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WAVELETS BASED ON PERIODIC SPLINES
UDC 519.6

V. A. ZHELUDEV

Wavelet bases of function spaces possess a variety of properties attractive for
numerical analysis. For example: 1) The basis functions are orthogonal. 2) All basis
functions can be obtained by means of translations and dilations of a single generating
function. At the same time, a principal feature of wavelet bases is their spatial and
frequency locality. Therefore the property 3) Basis functions have compact supports,

is very desirable. Daubechies [1] succeeded in joining together in one wavelet basis all: .
three of these properties. It should be pointed out, however, that, for problems where

the symmetry and the smoothness of basis functions are required, these wavelet-bases
appear not so suitable as ones constructed via spline functions. The drawback to
spline-wavelets is that it is impossible to join together the properties 1}-3).
However, periodic splines of defect 1 allow us to implement the wavelet decom-
position and reconstruction of functions in two bases simultaneously. One of these
- bases consists of compactly supported spline-wavelets subject to 2); the othér one
is an orthogonal basis. To change from one basis to the other, one must carry out”
the fast Fourier transform (FFT). Such a duality leads to extremely simple, flexible,
and fast algorithms in both the one-dimensional and multidimensional cases. The
coordinates of a function in these bases can be computed by the Monte Carlo-method.
We define the concept of mult1resolut1on analysis (MRA) of the space LZ(T) of
1-periodic functions (see [2] and [3]). :

Definition 1. An MRA of the space L*(T) is a sequence of closed spaces- V7 (j > 0)
with the following four properties:

() VOCVic...cVic...c L¥T).

2) UJ>0V’ is densc in L2(T) '

(3) V° is {constant functions}, f{x) € V/ = f (2x) € Vitl land f(x) e' VJ‘“
S/ + f(x/2+1/2) e Vi,

(4) dimV’/ = 2»' and for any value of j there exists a function ¢o such that its
shifts ¢'>" (x)= (x k2, k=0,1,...,2/ -1, formabasisof V/. O

Because of property (1), the space V/ can be represented as Vi = Vil g Wi- L
where W/~ is the orthogonal complement of V/=! in V7. Property (4) nnphes that
dim W/—1 = 2/-! and it can be established [4] that for any j there exists a function
wi™! -whose shifts wi ') = wf N (x —k/2, k=0,1,...,2 V1, foom a
basis of W/=!, We call the functions w/~'(x) wavelets. Properties (1) and (2) entail
the representation L*(T") = VO @ |, , W/ as well as the fact that the functions in
the set {1, y(x), j =0,1,..., k=0,1,...,2/ — 1} form a basis of the space
LXT). '
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We will construct MRA on the grounds of periodic splines.
_ We introduce some noticns. Throughout, N = 2/ and Y7} stands for 221 !
- ~We write @ = exp(2ni/N). The discrete Fourier transform (DFT) of a vector a =

{ad-" is
. 1< J .
09 T,{(a)=ﬁzw‘""ak, a =Y @™ Tia),
k n

The function ,B/(x) = NPVf(xi"'/(p ~ 1)1}, where x; = (x + |x|)/2, is the B-
spline of degree p — 1 with knots at the points {k/N}. The symbol V; denotes the
descending difference with step 1/N. We point out that the support supp ,B/(x) of
the B-spline is (0, p/N). The symbol ,M/(x) will denote the 1-periodic B-spline
of degree p — 1

) (2) pMj(x) = Z pr(x +1) = Z e~ minp/N (‘S_mé:_#) eninx

I=—oq H=—00

Throughout, ,8/ will denote the spaces of 1-periodic splines of degree p— 1 and
of defect 1 with their knots at the points {k/2/}, j=0,1,..., k=0,...,2/ 1.
As is easily seen, the spaces ,%/ generate an MRA of the space L2(T) The ShlftS of
the B-spline ,M7(x) form a basis of ,%/ . Any spline ;S € ,%/ can be represented
as follows:

3) »S x)——zqkp (x = k/N).

Writing q = {‘1’;{}0 ~! and exploiting the relations (1), we write the spline as

J J S
@) =Y M- Y o T =Y & mix),
k r d

where
(5) pmi(x) = Z‘ Mf(x k/NYw™ = —ZJ; oMI(x + k/N)w™™*,
k

and & = T/(q) . Hence we see that the splines ,m{(x), r=0,1,...,2/ ~ 1, form
a basis of ,%/, and {&/} are the coordinates of the spline ,S7/(x) with respect to

this basis.
By reference to relations established in [5], one many readily check the following

property of the splines mj :

. L) l s
®) Gt i) = [ mi0) () dy = 8 2,
whefe d; is the Kroneker delta, and
00 J
p} = sin(nr/NY 3" (—1)P!(n(r+IN)/N)™P = %Z @~ MI{k[N + p/2N) > 0
I=—00 k

The functions ,u/ were studied in [6] and [7].
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The relation (6) implies, in particular, that the splines pm{ {x) form an orthogonal
basis of ,B/. Therefore we call these splines ortsplines. We point out the relations

g
omi, pmi) = pul,  pMI(x+k/N) =) pmi(x)e™.
¥

Our account will follow the conventional scheme: first we expand the splines
pmi‘l (x) with respect to the basis {,m/(x)}, as well as the splines ,M7~!(x~2k/N)
with respect to the basis {,M/(x — I/N)}; then we construct wavelets, and establish
formulae for decomposition and reconstruction of splines as well as formulae for the
projection of a function onto the space ,B/. '

Theorem 1. For r=0,1,...,271 -1,
pmf_l(x) = pbl pmi(x) +pbf+N/2 pmf+N/2(x) :
pbi = e ™ PN (cosmr [NY = 277 (1 + 0™"),

P2
SMITY(x)=2""F Z; (‘l’) pr(x —I/N).

We point out a useful identity which follows immediately from the latter relations:
it = 2,m{ T (2p/NY = 47P@P[(1 + 0TV ppuf + (—1)P(1 — 07" zpuf,,N,z]-

Define the space of wavelets »20/~ as the orthogonal complement of ,%/~! in
»B7 . We start with splines which will be called ortwavelets. Specifically, these are

the splines {,wi ' (%)}~ of ,20~! C ,B/ with
rn 0 . .
p Wi~ (x) = paf pmi(x) 4 pal, s o1 s (X)-
If s+#r, then pwi 'L ;w{™" and pw{~'L ;m{™" because of orthogonality of the
ortsplines ,my;. Find the coefficients sal so as to ensure that ,w/™' L i
Denote v/ = ;u! N2 - Then
(pw!™", sy (X)) = paf pby Uy +pa}'+N/2 pDrany2 20/ = 0.

We can write a variety of solutions of the latter equation:
(7 Lal=e*"N val b,y =270 (1 - ja], _ val =5t (qpul) !,
where {47~} isany 2/~ '-periodic sequence with v7J7! # 0 forall r. The assertion
follows. :
Theorem 2. There exists a family of ortwavelets

;w;r'—;(x) =bal ;mi(x) +5a:+N/2 pm?‘-m/z(x) , r=0,1,...,271 -1,

whose coefficients are determined in (7). These ortwavelets form an orthogonal basis
of the space 207!, and

i—1 o i—ly — -2 ' =1 =1
Gwi™', pwi™h) =5 M) 247} 27
We distinguish three special cases:
1,7 — a— -
o =277 (1 — ") pvf,
0.j_ - j
pal =27 (1 — "V [3pu,

sal = 2770 (1 — )P (3p0] [2pui]) /2.
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We emphasize that (Jw/™', gw;"l =.2pu£"' .
We now denote »4/ ' = 3> w*2a/ and define the splines

s 1, ot vrr Joo
Py = D05 A M (x — K /N) = Y ad,mi(x).
k r

As is readily seen, the dual relations hold:

' -1
(8) zwjhl(x+2l/N)=Zw2ﬂ§wg—l(}C)’
. 2"1'—1 _-
(9) ;w}"—l(x) = W Zw~_2rl ;WJ_I(X n ZI/N).
!

These relations imply, in particular, that ¥y/~!(x + 2I/N) € ,20/ -1,

Theorem 3. The splines {$y/~1(x — 21'/1\1’)}1‘,‘\;"(3,!_1 form a basis of the space ,20/!;
any spline ;W/=1(x) € ,20/~1 can be written as
_ =t 28,
sy = 3 gl pwd T o) = 5 3 st ey T = 21/N),
r ]

Moreover,
i1 Jj=1 ; ’ 2 J— y )
vof—1 _ 2riv j—1 v i—1 __ —2rtv 4j—
ot = E O T S =5 E (1 d AN
r I

The theorem enables us to affirm that the splines N w/~1(x) appear as wavelets in
terms of the definition given at the beginning of the paper.

Now let us examine the wavelets Ly/~!(x) with » =0, 1, 2.

1. Let 2,L/(x) € 2,%/ be a spline such that 5,L/(p/N) = N and 2, L/(k/N) =0
when & # p. These splines are said to be the fundamental ones. It can be shown
. that

(2N) P2, LI (x = 1/N)®) = (~1)7 Oy~ (xx).
Hence we see that the wavelet gwf —1(x) appears (up to a constant multiplier) as a
“periodization” of the wavelet suggested by Chui and Wang in [8].
2. The determining feature of wavelet [y/~!(x) is the compactness (up to peri-
odization) of its support. The following representation holds:

p-2

. 1 . )
W) =5 30 A M (e - K/,
- k=—2p

Lgi=t = 2mp(_p)k+t ’Zp; (IZ)ZPMf((k + 1+ 1+p)/N).

The support supplw/~!(x) C ((-2p)/N, (2p — 2)/N) (modN). The wavelet
»W/~1(x) appears as a periodization of the B-wavelet suggested by Chui and Wang
in [9]. ‘ : : _

3. Now we turn to the case v = 2. Suppose

—1 o
P 0x) = (2/N)'2 tﬁwf“‘(x)/(zp'uﬁ")”ze
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The wavelet ,y/~!(x) appears as a periodization of the Battle-Lemarié wavelet (see
[10], [11], and [3]) The shifts {,u/~1(x — 2/ /JI\J’)}N"'2 ! form an orthonormal basis
of the space ,20/~!. Moreover, a more general assertion holds.

Theorem 4. The relation :
Gyl - 2/N), Byi~'x - 2s/N)) =5
is true if and only if _

bad =V AT (o] ppul)yapu ™! = 1/2N.

The theorem lets us construct together with a wavelet basis {}w/~'(x —2//N)} its
dual basis {5y/~1(x — 2s5/N)} in the sense of Chui and Wang [9], which belongs to
the same family of wavelet bases as the original basis.

We now establish decomposition formulae.

Theorem 5. For r=0,1, ..., 2/ — 1 the representation
pm{:(x) = ph{:pmghl(x) +pgr P J l(x)
(10) phi = & (14 @ VP opuil [(2P 250l ™"},
b8l = (1= ™Y@~ 550} 3t/ (2ol i)

holds. Any spline
. 1< i .
X)) =% > alpMi(x —k/N) = S & ymi(x) € pB7,
k r

- q={qk}0“ls éi‘{:ﬂ(q)’
can be represented as the following orthogonal sum:
pS (x) = pSi(x) +5Wj'71(x) ,

where
1 1 1 _ 1 M- i—1
pS7™ (x)uzpmf ()&~ _Wzkj MI~\(x — 2k[N) € ;B
. 1_1 a
LW ‘(x)—Z”'wf Yx)vpi—! = Z - "’w’ Yo - 2k/N) %) 1
k
(11) &= rph£+fr+N/2Ph;'+N/z’ “ni” l—ﬁpgr +¢‘:+N/2;g3+1\'/2‘
: _ Ni2-1 _ Nj2—1
(12) q’.cr—l_'_ Z kara—l’ vti_l — E karvm{—l-
r=0 r=0

Further, following the conventional pyramidal diagram of decomposition

" pSHx) —— S () ——— ST (x) 85~ (x)

ywi—l(x) LWI=2(x) bWwim(x),
m< j, we obtain the representation of the spline
(13) pS(x) = pS9"(x) +;Wf‘1(x) + ;Wf‘z(x) + 4y Wi—m(x)
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as the sum of the smeared version ,8/~™(x), and the details {4 WI~k(x)}m .

After establishing, in accordance with (11), the expansion (13) via ortsplines and
ortwavelets, it is natural to change, by means of the FFT, from these orthogonal bases
to the bases of shifts of B-splines and of the wavelets ;wf —*(x) which provide anal-
ysis of a function which is local in the frequency and spatial domains simultaneously.
Nevertheless, it should be pointed out that spectral properties of splines ,S$7(x) can
be investigated most efficiently with the ortspline-ortwavelet bases. We ‘emphasize
that the relations §/ = 7/(q) imply an opportunity for fast decomposition algo-
rithms related to the FFT algorithms. _

‘We now establish formulae for reconstructing a spline from its wavelet represen-
tation. S L
Theorem 6. Suppose that a spline ,87(x) € ,%B/ is represented as the sum 25 (x) =
pSI1(x) + Wi1(x), where ‘

21'—'1 =1

pS7T) = 55 Do al M o = 2k/N) = 3yl (x)E T e i,
. 2 j._l . ) j_-l . . .
sy = 5 3 T pwI T e - 2Kk /N) = 3 sl () it € it
k . r

where &7 = 2 Y g~ ang vyl = 50 w2 vd=t | Then
. 1. Lo
p§(x) = & Dol oMi(x—k/N) =& ,mi(x),
k r

;
where & = ,bj™1Ei7! +2al " vyl and gl =3 &l

Hence we see that, given the representation of a spline in the form (13), it is
possible to reconstruct it in the conventional form by means of the inverse diagram

pST(x) - pSTHx) > ST (x) ——> S ()

-

;Wf‘m(x) ...;_Wj—z(x) ;Wjul(x)

Our algorithm allows a fast implementation. _

In closing we discuss the procedure for orthogonal projection of any function
f € LA(T) onto the space ,B/, which is the original one for a decomposition of the
latter. Denote by ,S7(f, x) such a projection.

Theorem 7. The representation

o 1JdL S

oSS X) =5 Yo alpMI(x—k/N) =& ,mi(x)

k r
holds, where & = T{(F)/3ul, F={F}¥", and
ol _ R R
Fo= [ St kiNpMIxydx, gl =3 Eab.
0 el .
It may be shown that the coefficients {g/} of the ,8/(f, x) € ,8/ coincide

with those of the spline 2,57(x) € 2,8/ for which 2,8/((k + p)/N) = F,, k =
0,...,N—-1.
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We say some words abbut computing the values of Fy. Exploiting properties of
B-splines (see [12]) leads us, provided f € C? (T), to the relation

P
Fe= 5 3 pMIUN)SUIN + K[N) + o((0/N ).
> _

If £ CT), then S - |
F. = f(p/2N —k/N) +pf"(p/2N — k/N)/24N* + o((p/N)?).

For functions f of lesser smoothness one may exploit the fact that the B-spline
oB7(x) (recall that the spline ,M/(x) isa “periodization” of ,B/(x)) is the proba-
bility density of the sum of p random variables uniformly distributed on [0, 1/N].
Therefore F, can be looked upon as the mean value of the function f(x +k/N)
with respect to the distribution ,B’(x), and one can compute F, by the Monte
Carlo method. . '

We mention that the ortsplines ,mj(x), which are basic for our constructions, are
generalized eigenvectors of operators of convolution and of differentiation. Therefore
the techniques we have suggested appear to be an adequate tool for solving problems
connected with these operators. This topic as well as the spectral properties of our
wavelets will be the subject of subsequent papers by the author. Our algorithms can
" be extended readily to the multidimensional case. -

" The author is indebted to Professor V. N. Malozemov of St. Petersburg Univer-
sity, who focused the attention on these problems, for numerous stimulating conver-
sations. '
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