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Abstract
A generic technique for the construction of diversity of interpolatory subdivision schemes on

the base of polynomial and discrete splines is presented in the paper. The devised schemes have
rational symbols and infinite masks but they are competitive (regularity, speed of convergence,
computational complexity) with the schemes that have finite masks. We prove exponential decay
of basic limit functions of the schemes with rational symbols and establish conditions, which
guaranty the convergence of such schemes on initial data of power growth.

1 Introduction

Subdivision started as a tool for efficient computation of spline functions. Now it is an independent
subject with many applications. It is being used for developing new methods for curve and sur-
face design, approximation, generating wavelets and multiresolution analysis and also for solving
some classes of functional equations. Interpolatory subdivision schemes (ISS) are refinement rules,
which iteratively refine the data by inserting values corresponding to intermediate points, using
linear combinations of values in initial points, while the data in these initial points are retained.
Non-interpolatory schemes also update the initial data, in addition to the insertion values into
intermediate points. Stationary schemes use the same insertion rule at each refinement step. And
a scheme is called uniform if its insertion rule does not depend on the location in the data. To
be more specific, a univariate stationary uniform subdivision scheme with binary refinement Sa

consists in the following: A function f j that is defined on the grid Gj = {k/2j}k∈Z: f j(k/2j) = f j
k ,

is extended onto the grid Gj+1 by filtering the array {f j
k}k∈Z:

f j+1
k =

∑
l∈Z

ak−2lf
j
l . (1)

This is one refinement step. Next refinement step employs f j+1 as an initial data. The filter
a = {ak}k∈Z is called the refinement mask of Sa. We define the z-transform of a sequence f :=
{fk}k∈Z belonging to the space l1 of summable sequences as f(z) :=

∑
k∈Z z

k ak. The z-transform
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of the mask a(z) =
∑

k∈Z z
k ak is called the symbol of Sa. Throughout the paper we assume that

z = e−iω. If f j and f j+1 belong to l1 then equation (1) is equivalent to the following relation in
the z−domain:

f j+1(z) = a(z)f j(z2). (2)

If the subdivision scheme is interpolatory then a0 = 1, a2k = 0 ∀k 6= 0. In this case, the symbol is
represented by the sum

a(z) = 1 + zU(z2), where U(z) :=
∑
k∈Z

zk uk, uk = a2k+1, (3)

and the insertion rule (1) is split into two rules:

f j+1
2k = f j

k , f j+1
2k+1 =

∑
l∈Z

uk−lf
j
l ⇔ f j+1

e (z) = f j(z), f j+1
o (z) = U(z)f j(z). (4)

Here f j(z), f j
e (z) and f j

o (z) are the z−transforms of the arrays {f j
k}k∈Z, {f j

2k}k∈Z, {f j
2k+1}k∈Z,

respectively.
The well-known interpolatory uniform subdivision scheme by Dubuc and Deslauriers [7] can be

formulated in the following way:

Polynomial Insertion Rule: The polynomial spline Q2r
j (x) of an even order 2r (degree 2r−1)

of deficiency 2r− 1 is constructed, which interpolates the function f j on the grid Gj: Q2r
j (k/2j) =

f j
k . Then, the samples f j+1

k are defined as the values of the spline: f j+1
k = Q2r

j (k/2j+1).
We recall that a spline of order 2r of deficiency 2r − 1 is a continuous function consisting of

central arcs of interpolatory polynomials of degree 2r − 1. Even the first derivative may have
breaks at grid points. For the spline Q2r

j (x) the mask a := {ak} comprises 2r non-zero terms and
the symbol a(z) is a Laurent polynomial.

Our construction is based on a simple idea: To replace the Polynomial Insertion Rule by the
following rule:

Spline Insertion Rule: We construct the polynomial spline of order p (degree p− 1) V p
j (x) ∈

Cp−2 of deficiency 1, which interpolates the function f j on the grid Gj: V p
j (k/2j) = f j

k . Then, the
samples f j+1

k are defined as the values of the spline: f j+1
k = V p

j (k/2j+1).
If a spline of even order V 2r

j is used in this insertion rule then the limit function of the subdi-
vision scheme is the same spline V 2r

0 , which interpolates the initial data. But splines of odd order
possess the property of super-convergence in the midpoints between the interpolation points [17].
Due to this property, the limit function for splines of odd orders is more regular than the spline
itself. Moreover, employment of these splines allows to achieve a certain approximation order and
smoothness of a limit function with lower computational complexity than by using splines of even
orders. Therefore, splines of odd order are more suitable for this scheme.

Together with the polynomial splines we explore the so called interpolatory discrete splines as
a source for devising refinement masks [3, 11]. The derived masks are related to the Butterworth
filters, which are commonly used in signal processing [12].

A seeming drawback in using interpolatory splines is that it requires a convolution of the data
with the infinite mask. But, due to rational structure of the symbols, this obstacle could be
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circumvented by employing recursive filtering [13, 3]. As a result, the computational complexity
implementing these schemes is even lower than the complexity of implementation of schemes with
finite masks, which have comparable properties.

We analyze convergence and regularity of the designed subdivision schemes. Our analysis is
based on the technique developed in [8, 9] for schemes with finite masks. The extension of the
technique to schemes with infinite masks requires some modifications. We prove that the basic
limit functions of subdivision schemes with rational masks decay exponentially as their arguments
tend to infinity. Obviously, this result is not surprising. There are hints on that in [10, 4]. But
the author never saw a proof of this result. In some sense a reciprocal fact was established in [5].
Under certain assumptions exponential decay of a refined function implies exponential decay of the
refinement mask.

The rest of the paper is organized as follows. In Section 2 we discuss properties of polynomial
and discrete splines, which are necessary for our construction, and devise refinement masks for
ISS’s using interpolatory splines. Section 3 is devoted to the investigation of convergence and
regularity of subdivision schemes with rational masks. In addition, the exponential decay of basic
limit functions is proved. In Section 4 we apply the above theory to the construction and analysis
of three ISS’s with rational masks. We compare their properties with the properties of two ISS’s
by Dubuc and Deslauriers and argue that the newly designed schemes are just competitive for
applications with schemes that have finite masks.

2 Refinement masks derived from polynomial and discrete splines

2.1 Auxiliary results

In this preparatory section we recall known properties of B-splines and establish a few relations,
which are necessary for the design of refinement masks and for the proof of the super-convergence
property of splines of odd order.

2.1.1 Some properties of B-splines

The centered B−spline of order p is the convolution Mp(x) = Mp−1(x) ∗M1(x), p ≥ 2, where
M1(x) is the characteristic function of the interval [−1/2, 1/2]. Note that the B-spline of order
p is supported on the interval (−p/2, p/2). It is positive within its support and symmetric about
zero. Nodes of B-splines of even orders are located at points {k}k∈Z and of odd orders at points
{k + 1/2}k∈Z.

The Fourier transform of the B-spline of order p is

M̂p(ω) :=
∫ ∞

−∞
e−iωxMp(x) dx =

(
sinω/2
ω/2

)p

. (5)

We introduce two sequences, which are important for further construction:

vp := {Mp(k)}k∈Z, wp :=
{
Mp

(
k +

1
2

)}
k∈Z

.

Due to the compact support of B-splines, these sequences are finite. In Table 2 in Appendix II
(Section B) we present the sequences vp and wp for some values of p. The discrete-time Fourier
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transforms of these sequences are

v̂p(ω) :=
∞∑
−∞

e−iωkMp(k) = P p
(

cos
ω

2

)
, ŵp(ω) :=

∞∑
−∞

e−iωkMp
(
k +

1
2

)
= eiω/2Qp

(
cos

ω

2

)
. (6)

Here the functions P p and Qp are real-valued polynomials. If p = 2r−1 then P p is a polynomial of
degree 2r− 2 and Qp is a polynomial of degree 2r− 3. If p = 2r then P p is a polynomial of degree
2r − 2 and Qp is a polynomial of degree 2r − 1.

The z− transform s of the sequences vp and wp

vp(z) =
∞∑
−∞

zkMp(k), wp(z) =
∞∑
−∞

zkMp(k + 1/2)

are the so-called Euler-Frobenius polynomials [14]. These polynomials were extensively studied in
[15, 14]. In particular, the recurrence relations for their computation were established as well as
the following fact.

Proposition 2.1 ([14]) On the unit circle z = e−iω the following inequalities hold:

0 < vp(z) ≤ 1. (7)

The roots of the Laurent polynomials vp(z) are all simple and negative. Each root ζ can be paired
with a dual root θ such that ζ θ = 1. Thus, if p = 2r − 1, p = 2r then vp(z) can be represented as:

vp(z) =
r∏

n=1

1
γn

(1 + γnz)(1 + γnz
−1), 0 < |γ1| < |γ2| < . . . |γr| = e−g < 1, g > 0. (8)

2.1.2 Euler-Frobenius polynomials and their ratios

The following facts are needed to establish the approximation properties of the forthcoming subdi-
vision schemes that are based on the Spline Insertion Rule. Using (5) we can write

Mp(x− k) =
1
2π

∫ ∞

−∞
eiω(x−k)

(
sinω/2
ω/2

)p

dω =
∞∑

l=−∞
e2πilx

∫ 1

0
e2πiξ(x−k) (sinπξ)

p(−1)lp

π(l + ξ))p
dξ

=
∫ 1

0
e−2πiξkmp

x(ξ) dξ, where mp
x(ξ) := e2πiξx(sinπξ)p

∞∑
l=−∞

e2πilx (−1)lp

(π(l + ξ))p
. (9)

Relation (9) means that Mp(x−k) is a Fourier coefficient of the 1-periodic function mp
x(ξ) and this

function can be represented as the sum:

mp
x(ξ) =

∞∑
k=−∞

e−2πikξ Mp(x+ k). (10)

Equations (6) and (10) imply the following representations:

P p(cosω/2) = v̂p(ω) = mp
0(ω/2π) = (sinω/2)p

∞∑
l=−∞

(−1)lp

(πl + ω/2)p
(11)

Qp(cosω/2) = e−iω/2ŵp(ω) = e−iω/2mp
1
2

(ω/2π) = (sinω/2)p
∞∑

l=−∞

(−1)l(p+1)

(πl + ω/2)p
.
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It is seen from (11) that
P p(1) = Qp(1) = 1. (12)

We also introduce two rational functions:

Rp(y) :=
Qp(y)
P p(y)

, Up
I (z) :=

wp(z)
vp(z)

. (13)

In Section 2.2 we show that the function 1 + zUp
I (z2) is the symbol for the ISS based on Spline

Insertion Rule. It is readily verified that

e−iω/2Up
I (e−iω) = Rp

(
cos

ω

2

)
, 1− zUp

I (z2) = 1−Rp (cosω) , z = e−iω. (14)

Examples:

Quadratic spline:

U3
I (z) = 4

1 + z−1

z + 6 + z−1
, 1 + zU3

I (z2) =
(1 + z)4

z4 + 6z2 + 1
, 1− zU3

I (z2) =
(z−1 − 2 + z)2

z2 + 6 + z−2
.

Cubic spline:

U4
I (z) =

(z−1 + 1)(z−1 + 22 + z)
8(z + 4 + z−1)

, 1 + zU4
I (z2) =

(1 + z)4(z + 4 + z−1)
8(z4 + 4z2 + 1)

.

Spline of fourth degree :

U5
I (z) =

16(z + 10 + z−1)(1 + z−1)
z2 + 76z + 230 + 76z−1 + z−2

, 1 + zU5
I (z2) =

(1 + z)6 (z2 + 10z + 1)
z8 + 76z6 + 230z4 + 76z2 + 1

.

We observe that the symbols, originated from the splines of second and fourth degrees (of orders
2r − 1, r = 2, 3, respectively), comprise the factors (z + 1)2r. We show that this factorization is
common to splines of even degrees and results in the so called super-convergence property, which
is valuable for subdivision.

Lemma 2.1 If p = 2r − 1 then in the neighborhood of ω = 0

1−R2r−1(cosω/2) =
sin2r ω/2

P 2r−1(cosω/2)

(
Ar +O(sin2 ω/2

)
, Ar :=

(4r − 1)
r(2r − 2)!

|b2(r)|, (15)

where bs is the Bernoulli number of order s.

The proof is given in Appendix I (Section A). Recall that the degree of a Laurent polynomial∑ν
k=−µ αkz

k is defined as µ+ ν.

Corollary 2.1 If p = 2r − 1 then the following factorization formula holds

1− zU2r−1
I (z2) =

(−z + 2− z−1)r

v2r−1(z2)

(
4−rAr + (z − 2 + z−1)qr(z)

)
, (16)

where q2(x) ≡ 0 and qr(z) is a symmetric Laurent polynomial of degree 2(r − 3) for r ≥ 3.
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Proof: The case r = 2 is explicitly presented in the above example. We have

1− zU2r−1
I (z2) =

v2r−1(z2)− zw2r−1(z2)
v2r−1(z2)

= 1−Rp (cosω) =
sin2r ω

P 2r−1(cosω)

(
Ar +O(sin2 ω

)
=

(−z + 2− z−1)r

v2r−1(z2)

(
4−rAr +O(z − 2 + z−1)

)
.

The numerator of the rational function 1−zU2r−1
I (z2) is a symmetric Laurent polynomial of degree

4(r − 1). Thus, O(z − 2 + z−1) = (z − 2 + z−1)qr(z).

We conclude the section by a fact about splines of even order.

Proposition 2.2 If p = 2r then

1 +R2r(cosω/2) =
2(cosω/4)2rP 2r(cosω/4)2r

P 2r(cosω/2)
(17)

1 + zU2r
I (z2) =

(1 + z)2rv2r(z)
22r−1zrv2r(z2)

, 1− zU2r
I (z2) =

(z − 2 + z−1)rv2r(z)
22r−1v2r(z2)

. (18)

Proof: From (11) and (12) we have

1 +R2r(cosω/2) = 1 +
Q2r(cosω/2)
P 2r(cosω/2)

=
2(sinω/2)2r∑∞

l=−∞(π2l + ω/2)−2r

P 2r(cosω/2)

=
2(cosω/4)2r(sinω/4)2r∑∞

l=−∞(πl + ω/4)−2r

P 2r(cosω/2)
=

2(cosω/4)2rP 2r(cosω/4)
P 2r(cosω/2)

Equations (18) follow immediately from the definition (13) and Eq. (17).

2.2 Refinement masks derived from interpolatory polynomial splines

In this section we devise the refinement mask according to Spline Insertion Rule. We also eval-
uate the approximation error at midpoints between points of interpolation and prove the super-
convergence property.

Shifts of B-splines form a basis in the space Vp
j of splines of order p on the grid Gj = {k/2j}k∈Z.

Namely, any spline V p
j ∈ Vp

j can be represented as:

V p
j (x) =

∑
l

clM
p(2jx− l). (19)

Denote c = {cl}l∈Z and let c(z) be the z-transform of c. We introduce the sequences εp := {εpk =
V p

j (k/2j)}k∈Z, op := {op
k = V p

j ((2k+1)/2j+1)}k∈Z and sp = {sp
k = V p

j (k/2j+1)}k∈Z of spline values
at the sparse-grid points, at the midpoints and on the refined grid {k/2j+1}k∈Z, respectively. The
z-transform of the sequence sp is

sp(z) = εp(z2) + zop(z2). (20)
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We have
εpk =

∑
l

clM
p(k − l), op

k =
∑

l

clM
p
(
k − l +

1
2

)
.

Thus εp(z) = c(z)vp(z), and op(z) = c(z)wp(z).
From these equations we can derive expressions for the coefficients of the spline V p

j , which
interpolates a given sequence e = {ek} ∈ l1 on the sparse grid {k/2j}k∈Z:

εpk = ek, ∀k ∈ Z,⇔ c(z)vp(z) = e(z) ⇔ c(z) =
e(z)
vp(z)

⇔ cl =
∞∑

n=−∞
λp

l−nen. (21)

Here, λp = {λp
k}k∈Z is the sequence, which is defined via its z−transform:

λp(z) =
∞∑

k=−∞
zkλp

k = 1/vp(z).

It follows from (8) that the coefficients {λp
k}k∈Z decay exponentially as |k| → ∞. We will prove

a general statement about this fact in forthcoming Proposition 3.1. Substitution of (21) into (19)
results in an alternative representation of the interpolatory spline:

V p
j (x) =

∞∑
l=−∞

el L
p(2jx− l), where Lp(x) :=

∑
l

λp
l M

p(x− l). (22)

The spline Lp(x), defined in (22), is called the fundamental spline. It interpolates the Kronecker
delta δ(k), that is Lp(x) vanishes at all integer points except x = 0 where Lp(0) = 1. Due to the
decay of the coefficients {λp

k}k∈Z, the spline Lp(x) decays exponentially as |x| → ∞. Therefore,
the representation (22) of the interpolatory spline remains valid for the sequences {ek}k∈Z, which
may grow not faster than a power of k [16] (the sequences of power growth). The values of the
fundamental spline at midpoints are

L̃p
k := Lp(k + 1/2) =

∑
l

λp
l M

p(k − l + 1/2), L̃p(z) =
wp(z)
vp(z)

= Up
I (z), (23)

where L̃p(z) denotes the z- transform of the sequence {L̃p
k}. Hence, the values of the interpolatory

spline at midpoints are
op
k =

∑
n

L̃p
k−nen ⇔ op(z) = Up

I (z)e(z). (24)

The spline V p
j is interpolatory. Therefore, substituting (24) into (20) we obtain:

sp(z) = ap
I(z)e(z

2), where ap
I(z) := 1 + zUp

I (z2).

If a subdivision scheme Sa is defined in accordance with the Spline Insertion Rule, which was
formulated in Section 1, then the rational function ap

I(z) is its symbol. The mask ap
I = {ap

k}I is
infinite but decays exponentially as |k| → ∞.
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Super-convergence property. The interpolatory splines of odd orders possess the so called
super-convergence property, which is valuable for subdivision . Recall that in general the spline
of order p (degree p − 1), which interpolates the values of a polynomial of degree p − 1, coincides
with this polynomial. However, we show that the spline of odd order 2r− 1 (degree 2r− 2), which
interpolates the values of a polynomial of degree 2r− 1 on the equispaced grid, restores the values
of this polynomial at mid-points between the points of interpolation. We claim that the mid-points
are points of super-convergence of the spline V 2r−1

j .
Denote by D2 the operator of centered second difference: D2fk = fk−1−2fk+fk+1. Application

of this operator in z-domain reduces to multiplication with the Laurent polynomial D2(z) = z −
2 + z−1. The Laurent polynomial D2r(z) = (z − 2 + z−1)r corresponds to the 2r-order difference,
which we denote as D2r.

Theorem 2.1 (Superconvergence property) Let a spline V 2r−1
j of order 2r − 1 interpolate

f(x) on the grid {k/2j}k∈Z. If the function f is a polynomial of degree 2r − 1 then

V 2r−1
j

(
2k + 1
2j+1

)
= f

(
2k + 1
2j+1

)
∀k ∈ Z.

If f is a polynomial of degree 2r + 1 then

V 2r−1
j

(
2k + 1
2j+1

)
= f

(
2k + 1
2j+1

)
−ArF,

where the constant F := D2rf(x).

Proof: From Eqs. (22)–(24) we obtain

f

(
2k + 1
2j+1

)
− V 2r−1

j

(
2k + 1
2j+1

)
= f

(
2k + 1
2j+1

)
−
∑
n

L̃2r−1
k−n f

(
n

2j

)
(25)

=
∑
n

g2r−1
2k+1−nf

(
n

2j+1

)
,

where

gp
k =

{
δ(l), if k = 2l
−L̃p

l , if k = 2l + 1.

Equation (25) means that to obtain the difference f((2k + 1)/2j+1) − o2r−1
k , we must apply the

mask g2r−1 := {g2r−1
k }k∈Z to the data {f(k/2j+1)}k∈Z and take odd samples from the produced

array. The series in (25) converges absolutely due to the exponential decay of the coefficients of
the mask g2r−1. The symbol of the mask g2r−1 is g2r−1(z) = 1− zU2r−1

I (z2). Due to (16),

g2r−1(z) =
1

v2r−1(z2)
G2r−1(z), G2r−1(z) := 4−rAr(z − 2 + z−1)r + qr(z)(z − 2 + z−1)r+1.

Application of the filter g2r−1(z) to the array {f(k/2j+1)}k∈Z reduces to the subsequent application
of the filters G2r−1(z) and 1/v2r−1(z2). The result of application of the filter G2r−1(z) is the array

γk := 4−rArD2rf(k/2j+1) +
r−3∑

l=−r+3

qr
l D

2r+2f((k − l)/2j+1),
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where {qr
l }

r−3
l=−r+3 are the coefficients of the Laurent polynomial {qr(z). If f is a polynomial of degree

2r − 1 then γk = 0 ∀k. If f is a polynomial of degree 2r + 1 then γk = 4−rAr F ∀k. The result of
application of the filter 1/v2r−1(z2) to the constant 4−rAr F is the constant 4−rAr F/v

2r−1(1) =
4−rAr F due to (12).

Originally, this property was established by other means in [17].

Remark. The interpolatory splines of even order 2r do not have this super-convergence property.
They are exact on polynomials of degree 2r − 1 but also on splines of order 2r in the following
sense.

Theorem 2.2 Let f(x) = V 2r
1 (x) be a spline of order 2r with nodes on the grid {k}k∈Z, k ∈ Z

and the initial data f0
k = f(k). Then, all the subsequent steps of subdivision reproduce the values

of this spline: f j
k = f(k/2j), k ∈ Z, j ∈ N.

Proof: Without loss of generality, assume that f(x) = L2r(x) is the fundamental spline of order 2r
with nodes on the grid {k}k∈Z. Due to the well known property of minimal norm [2], the integral

µ :=
∫ ∞

−∞
|f (r)(x)|2 dx ≤

∫ ∞

−∞
|g(r)(x)|2 dx,

where g(x) is any function such that g(r)(x) is square integrable and g(k) = δ(k). Let F (x) be a
spline of order 2r, which interpolates the values {ϕk = f(k/2)}k∈Z. Then,

ν :=
∫ ∞

−∞
|F (r)(x)|2 dx ≤

∫ ∞

−∞
|G(r)(x)|2 dx,

where G(x) is any function such that G(r)(x) is square integrable and G(k/2) = ϕk. Hence, ν ≤ µ.
On the other hand, F (k) = δ(k) and, therefore, µ ≤ ν. Thus,∫ ∞

−∞
|f (r)(x)|2 dx =

∫ ∞

−∞
|F (r)(x)|2 dx.

Hence, it follows that F (x) ≡ f(x). Due to the representation (22), the assertion is extended to
any spline of order 2r, which interpolates the data of power growth.

Remark The above result remains true for splines, which interpolate initial data on a non-
equispaced grid.

2.3 Refinement masks derived from discrete splines

In this section we introduce refinement masks for ISS using the so-called discrete splines. The
discrete splines are defined on grids {k}k∈Z and present a counterpart to the continuous splines.
For detailed description of the subject see [11].

The discrete B-spline B1,n = {B1,n
j }j∈Z of first order is defined by the following sequence:

B1,n
j =

{
1 if j = 0, . . . , 2n− 1, n ∈ N,
0 otherwise.
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The higher order B-splines are defined as discrete convolutions by recurrence: Bp,n = B1,n ∗Bp−1,n.
Obviously, the z-transform of the B-spline of order p is

Bp,n(z) = (1 + z + z2 + . . .+ z2n−1)p, p = 1, 2, . . . .

If p = 2r, r ∈ N then the B-spline Bp,n is symmetric about the point j = r where it attains its
maximal value. The centered B-spline M2r,n

j of order 2r is defined as a shift of the B-spline:

M2r,n
j := B2r,n

j+r , M2r,n(z) = z−rB2r,n(z).

The discrete spline V 2r,n = {V 2r,n
k }k∈Z of order 2r is defined as a linear combination, with real-

valued coefficients, of shifts of the centered B-spline of order 2r:

V 2r,n
k :=

∞∑
l=−∞

clM
2r,n
k−2nl.

Let {ek}k∈Z be a given sequence. The discrete spline V 2r,n is called interpolatory if the following
relations hold:

V 2r,n
2nk = ek, k ∈ Z. (26)

Proposition 2.3 ([11]) If the sequence {ek}k∈Z is of power growth then there exists a unique
discrete spline of power growth V 2r,n satisfying (26).

The points {2kn}k∈Z are called the nodes of the spline.
In this paper we explore only the case n = 1 and denote V 2r := V 2r,1 and M2r := M2r,1 . One

refinement step of the corresponding interpolatory subdivision scheme consists in the following:

Discrete Spline Insertion Rule: Given the data f j := {f j
k}k∈Z of power growth, we construct

the discrete spline V 2r such that V 2r
2k = f j

k , k ∈ Z. Then, the entries of the refined array are defined
as the values of the spline: f j+1

k := V 2r
k , k ∈ Z.

Analysis, which results in the symbol of the ISS, is similar to the analysis in the polynomial
splines case but it is simpler. As before, we denote ε2r = {ε2r

k = V 2r
2k }k∈Z, o2r = {o2r

k = V 2r
2k+1}k∈Z

and s2r = {s2r
k = V 2r

k }k∈Z. If the spline V 2r interpolates the sequence {ek}k∈Z then

ε2r
k =

∞∑
l=−∞

clM
2r
2(k−l) = ek ⇐⇒ c(z)M2r

e (z) = e(z),

where

M2r
e (z2) :=

∞∑
l=−∞

z2lM2r
2l =

1
2

(
M2r(z) +M2r(−z)

)
=

1
2

(
z−r (1 + z)2r + (−z)−r (1− z)2r

)
.

The values of the spline at odd points are

o2r
k =

∞∑
l=−∞

clM
2r
2(k−l)+1 ⇐⇒ o2r(z) = c(z)M2r

o (z), (27)
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where

M2r
o (z2) :=

∞∑
l=−∞

z2lM2r(2l + 1) =
z−1

2

(
M2r(z)−M2r(−z)

)
=
z−1

2

(
z−r (1 + z)2r − (−z)−r (1− z)2r

)
.

Finally, we have

o2r(z) = U2r
d (z) e(z), U2r

d (z2) := z−1 (1 + z)2r − (−1)r (1− z)2r

(1 + z)2r + (−1)r (1− z)2r .

Hence, the symbol of the ISS based on Discrete Spline Insertion Rule is

a2r
d (z) = 1 + zU2r

d (z2) =
2 (1 + z)2r

(1 + z)2r + (−1)r (1− z)2r .

The following proposition, which was established in [3], characterizes the structure of the denomi-
nator Dr(z) := (1 + z)2r + (−1)r (1− z)2r of the symbol a2r

d (z).

Proposition 2.4 ([3]) If r = 2p+ 1 then the following representation holds:

Dr(z) = 4rzr
p∏

k=1

1
γr

k

(1 + γr
kz

−2)(1 + γr
kz

2), where γr
k = cot2

(p+ k)π
2r

< 1, k = 1, . . . , p.

If r = 2p then

Dr(z) = 2zr
p∏

k=1

1
γr

k

(1 + γr
kz

−2)(1 + γr
kz

2), where γr
k = cot2

(2p+ 2k − 1)π
4r

< 1, k = 1, . . . , p.

The proposition implies, in particular, that the mask of the devised ISS decays exponentially. The
following relation

1− zU2r
d (z2) =

2(−1)r(z − 2 + z−1)r

(1 + z)2r + (−1)r (1− z)2r .

guaranties that the presented ISS is exact on polynomials of degree 2r − 1.
The refinement mask {a2r

d (k)}k∈Z is closely related to the discrete-time Butterworth filter, which
is commonly used in signal processing [12, 3]. To be specific, application of this mask to a data
array is equivalent to the subsequent forward and backward application of the Butterworth filter
of order r.

Examples:

1. r = 1. In this case the mask is finite, U2
d (z) = (1 + z−1)/2, a2

d(z) = (1 + z)2/2z.

2. r = 2. In this case the mask coincides with the mask generated by the quadratic polynomial
spline: U4

d (z) = U3
I (z).

3. r = 3.

U6
d (z) =

(z + 14 + z−1)(1 + z−1)
6z−1 + 20 + 6z

, a6
d(z) =

(z + 1)6

6 z5 + 20 z3 + 6 z
.

11



3 Convergence and regularity of subdivision schemes with rational
symbols

3.1 Preliminary results

For the investigation of convergence and regularity of the presented subdivision schemes we use the
modified technique developed by N. Dyn, J. Gregory and D. Levin [8, 9]. The difference is that,
unlike these authors, we study subdivision schemes with infinite but exponentially decaying masks.
Therefore, in the sequel we restrict the admissible initial data to the sequences of power growth. It
means that for a sequence {f0

k}k∈Z positive constants A and M exist such that

|f0
k | ≤MkA. (28)

In this section we analyze subdivision schemes that have rational symbols a(z) = T (z)/P (z) subject
to the following requirements:

P1: The Laurent polynomials P (z) and T (z) are symmetric about inversion: P (z−1) = P (z),
T (z−1) = T (z) thus they are real on the unit circle |z| = 1.

P2: The roots of the denominator P (z) are simple and do not lie on the unit circle |z| = 1.

P3: The symbol a(z) is factorized as follows:

a(z) = (1 + z)q(z), q(1) = 1. (29)

In the sequel we will say that a subdivision scheme Sa belongs to Class P if its symbol a(z) possesses
the properties P1– P3.

The above properties imply, in particular, that the coefficients ak of the mask of the scheme Sa

of Class P are symmetric about zero. If P1 and P2 hold then P (z) can be represented as follows:

P (z) =
r∏

n=1

1
γn

(1 + γnz)(1 + γnz
−1), 0 < |γ1| < |γ2| < . . . |γr| = e−g < 1, g > 0. (30)

Note that all the subdivision schemes introduced in Section 2 are the schemes of Class P.

Proposition 3.1 If the symbol of a scheme Sa is a(z) = T (z)/P (z) and Eq. (30) holds then the
mask satisfies the inequality

|ak| ≤ Ae−g|k|,

where A is a positive constant.

Proof: Assume the degree τ of T (z) is less than the degree p of P (z). If Eq. (30) holds then the
symbol can be represented as follows:

a(z) =
r∑

n=1

(
A+

n

1 + γnz
+

A−n z

1 + γnz−1

)
=

r∑
n=1

(
A+

n

∞∑
k=0

(−γn)kzk + zA−n

∞∑
k=0

(−γn)kz−k

)
(31)

=
∞∑

k=0

(
a+

k z
k + a−k z

1−k
)
, a+

k =
r∑

n=1

A+
n (−γn)k, a−k =

r∑
n=1

A−n (−γn)k,

|a+
k | ≤ |γr|k

r∑
n=1

|A+
n | ≤ Ae−g|k|, |a−k | ≤ |γr|k

r∑
n=1

|A−n | ≤ Ae−g|k|.
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If p ≥ τ then a polynomial of degree p− t is added to the expansion (31). Obviously, this addition
does not affect the decay of the mask a(k) as k tends to infinity.

Lemma 3.1 Let Sa be the subdivision scheme, whose symbol is a(z) = T (z)/P (z) and the Laurent
polynomial P (z) satisfies properties P1 and P2. If Eq. (30) holds then for any finite initial data
f0 the following inequalities hold:

|f j
k | ≤ Aj e

−g|k|2−j+1
. (32)

Proof: The mask of the scheme Sa decays exponentially: |ak| ≤ Ae−g|k|. Due to (2)

f1(z) = a(z)f0(z2) =
T1(z)
P1(z)

,

where T1(z) := T (z)f0(z2) and P1(z) = P (z). Hence, the roots of P1(z) are: ρ1
n = −γn, 1 ≤ n ≤ r

and, therefore, |f1
k | ≤ A1 e

−g|k|. The next refinement step produces the following z− transform:

f2(z) = a(z)f1(z2) =
T2(z)
P2(z)

, P2(z) = P (z)P (z2).

The roots of P2(z) satisfy the inequality |ρ2
n| ≤

√
|γr| = e−g/2. Hence, |f2

k | ≤ A2 e
−g|k|/2. Then (32)

is derived by induction.

Let Sa be a subdivision scheme of Class P and Sq be the scheme with the symbol q(z), which is
defined in (29). Since the denominator of the symbol q(z) is the same as the denominator of a(z),
the mask {qk} of the scheme Sq satisfies the inequality

|qk| ≤ Qe−g|k|. (33)

Denote by ∆ the difference operator: ∆ fk = fk+1 − fk.

Proposition 3.2 ([9]) If the scheme Sa is of Class P then

∆(Saf) = Sq∆f.

for any data set f ∈ l1.

Proof: Obviously, (∆f)(z) = (z − 1)f(z) and using (2) we have

(∆Saf)(z) = (z − 1)(Saf)(z) = (z − 1) a(z)f(z2)
= q(z)(z2 − 1) f(z2) = q(z) (∆f)(z2) ⇔ ∆(Saf) = Sq∆f.

Denote ‖f j‖∞ := maxk∈Z |f
j
k |. Equation (1) implies that

f j+1
2k =

∑
l∈Z

a2k−2lf
j
l , f j+1

2k+1 =
∑
l∈Z

a2k+1−2lf
j
l .

13



Hence, it follows

‖f j+1‖∞ ≤ ‖Sa‖ ‖f j‖∞, where ‖Sa‖ := max

∑
k∈Z

|a2k|,
∑
k∈Z

|a2k+1|

 .
Similarly, after L refinement steps we have

‖f j+L‖∞ ≤ ‖SL
a ‖ ‖f j‖∞, where ‖SL

a ‖ := max
n

{∑
k

|a[L]
n+2Lk

| : 0 ≤ n ≤ 2L − 1

}

and
{
a

[L]
k

}
is the mask of the operator SL

a .

3.2 Existence and regularity of basic limit function

Let Sa be a subdivision scheme whose mask is a = {ak}k∈Z.

Definition 3.1 Let the initial data set be the Kronecker delta f0 = {δ(k)}k∈Z and f j(t) be the
sequence of polygonal lines (second order splines) that interpolates the data generated by Sa at the
corresponding refinement level: {f j(2−jk) = f j

k = (Sj
af

0)k}k∈Z. If {f j(t)} converges uniformly to
a continuous function φa(t) then this function is called the basic limit function (BLF) of the scheme
Sa.

Remark. This definition is equivalent to more common definition via the difference between the
limit function and the refined data at dyadic points ([6], for example).

We single out a particular class of spline-based ISS’s when the BLF exists and can be explicitly
presented.

Theorem 3.1 If the symbol of the ISS Sa: a2r
I (z) = 1 + zU2r

I (z2) is derived from a polynomial
interpolatory spline of order 2r then there exists the BLF φa(t) of the scheme, which is equal to
the fundamental spline L2r(t). Thus, the BLF φa ∈ C2r−2 and decays exponentially as t tends to
infinity.

The theorem is a straightforward consequence of Theorem 2.2.
In the rest of the section we establish the conditions for a subdivision scheme of Class P to have

BLF, which decays exponentially.

Proposition 3.3 Let Sa be a subdivision scheme of Class P and Sq be the scheme, whose symbol
is q(z) and the mask is {qk}k∈Z. If for some L ∈ N the following inequality holds

‖SL
q ‖ := max

n

{∑
k

|q[L]
n+2Lk

| : 0 ≤ n ≤ 2L − 1

}
= µ < 1. (34)

then there exists a continuous BLF φa(t) of the scheme Sa.

If the condition (34) holds then the scheme Sq is called contractive.
The proof of this proposition is a slightly modified version of the proof of a related assertion in

[9].
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Proof: We recall that due to Lemma 3.1, the sequences f j = Sj
af

0 belong to l1 ∀j ∈ Z+. We have to
show that the sequence of the second order splines {f j(t)}j∈Z+

, which interpolate the subsequently
refined data f j(2−jk) = f j

k , k ∈ Z, where {f0
k = δ(k)}k∈Z, converges to a continuous function as

j →∞. Denote
Dj+1(t) := f j+1(t)− f j(t). (35)

The maximum absolute value of this piecewise linear function is reached at its breakpoints. There-
fore, if t = 2−j(k + τ), 0 ≤ τ ≤ 1, then

|Dj+1(t)| ≤ max

{
sup
k∈Z

∣∣∣f j+1
2k − f j

k

∣∣∣ , sup
k∈Z

∣∣∣∣∣f j+1
2k+1 −

f j
k + f j

k+1

2

∣∣∣∣∣
}
. (36)

Let

mj+1
2k = f j

k , mj+1
2k+1 =

f j
k + f j

k+1

2
, k ∈ Z.

Then, the z− transform mj+1(z) is equal to

mj+1(z) = l(z)f j(z2), l(z) :=
1
2

(
z−1 + 2 + z

)
=
z−1

2
(1 + z)2

and we obtain
sup
t∈R

|Dj+1(t)| = ‖f j+1 −mj+1‖∞. (37)

Since q(1) = 1, the function q(z) − (1 + z)/(2z) can be represented as (1 − z)r(z), where r(z) =∑
k∈Z rkz

−k is a rational function with the same denominator P (z) as the symbol a(z) has. Hence,

|rk| ≤ Re−g|k|. (38)

Equation (29) implies

f j+1(z)−mj+1(z) = ((1 + z)q(z)− l(z)) f j(z2)
(1 + z) (q(z)− (1 + z)/(2z)) f j(z2) = (1 + z)(1− z)r(z)f j(z2) = r(z)hj(z2), (39)

where hj(z) = (∆f j)(z). Combining (37) and (39) we derive

sup
t∈R

|f j+1(t)− f j(t)| = ‖f j+1 −mj+1‖∞ ≤ ρmax
k
|f j

k+1 − f j
k |

= ρ‖∆(f j)‖∞ ≤ ρ‖Sj
q(∆f

0)‖∞

where ρ =
∑

k∈Z |rk|. If (34) holds then

sup
t∈R

|f j+1(t)− f j(t)| ≤ ρµ[ j
L ] max

0≤n≤L
‖(∆f0)n‖∞,≤ Cηj η := µ

1
L < 1. (40)

Equation (40) implies that the sequence of the second order splines {f j(t)} converges uniformly to
a continuous function f∞(t).
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Proposition 3.4 ([8]) Let Sa be a subdivision scheme of Class P and in addition the symbol
factorizes as follows:

a(z) =
(1 + z)m

2m
b(z).

If there exists the continuous BLF φb(t) of the subdivision scheme Sb, whose symbol is b(z), then
there exists the BLF φa(t) of the subdivision scheme Sa. The function φa(t) has m continuous
derivatives

dm

dtm
φa(t) =

m∑
n=0

(−1)m−n

(
n

m

)
φb(t+ n).

as t ∈ R.

3.3 Exponential decay of the BLF

In Theorem 3.1 we established an exponential decay of BLF of the ISS derived from the polynomial
interpolatory splines of even order. We prove that all the convergent schemes of Class P possess
such a property.

Theorem 3.2 Let Sa be a subdivision scheme of Class P and Sq be the scheme, whose symbol is
q(z) and the mask is {qk}k∈Z. If for some L ∈ N the inequality (34) holds then there exists a
continuous BLF φa(t) of the scheme Sa, which decays exponentially as |t| → ∞. Namely, if (30)
holds then for any ε > 0 a constant Φε > 0 exists such that the following inequality

|φa(t)| ≤ Φε e
−(g−ε)|t|

is true.

Proof: To simplify the calculations, we assume that in (34) L = 1 (the case L > 1 is treated
similarly). Thus

‖Sq‖ = max

{∑
k

|qe
k|,

∑
k

|qo
k|
}

= µ < 1, (41)

where qe
k := q2k and qo

k := q2k+1.
We apply the subdivision to the initial data f0 = {δ(k)}k∈Z. Due to Lemma 3.1, each second

order spline, which interpolates the refined data {f j
k}

j∈Z+

k∈Z , decays exponentially as |t| → ∞. Let
us fix an index J ∈ Z+. Equation (32) implies that if t = 2−J(k + τ), 0 ≤ τ ≤ 1 then

|fJ(t)| ≤ max{|fJ
k |, |fJ

k+1|} ≤ AJ e
−g|k|2−J+1 ≤ αJ e

−gt, αJ := AJ e
g2−J+1

.

We prove that the difference dJ(t) = φa(t)−fJ(t) decays exponentially as t→∞. For this purpose
we analyze the local behavior of the function Dj+1(t) that was defined in (35). Due to (36) it
reduces to evaluation of the sequence yj+1:

yj+1
l :=

{
f j+1
2k+1 −

(
f j

k + f j
k+1

)
/2, l = 2k + 1;

f j+1
2k − f j

k , l = 2k,
k ∈ Z.

Equation (39) implies that

yj+1(z) = r(z)hj(z2), hj(z) = (Sj
q(∆f

0))(z). (42)
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Denote
hj := {hj

k}k∈Z = Sj
q h

0, h0
k = δ(k + 1)− δ(k) and HJ := max

k
|hJ

k |.

The rest of the proof is split into four major steps;

1.Analysis of the sequence hj: Due to Lemma 3.1 and inequality (41) we have

|hJ
k | ≤ BJe

−g|k|2−J+1
, HJ ≤ ‖SJ

q ‖‖h0‖∞ ≤ µJ , (43)

where BJ is a positive constant. Let k ∈ Z+. Then,

hJ+1
k =

∞∑
l=−∞

qk−2lh
J
l ⇐⇒ hJ+1

2k =
∞∑

l=−∞
qe
l h

J
k−l, hJ+1

2k+1 =
∞∑

l=−∞
qo
l h

J
k−l. (44)

We split the even subsequence into two sums:

hJ+1
2k = χ1(s) + χ2(s), χ1(s) :=

s∑
l=−s

qe
l h

J
k−l, χ2(s) :=

−s−1∑
l=−∞

qe
l h

J
k−l +

∞∑
l=s+1

qe
l h

J
k−l.

It follows from (43) and (33) that

|χ1(s)| ≤ BJe
−g(k−s)2−J+1

∞∑
l=−∞

|qe
l | ≤ BJ µe

−g(k−s) 2−J+1
,

|χ2(s)| ≤ 2HJ

∞∑
l=s+1

|qe
l | ≤ 2µJQ

e−2gs

1− e−g
.

Let s = k2−J . Then, we have

|χ2(s)| ≤ ηJµe
−g|k|2−J+1

, where ηJ :=
2µJ−1Q

1− e−g
,

|χ1(s)| ≤ BJ µe
−g(1−2−J )k2−J+1

= BJ µ e
gk2−2J+1

e−gk2−J+1
.

Combining the estimates, we obtain

|hJ+1
2k | ≤ µ

(
BJe

gk2−2J+1
+ ηJ

)
e−gk2−J+1

.

The same estimate is true for the odd subsequence. Finally, we have:

|hJ+1
k | ≤ µBJβJ e

−gk2−J
, where βJ :=

(
egk2−2J

+ ηJ

)
.

Similarly, we derive the inequality

|hJ+2
k | ≤ µ2BJβJβJ+1 e

−gk2−J−1
,

and after j iterations we get

|hJ+j
k | ≤ µj BJ e

−gk2−J−j+1
j−1∏
l=0

βJ+l.
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2.Evaluation of the sequence yj+1: As it follows from Eq. (42), the odd terms of the sequence
yJ+j+1 are:

yJ+j+1
2k+1 =

∑
l∈Z

r2l+1 h
J+j
k−l . (45)

Recall that the filter r = {rl}l∈Z satisfies the inequality (38). Thus, it is obvious that equation
(45) is similar to (44) and by similar means we obtain the estimate

|yJ+j+1
2k+1 | ≤ ρµj BJ e

−gk2−J−j+1
εj

j−1∏
l=0

βJ+l, (46)

where

ρ =
∑
k∈Z

|rk|, εj :=

(
egk2−2(J+j)+1

+
2µJ+j−1R

1− e−g

)
≤ Cegk2−2(J+j)+1

and R is some positive constant. The even terms are subject to the same inequality

|yJ+j+1
2k | ≤ ρµj BJ e

−gk2−J−j+1
εj

j−1∏
l=0

βJ+l, (47)

3.Estimation of the difference DJ+j(t) = fJ+j(t) − fJ+j−1(t) for t = 2−J(k + τ), 0 ≤ τ ≤ 1.
Denote Y J

k := max{|yJ+1
2k+1|, |y

J+1
2k |}.

|DJ+1(t)| ≤ Y J
k ≤ ρBJε1e

−g|k|2−J ≤ CρBJe
gk2−2J

e−g|k|2−J

≤ CρBJe
g2−J

egt2−J
e−gt. (48)

At the half-interval t = 2−J−1(2k + τ1), 0 ≤ τ1 ≤ 1, we have

|DJ+2(t)| ≤ Y J+2
2k ≤ µρBJβJε2e

−g2k2−J−1 ≤ CµρBJe
g2k2−2(J+1)

e−g2k2−(J+1)

≤ CµρBJ(1 + ηJ)e2g(t+1)2−J−1
e−gt. (49)

Employing Y J+2
2k+1 instead of Y J+2

2k we obtain a similar estimate for the second half-interval
t = 2−J−1(2k + 1 + τ2), 0 ≤ τ2 ≤ 1. So, inequality (49) is true on the whole interval
[k/2J , (k + 1)/2J ]. Denote the converging infinite product by

NJ(µ) :=
∞∏

j=0

(1 + ηJ+j) =
∞∏

j=0

(
1 +

2µJ−1+jQ

1− e−g

)
> 1

and note that

∞∏
j=0

eg(t+1)2−J−j
= exp

g(t+ 1)
∞∑

j=0

2−J−j

 = eg(t+1)2−J+1
.

Then the estimates (48) and (49) can be combined as follows

|DJ+1+j(t)| ≤ CµjNJρBJe
g(t+1)3·2−J

e−gt j = 0, 1. (50)

One can observe that due to (46) and (47), inequality (50) is true for any j ∈ N.
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4.Completion of the proof: Inequality (50) enables us to evaluate the difference
dJ(t) = φa(t)− fJ(t):

|dJ(t)| ≤
∞∑

j=0

|DJ+1+j(t)| ≤ NJρBJe
g(t+1)3·2−J

e−gt
∞∑

j=0

Cµj =
CJ

1− µ
e−g(1−2−J )t. (51)

Hence we derive that the BLF

|φa(t)| ≤ |fJ(t)|+ |dJ(t)| ≤ BJe
−gt +

CJ

1− µ
e−g(1−2−J )t ≤ ΦJe

−g(1−2−J )t.

For any ε > 0 we can choose J(ε) ∈ N such that g2−J < ε. Then we have

|φa(t)| ≤ Φε e
−(g−ε)t.

3.4 Convergence of subdivision schemes

Now we are in a position to discuss the convergence of subdivision schemes with rational symbols.
As it was mentioned above, the initial data sequences are of power growth (see (28)).

Definition 3.2 Assume that the initial data f0 = {f0
k}k∈Z is of power growth. Let f j(t) be the

sequence of polygonal lines that interpolates the data generated by Sa at the corresponding refinement
level: {f j(2−jk) = f j

k = (Sj
af

0)k}k∈Z. If {f j(t)} converges uniformly at any finite interval to a
continuous function f∞(t) as j →∞, then we say that the subdivision scheme Sa converges on the
initial data f0 and f∞(t) is called its limit function.

Theorem 3.3 Let Sa be a subdivision scheme of Class P and Sq be the scheme, whose symbol is
q(z) and the mask is {qk}k∈Z. If for some L ∈ N inequality (34) holds then the scheme Sa converges
on any initial data f0 = {f0

k}k∈Z of power growth. The limit function f∞(t) is of power growth
and can be represented by the sum

f∞(t) =
∑
l∈Z

f0
l φa(t− l), (52)

where φa(t) is the BLF of the scheme Sa.

Proof: We denote by {φ0
k = δ(k)}k∈Z the delta sequence and by φj := Sj

aφ
0. The function φj(t) is

the second order spline, which interpolates the data φj . The set of splines φj(t) converges uniformly
to the continuous BLF φa(t). Equation (40) implies that

sup
t∈R

|φj+1(t)− φj(t)| ≤ Cµj ⇒ sup
t∈R

|dj(t)| ≤ C1µ
j , 0 < µ < 1, (53)

where dj(t) := φa(t) − φj(t). On the other hand, since both φa(t) and φj(t) decay exponentially,
we have

|dj(t)| ≤ C2e
−γ|t| ∀j ∈ Z+, 0 < γ < 1. (54)

19



We can represent the initial data sequence as:

f0
k =

∑
l∈Z

f0
l φ

0
k−l

Hence, the spline, which interpolates the refined data f j , is:

f j(t) =
∑
l∈Z

f0
l φ

j(t− l). (55)

The series in (55) converges for any t due to the exponential decay of the spline φj(t) as t → ∞.
The series

F (t) :=
∑
l∈Z

f0
l φa(t− l)

also converges due to the exponential decay of the BLF φa(t) and its sum F (t) is of power growth.
We evaluate the difference Xj(t) := F (t)− f j(t) as |t| ≤ T . We have

Xj(t) =
∞∑

l=−∞
f0

l d
j(t− l) = Y j

s (t) + Zj
s(t),

where Y j
s (t) :=

s∑
l=−s

f0
l d

j(t− l), Zj
s(t) :=

−s−1∑
l=−∞

f0
l d

j(t− l) +
∞∑

l=s+1

f0
l d

j(t− l).

Given a value ε > 0 we can, using inequality (54), choose the numbers s = s(T ) such that |Zj
s(t)| ≤

ε/2, ∀t ∈ [−T, T ]. Then, using (53), we choose J = J(s) such that |Y j
s (t)| ≤ ε/2, ∀j ≥ J, ∀t ∈

[−T, T ]. Thus |Xj(t)| ≤ ε, ∀j ≥ J ∀t ∈ [−T, T ]. This means that the sequence of second order
splines f j(t) converges uniformly on [−T, T ] to the continuous function F (t) = f∞(t).

Remark Eq. (52) implies that, provided the initial data belongs to l1, the limit function is
absolutely integrable.

Similarly, Proposition 3.4 can be extended to the case when the initial data is of power growth
and the following representation

dm

dtm
f∞(t) =

∑
l∈Z

f0
l φa(t− l)(m),

holds.

3.5 Evaluation of coefficients of subdivision masks via the discrete Fourier
transform

The above propositions yield a practical algorithm for establishing the convergence of a subdivision
scheme and analyzing its regularity. The key operation is evaluation of sums of coefficients of type
(34) of the coefficients of masks. These sums can be calculated directly for subdivision schemes
with finite masks. But for infinite masks different methods of evaluation of the coefficients are
required.
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Again we consider the case when the number L in Eq. (34) is equal to 1. The cases with L > 1
are similarly treated. We assume that N = 2p, p ∈ N, and

∑p
k stands for

∑N/2−1
k=−N/2. The discrete

Fourier transform (DFT) of an array xp = {xp
k}

N/2−1
k=−N/2 and its inverse (IDFT) are

x̂p
n =

p∑
k

e−2πikn/N xp
k and xp

k =
1
N

p∑
n

e2πikn/N x̂p
n.

As before, y(z) denotes the z− transform of a sequence {yk} ∈ l1. We assume that z = e−iω.
The coefficients of the masks that we deal with are evaluated as follows:

|ak| ≤ aγk ⇒
∞∑

k=N

|ak| ≤ BγN , B =
a

1− γ
, . (56)

where 0 < γ < 1 and a is some positive constant.
We need to evaluate the sums Se(a) =

∑∞
k=−∞ |a2k|, So(a) =

∑∞
k=−∞ |a2k+1|. We denote

A(ω) = a(e−iω) = Q(e−iω)/P (e−iω) =
∞∑

k=−∞
e−iωk ak.

Let us calculate the function A in the discrete set of points:

ân = A

(
2πn
N

)
=

∞∑
k=−∞

e
−2πikn

N ak =
N/2−1∑

r=−N/2

e
−2πirn

N ϕr,

ϕr =
∞∑

l=−∞
ar+lN = ar + ψr, ψr =

∑
l∈Z/0

ar+lN .

It follows from (56) that

|ψr| ≤ 2BαN ⇒ |ar| = |ϕr|+ αN
r , |αN

r | ≤ 2BγN . (57)

The samples ϕk are available via IDFT: ϕk = 1
N

∑p
n e

2πikn/N ân. Using (57) we can evaluate
the sums we are interested in as follows:

Se(a) =
N/4−1∑

k=−N/4

|a2k|+ 2
∞∑

k=N/4

|a2k| =
N/4−1∑

r=−N/4

|ϕ2k|+ ρN ,

ρN =
N/4−1∑

r=−N/4

|αN (2k)|+ 2
∞∑

k=N/4

|a2k|, |ρN | ≤ B(N + 2)γN .

Hence, it follows that, doubling N , we can approximate the infinite series Se(a) by the finite
sum σN

e (a) =
∑N/4−1

r=−N/4 |ϕ2k|, whose terms are available via DFT. An appropriate value of N can
be found theoretically using estimations of the roots of the denominator P (z). But practically, we
can iterate calculations by gradually doubling N until the result of calculation σ2N

e (a) becomes
identical to σN

e (a) (up to machine precision). The same approach is valid for evaluation of the sum
So(a) and of the sums

∑
k |q

[L]
i−2Lk

| with any L.
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3.6 Approximation order of ISS’s

Definition 3.3 A convergent subdivision scheme S has an approximation order n if for any suffi-
ciently smooth function F and the initial data f0 = {f0

k = F (kh)}k∈Z

|(F − S∞f0)(x)| ≤ Chn, x ∈ R,

where the constant C may depend on F , n, x, and S but not on h.

Proposition 3.5 ([9]) The approximation order of a convergent subdivision scheme, which is ex-
act for polynomials of degree n− 1 is n.

Theorem 3.4 The approximation order of the subdivision schemes derived from the polynomial
interpolatory splines of orders 2r − 1 and 2r is 2r. The approximation order of the subdivision
schemes derived from the discrete interpolatory splines of order 2r is 2r.

4 Examples of spline-based subdivision schemes

In this section we describe in details properties of three interpolatory subdivision schemes that are
based on splines. We compare these properties with the properties of the Dubuc and Deslauriers
ISS’s.

4.1 Convergence and smoothness

Quadratic interpolatory spline: We label this scheme by PS3. The symbol of the scheme is

a3
I(z) = 1 + zU3

I (z2) =
(1 + z)4

z4 + 6z2 + 1
= (1 + z) q(z), q(z) =

(1 + z)3

z4 + 6z2 + 1
.

To establish the convergence we have to prove that the scheme Sq with the rational symbol
q(z) and the infinite mask {qk}k∈Z is contractive. For this purpose we evaluate the norms
‖SL

q ‖ = max
{∑

k |q
[L]
i−2Lk

|
}

using DFT as it is described in Section 3.5. Let us begin with
L = 1. In this case

q̂[1]
n = q(e−2πin/N ) =

2e
iπn
N cos3 iπn

N

1 + cos2 2πn
N

.

The sums
∑∞

k=−∞ |q
[1]
i−2k| '

∑N/4−1
r=−N/4 |ϕ2k+i|, i = 0, 1, provided N is sufficiently large. The

values ϕk are calculated via IDFT: ϕk = N−1∑p
n e

2πikn/N q̂
[1]
n . Direct calculation yields the

estimate: ‖S1
q‖ ≤ 0.7071. Thus, the scheme converges.

To establish the differentiability of the limit function f∞ of the scheme Sa we have to prove
that the scheme Sb1 with the symbol b1(z) = (1 + z)−1 a3

I(z) converges. For this purpose we
have to prove that the scheme Sq1 with the symbol q1(z) = 2(1 + z)−2 a3

I(z) is contractive.
The norm of the operator Sq1 does not meet the requirement ‖Sq1‖ < 1. But we succeed in
proving that ‖S2

q1‖ ≤ 0.6667. Hence the limit function f∞ ∈ C1.

But even a stronger assertion is true: the limit function f∞ ∈ C2. To establish it, we prove
that the scheme Sq2 with the symbol q2(z) = 4(1+z)−3 a3

I(z) is contractive. As in the previous
case our calculations lead to the estimation: ‖S2

q2‖ ≤ 0.6667, which proves the statement.
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Interpolatory spline of fifth order (fourth degree:) We label this scheme by PS5. The sym-
bol of the scheme is

a5
I(z) = 1 + zU5

I (z2) =
(1 + z)6(z2 + 10z + 1)

z8 + 76(z6 + z2) + 230z4 + 1
= (1 + z) q(z),

q̂n = q(e−2πin/N ) =
8 cos6

(
πn
N

)
(5 + cos 2πn

N )
5 + 18 cos2 2πn

N + cos4 2πn
N

.

As in the previous case, we find that the scheme with the symbol a5
I(z) converges and,

moreover, the limit function f∞ ∈ C4.

Discrete interpolatory spline of sixth order: We label this scheme by DS6. The symbol of
the scheme is

a6
d(z) = 1 + zU6

d (z2) =
(1 + z)6

2z(3z4 + 10z2 + 3)
.

This scheme also converges and the limit function f∞ ∈ C4.

4.2 Implementation of subdivision s with rational symbols

Although the masks of the presented spline subdivision schemes are infinite, the rational structure
of their symbols enables to implement the refinement via the so called recursive filtering, which is
commonly used in signal processing. We illustrate the procedure on the example of the ISS PS3.
Due to Eq. (24), in order to derive the refined data {f j+1

2k+1}k∈Z we have to perform the following
filtering:

f j+1
o (z) = U3

I (z)f j(z), where U3
I (z) =

4(1 + z−1)
z−1 + 6 + z

= 4α
1 + z−1

(1 + αz)(1 + αz−1)
,

and α = 3 − 2
√

2 ≈ 0.172. In time domain filtering is conducted as follows: f j+1
2k = f j(k),

f j+1
2k+1 = sj

k, where the values sj
k are derived from f j by a cascade of elementary recursive filters:

xk = 4α(f j
k + f j

k+1), x
1
k = xk − αx1

k−1, s
j
k = x1

k − αsj
k+1.

The cost to compute a value f j+1
2k+1 is 3 multiplications (M) and 3 additions (A). For comparison, the

4-point Dubuc and Deslauriers ISS based on cubic polynomials, which we label by DD3, requires
2M +3A operations, but the regularity of the limit function is inferior to the regularity of the limit
function of the above scheme. The 6-point Dubuc and Deslauriers ISS based on quintic polynomials,
which we label by DD5, produces the limit function of approximately the same regularity as the
spline ISS PS3. It requires 3M+5A operations. The scheme DS6, which is based on the discrete
splines, of sixth order requires 4M+5A operations. However, it produces limit functions that belong
to C4. The scheme PS5 based on the polynomial splines of fifth order also produces limit functions
belonging to C4 but its computational cost – 6M+7A operations – is higher than the cost of the
implementation of DS6.

In Figure 1 we display the basic limit functions of the Dubuc and Deslauriers 4-point ISS DD3,
of the Dubuc and Deslauriers 6-point ISS DD5 and of the ISS PS3 based on quadratic splines
(right picture). The second derivatives of the BLF’s are displayed in Figure 2.
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Figure 1: The basic limit functions: Left: 4-point ISS DD3. Center: 6-point ISS DD5. Right:
quadratic spline ISS PS3

Figure 2: Second derivatives of the BLF’s: Left: 4-point ISS DD3. Center: 6-point ISS DD5,
Right: quadratic spline ISS PS3.

It is well known that the second derivative of the BLF of the 4-point ISS DD3 does not exist.
The BLF of the 6-point ISS DD5 belongs to Cα, α < 2.830. The second derivative of the BLF of
the quadratic spline scheme PS3 in Figure 2 looks smoother than BLF of the DD5 ISS. Thus, we
conjecture that the BLF of PS3 belongs to Cβ , β > α.

In Figure 3 we display the basic limit functions of the ISS DS6 that are based on discrete
splines of sixth order and of the ISS PS5 based on polynomial splines of fifth order. The fourth
derivatives of the BLF’s are displayed in Figure 4. We observe that the fourth derivative of the

Figure 3: The basic limit functions of the sixth order discrete splines ISS DS6 (left) and of the
fifth order splines ISS PS5 (right)

Figure 4: Fourth derivatives of BLF of the sixth order discrete splines ISS DS6 (left) and of the
fifth order splines ISS PS5 (right)

BLF of the sixth order discrete splines ISS is of near-fractal appearance. Nevertheless, it is proved
that it is continuous.

Table 1 summarizes the properties of the presented interpolatory subdivision schemes PS3,
PS5 and DS6. For comparison we cite also the properties of the Dubuc and Deslauriers ISS’s
DD3 and DD5.

From (40) we see that the convergence speed of a subdivision scheme to a continuous limit
function is determined by the number of iterations L that are needed to achieve the inequality
‖SL

q ‖ = µ < 1 and by the value of µ. The smaller are L and µ, the faster is the convergence. We
conjecture that these two parameters determine the Hölder class of limit functions. Our examples
provide some support to this conjecture. Namely, for the second derivative of the BLF of the
scheme DD5, L = 2 and µ1 = 0.7109 and for the PS3, L = 2 and µ2 = 0.6667. The value µ2 < µ1

and the graph of the second derivative of the PS3 is smoother than the graph of DD5. For the
fourth derivative of the BLF of the scheme DS6 L = 11 and for the PS5 L = 5. The graph of the
fourth derivative of the PS5 is much smoother than the graph for the DS6.
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C0 C1 C2 C3 C4 Comp. cost
ISS ||SL

q || L ||SL
q || L ||SL

q || L ||SL
q || L ||SL

q || L Add. Mult
DD3 0.625 1 0.75 2 – – – – – – 3 2
DD5 0.6953 1 0.6584 2 0.7109 2 – – – – 5 3
PS3 0.7071 1 0.6667 2 0.6667 2 – – – – 3 3
DS6 0.8333 1 0.6 2 0.8 2 0.6830 4 0.9512 11 5 4
PS5 0.8532 1 0.5965 2 0.8070 2 0.9962 3 0.8902 5 7 6

Table 1: Properties of the ISS’s. Left column contains the names of the ISS. The other five
columns Ck, k = 0 . . . 4, describe the smoothness of the ISS’s. The column Ck comprises the norm
of the operator SL

q (see (34) and the number of iterations L required to achieve the inequality
‖SL

q ‖ = µ < 1. The last column is the number of operations required to derive f j+1
2k+1 from the

array f j . Left: the number of additions, right: the number of multiplications.

Conclusions

A generic technique for the construction of diversity of interpolatory subdivision schemes on the
base of polynomial and discrete splines is presented in the paper. Although the masks of the
schemes are infinite, the refinement can be implemented in a fast way using recursive filtering. The
devised schemes are competitive (regularity, speed of convergence, computational complexity) with
the schemes that have finite masks, such as the popular Dubuc and Deslauriers schemes. We prove
that the basic limit functions of schemes with rational symbols decay exponentially and establish
conditions, which guaranty the convergence of these schemes on initial data of power growth. We
find that due to the super-convergence property, the approximation order of the ISS based on a
spline of even degree is higher than the approximation order of the spline. Moreover, the limit
functions of the ISS are smoother than the spline itself. Actually, these limit functions form a
new class of functions, which deserves a thorough investigation. On the other hand, the basic
limit function of the scheme derived from a spline of odd degree (even order) coincides with the
fundamental spline.

The approach to construction of subdivision schemes that is developed in the paper for the
equally spaced initial data can be extended to a data that is defined on an irregular grid. An actual
problem is to evaluate the Hölder exponents of limit functions of the designed schemes.

Acknowledgement: The author thanks Prof. Amir Averbuch for useful discussion and numerous
helpful suggestions.

A Appendix I

Proof of Lemma 2.1 Due to (11) and (12) we have

1−R2r−1(cosω/2) =
P 2r−1(cosω/2)−Q2r−1(cosω/2)

P 2r−1(cosω/2)
=
−2(sinω/2)2r−1T2r−1(ω)

P 2r−1(cosω/2)

T2r−1(ω) :=
∞∑

l=−∞

1
(π(2l + 1) + ω/2)2r−1

.
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The function T2r−1(ω) is infinitely differentiable at the point ω = 0 and in its vicinity and the
Taylor expansion holds

T2r−1(ω) =
∞∑

n=0

T
(n)
2r−1(0)
n!

ωn.

We can write

T
(n)
2r−1(0) = (−1)n

∞∑
l=−∞

22r−1(2r − 1) . . . (2r + n− 2)
(2π(2l + 1))2r−1+n

.

Hence we see that

T2r−1(0) =
∞∑

l=−∞

1
(π(2l + 1))2r−1

= 0.

Similarly T (2k)
2r−1(0) = 0 ∀k ∈ N. This is not the case for the derivatives of odd orders:

T
(2k+1)
2r−1 (0) = −(2r − 1) . . . (2(r + k)− 1)

22k(π)2(r+k)

∞∑
l=0

1
(2l + 1))2(r+k)

.

Using a known formula [1]
∞∑
l=0

1
(2l + 1))2n

=
(22n − 1)π2n

2(2n)!
|b2n|,

we get

T
(2k+1)
2r−1 (0) = −(2r − 1) . . . (2(r + k)− 1)

22k

(22(r+k) − 1)
2(2(r + k))!

|b2(r+k)| = − (22(r+k) − 1)
22(k+1)(r + k)(2r − 2)!

|b2(r+k)|.

Finally, in the neighborhood of ω = 0 we have

T2r−1(ω) =
∞∑

k=0

T
(2k+1)
2r−1 (0)
(2k + 1)!

ω(2k+1) = −
∞∑

k=0

(22(r+k) − 1)
22(k+1)(r + k)(2r − 2)!(2k + 1)!

|b2(r+k)|ω(2k+1)

= − (4r − 1)
4r(2r − 2)!

|b2r|ω +O(ω3) = sin
ω

2

[
− (4r − 1)

2r(2r − 2)!
|b2r|+O

(
sin2 ω

2

)]
. (58)

Hence (15) follows.

B Appendix II
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-4 -3 -2 -1 0 1 2 3 4
v2 0 0 0 0 1 0 0 0 0
v3 × 8 0 0 0 1 6 1 0 0 0
v4 × 6 0 0 0 1 4 1 0 0 0
v5 × 384 0 0 1 76 230 76 1 0 0
v6 × 120 0 0 1 76 230 76 1 0 0
v7 × 46080 0 1 722 10543 23548 10543 722 1 0
w3 × 2 0 0 0 1 1 0 0 0 0
w4 × 48 0 0 1 23 23 1 0 0 0
w5 × 24 0 0 1 11 11 1 0 0 0
w6 × 3840 0 1 237 1682 1682 237 1 0 0
w7 × 720 0 1 57 302 302 57 1 0 0

Table 2: Values of the sequences vp and wp .
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