 5+ p, then

Lr/2] a.2nf(t)(3+2") m
5 Smit (S)_ ' (S)+ Hay 4 Fml ey
) 0 =0+ 3 Ty pon

With the notation
N
vi=a 3 |r+k—rs2Bla(r+ k)
k=N—r+1 .
the following estimate holds:
P O, amy2) 2 1 p P .
5 5 — »

P! 20(;)(2) v = o(al). _
REMARK. If / is even, then »; = pf, and if it is odd, then »} < V1o, , wheres + g = 1.
Usmg (2)-(4), we can write out explicitly an asymptotic expression for S (1)) up to
=9
Theorem 2 enables us to construct splines which approximate functlons and thelr

derivatives with great accuracy. Let '

(6) ()] <

N
SO =a 3 B ak),
k=N-m+1
where
[r/2]
fm =gt 3 g

n=1

If we find 8, from the system of equations

- Bl’ m+2f 'U'gtﬂ
2 Bl — M = "

then the following assertion holds,

THEOREM 3. Let f € C s M >S5+ poandr < p(") Then

2/

SO =f00+ F @A)+ B,
n=[r/2]+1

where

2n (72
Mo ﬁ m+2l

ro— + &
Ko R T
_ (r/21
Esan(t) — F:m-(l) + 2 a,ZnﬁnFm-sg;n w+2n — 0(05‘0).

n=r .

(') PO = (0 + F37(2) when [r/2] = [ p2)
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We write out the first few values of 8,

_ _ m(5m + 22) _ m(35m® + 462m + 1528)
Bi=-m/28, Bh="ge o BT 2903040 ’
B, = m(175m® + 4620m* + 40724m -+ 121154)

4" 1393459200 '

1t is now possible to find y,, r = 2,3,...,9, np s n <4, explicitly, where n, = [r/2] + 1.
We mention that v, = -8, Let g =0 for p<k and g, =1 forp=k If f& (.,
m>s+ p,andp <9, then
a) frm = [ BB £, and S0 = () — e,aBy SO + egaty ()0
+ ey ST + F(t)forr =201 3;
by £ = £+ Bl S+ Bt £, and SP(S = S — eaBy f(10TO +
0™ (DR + E(e) forr = 4 or 5;
O frm = f+ B3, 028, Af and SP(1 = (OO — egalB (O + FyP(2) for
r==6or7, and
Ay frm = £+ il 0?8, A, and 8PS = f(N)E + E5(e) for r = 8 or 9, where
4
F() = Em() + 3 o, B (1) = ofa).
n=1
To obtain estimates of F;/" in explicit form it is necessary to use (6). We mention
especially some particular cases.
a) A cubic spline which is exact on 3rd-degree polynomials (m — 4),

N
S =a 2 fOBL(t — ak),
k=N-3

where
“2 J—
fk34 :f:“?ﬁiflfﬂ =4 :‘El(fr?ul +f:4-1)-

Iff € Gy, then |SH(1) — AN|=I (1)< 0. 6’ ( 2, 30).
b) A cubic spline approximating f”,

N .
SHiY =« 2 ASIB(t — ak)

k=N-13

N3 5
=a X [ﬁAafks'gAaafksﬂlB:(t — ak).
k=N-3
Iife G, thenles(t)’ — (Y =L R )= l4c’w( f9,7/2a).
€) A cubic spline approximating f”,

N
Sh(ty' =a 2 A fPBI(t— ak)
k=N—3
N

=a X (ZAzafkﬁ - A22afk6+l)B:(t — ak).
k=N-—-13

If f € Cs, then | S5(¢)” — (1) |=| EE ()< 1409, 3a).
Similarly, we can write out cubic splines approximating f ) for k > 2.
d) A fifth-degree spline which is exact on polynomials of fifth degree,

N
sy =a S fEB— ak),
k=N-3 :
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where
fk56 = % kﬁ_l_?f(fkﬁ—t +fk6+l) + %(fkﬁkZ + fk6+2)'
It f € G, then | S5(2) — f(1)|=1F53(1) < 0.8a%w( f©, 5a).
¢) A fifth-degree spline approximating f*,

N
St =a 3 A fTBN(t — ak)

k=N—$
N
B ak:%_s (ﬁdafk? N 1_6-A3'1f-’f7+1 + 4_8A5ufk?+2)B£(t — ak).

£/ € C, then [ SE(rY — f(r) |=| FY(D) < a( £9), 5.50).
f) A fifth-degree spline approximating f*,

N
Sty =ea 3 & fFBNt — ak)

k=N—35
N
(29 51 31
2 (_g“A%:ka - EAzzafksﬂ + %Azaafksﬂ)Bg(t - ak).
k=N—35 '

Iff € C,, then | S§(1)” — (tY" |=| FE(1)|< 26%u( /D, 6a0).

In an analogous manner it is possible to write out fifth-degree splines approximating
higher-order derivatives, as well as seventh- and ninth-degree splines which are exact on
polynomials of the same degree. We underscore that the splines obtained that approxi-
mate derivatives enable us to construct difference schemes of high accuracy for solving
differential equations.
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ON THE SPECTRUM OF AUTOMORPHIC LAPLACIANS

IN SPACES OF PARABOLIC FUNCTIONS
UDC 517.862 '

P. G. ZOGRAF

In his well-known report [8], A. Selberg devoted a great deal of attention to questions
connected with the presence of small eigenvalues of the Laplace operator in spaces of
-automorphic forms. His interest in such gquestions is primarily -due to the fact that
eigenvalues of automorphic Laplacians which are small (i.e., in the interval (0,1/4)) to a
large extent determine the asymptotic behavior of the genefal Kloostermdn sums which
play an important role in the methods that exist for estimating the Fourier coefficients of
automorphic forms. As Selberg showed, the eigenvalues of the automorphic Laplacians
may be arbitrarily close to zero, and as a result the wéll-known methods for estimating the
Fourier coefficients, which rely upon estimates for Kloosterman sums, do not, in general,
enable one to obtain the desired results (see [8], p. 13). In particular, Selberg gave a
method for constructing subgroups of the modular group for which the Laplaée operator
in the space of automdfphié functions (automorphic forms of weight 0) will have an
arbitrarily small first eigenvalue. _ . ' '

In Selberg’s example, the small eigenvalues of automorphic Laplacians had as eigen-
functions the residues at the poles of meromorphic continuations of Fisenstein series. In
the present note we construct analogous examples, except with the small eigenvalues
corresponding to eigenfunctions which are parabolic (exponentially decreasing at infinity)
(Theorem 2). The basi¢ technical device to do this is Theorem 1, which generalizes to the
case of Fuchsian groups of the first kind the Yang-Yau inequality [9], in which the first
eigenvalue of the Laplace operator on a compact Riemann surface is bounded from above
by an expression which depends only upon its genus and- area. As far .as the author is
aware, the question of small eigenvalues of automorphic Laplacians in spaces of parabolic
functions has not been examined before in the literature, althc')u_gfl small eigenvalues (Iying
outside the continuous spectrum) are very important from various points. of view,
including number theory and representation theory (see [1]-[3]). We note that in scattering
_ theory, for example, for the Schrodinger operator with tapidly decreasing potential, the
poles of the resolvent which lie cutside the continuous spectrum are also poles of the
scattering matrix. It follows from our results that the situation is different in the spectral
theory of automorphic functions: the automorphic scattering matrix may actually not have
poles at the poles of the resolvent.

We proceed Lo the precise statements. Let I' be a Fuchsian group of the first kind,
regarded as a discrete group of motions of the upper half-plane Hf with the Poincaré
metric. It is well known that I' can be given by a system of generators 4,,...,4,,

1
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