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Abstract

We present an algorithm for computation of interpolatory splines of arbitrary order at triadic

rational points. The algorithm is based on triadic subdivision of splines. Explicit expressions

for the subdivision symbols are established. These are rational functions. The computations are

implemented by recursive filtering.

1 Introduction

Denote by Sp the space of polynomial splines Sp(x) of order p defined on the uniform grid g0 ∆=

{k} , k ∈ Z, such that the arrays {Sp(k)} , k ∈ Z, belong to l1. We propose to compute values of the

splines via a triadic subdivision. The insertion rule for a spline S(x) ∈ Sp is

Triadic Insertion Rule: Let f0 ∆=
{
f0
k = Sp(k)

}
, k ∈ Z. For j = 0, 1, . . ., we construct on the grid

gj ∆=
{
k3−j

}
, k ∈ Z, a spline Spj (x), which interpolates the sequence fj ∆=

{
f jk

}
on the grid gj . Then,

f j+1
k = Spj

(
k3−j+1

)
, k ∈ Z.

Note that the value of a spline at any point can be expressed as a linear combination of its values

at grid points. In other words, any value f j+1
k can be derived by some filtering of the sequence fj .

We present explicit expressions for these filters for splines of arbitrary order. Their transfer functions

are rational functions. Computations are implemented by recursive filtering. Moreover, we prove that

for any j ∈ N, f jk = S0
(
k3−j

)
, k ∈ Z. Thus, we obtain a fast algorithm that computes the values

of a spline Sp0(x) from the space Sp, which interpolates the sequence f0 on the grid g0, at the triadic

rational points
{
k3−j

}
, k ∈ Z.

2 Spline filters

2.1 B-splines

The centered B-spline of first order is the characteristic function of the interval [−1/2, 1/2]. The

centered B-spline of order p can be expressed as the convolution Mp(x) = Mp−1(x) ∗M1(x), p ≥ 2.

Note that the B-spline of order p is supported on the interval (−p/2, p/2). It is positive within its
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support and symmetric about zero. The B-spline Mp consists of pieces of polynomials of degree p− 1

that are linked to each other at the nodes, such that Mp ∈ Cp−2. Nodes of B-splines of even order

are located at points {k} and of odd order at points {k + 1/2}, k ∈ Z.

The Fourier transform of the B-spline of order p is

M̂p(ω) ∆=
∫ ∞
−∞

e−iωxMp(x) dx =
(

sinω/2
ω/2

)p
. (2.1)

The time domain representation of the B-spline is

Mp(x) =
1

(p− 1)!

p−1∑
k=0

(−1)k
(
p

k

)(
x+

p

2
− k
)p−1

+
, x+

∆= (x+ |x|)/2.

Shifts of B-splines form a basis in the space Sp. Namely, any spline Sp(x) ∈ Sp has the following

representation:

Sp(x) =
∑
k∈Z

qkM
p(x− k).

Equation (2.1) implies that for any p ≥ 2

Mp(x− k) =
1

2π

∫ ∞
−∞

eiω(x−k)

(
sinω/2
ω/2

)p
dω =

∑
l∈Z

e2πilx

∫ 1

0
e2πiω(x−k) (sinπω)p(−1)lp

π(l + ω))p
dω

=
∫ 1

0
e−2πiωkmp

x(ω) dω, where mp
x(ω) ∆= e2πiωx(sinπω)p

∑
l∈Z

e2πilx (−1)lp

(π(l + ω))p
. (2.2)

The relation (2.2) means that Mp(x− k) is a Fourier coefficient of the 1-periodic function mp
x(ω) and

this function can be represented as the sum: mp
x(ω) =

∑
k∈Z e

2πikωMp(x− k).

The functions mp
x(ω) are 1-periodic with respect to the variable ω and are splines from Sp with

respect to x. Their shifts along the grid are

mp
x+l(ω) =

∑
k∈Z

e2πikωMp(x− (k − l)) = e2πilω
∑
k∈Z

e2πikωMp(x− k) = e2πilωmp
x(ω).

Following Schoenberg [4], we call the splines mp
x(ω) the exponential splines.

2.2 Interpolatory splines

Equation (2.2) implies that a spline Sp(x) ∈ Sp can be represented via the exponential splines:

Sp(x) =
∑
k∈Z

qkM
p(x− k) =

∑
k∈Z

qk

∫ 1

0
e−2πiωkmp

x(ω) dω =
∫ 1

0
q̂(ω)mp

x(ω) dω, (2.3)

where q̂(ω) ∆=
∑

k∈Z e
−2πiωk qk is the discrete Fourier transform (DFT) of the coefficient sequence

q0 ∆= {qk} , k ∈ Z. Integral representation (2.3) was established in [5].

Denote

up(ω) ∆= mp
0(ω) =

∑
k∈Z

e−2πikωMp(k). (2.4)
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Due to the compact support and symmetry of the B-splines, the functions up(ω) are cosine polynomials.

They were extensively studied in [1]. In particular, [1] established that up(ω) > 0 for all ω ∈ R and

p ∈ N. In addition, recurrent relations for computation of the polynomials of any order were presented

in [1]. However, up(ω) can be easily calculated directly from Eq. (2.4). Equation (2.2) provides the

following representation of the functions up(ω) :

up(ω) = (sinπω)p
∑
l∈Z

(−1)lp

(π(l + ω))p
.

The values of the spline Sp(x) at the grid points and their DFT are

Sp(n) =
∫ 1

0
q̂(ω)mp

n(ω) dω =
∫ 1

0
e2πiωnq̂(ω)up(ω) dω ⇐⇒ Ŝp(ω) = q̂(ω)up(ω).

Assume that the spline Sp(x) interpolates a sequence f0 at the grid points

Sp(n) = f0
n ⇐⇒ f̂0(ω) = Ŝp(ω)⇐⇒ q̂(ω) =

f̂0(ω)
up(ω)

. (2.5)

According to Triadic Insertion Rule, which was formulated in Section 1, f1
n = Sp(n/3). Then,

f̂1(ω) =
∑
n∈Z

e−2πiωnSp(n/3) = e2πiωσ−1(3ω) + σ0(3ω) + e−2πiωσ1(3ω), (2.6)

σ0(ω) ∆=
∑
n∈Z

e−2πiωnSp(n) = q̂(ω)up(ω) = f̂0(ω), σ±1(ω) ∆=
∑
n∈Z

e−2πiωnSp
(
n± 1

3

)
.

Due to Eq. (2.2),

Sp
(
n± 1

3

)
=
∫ 1

0
q̂(ω)mp

n±1/3(ω) dω =
∫ 1

0
e2πiωnq̂(ω)vp−1(ω) dω,

vp±1(ω) ∆= mp
±1/3(ω) = e±2πiω/3(sinπω)p

∑
l∈Z

(−1)lpe±2πil/3

(π(l + ω))p
. (2.7)

Hence, using Eq. (2.5), we obtain

σ±1(ω) =
vp±1(ω)
up(ω)

f̂0(ω). (2.8)

3 Triadic subdivision

3.1 Structure of filters

Substituting Eq. (2.8) into Eq. (2.6), we obtain

f̂1(ω) = T̂ p(ω)f̂0(3ω), T̂ p(ω) ∆= e2πiω v
p
−1(3ω)
up(3ω)

+ 1 + e−2πiω v
p
1(3ω)
up(3ω)

. (3.9)

Similarly, f̂ j+1(ω) = T̂ p(ω)f̂ j(3ω), j ∈ N. Thus, in order to produce the array fj+1, we need to filter

the upsampled array fj with the filter Tp, whose DFT (the frequency response) T̂ p(ω) is given in Eq.

(3.9). We establish now the structure of the filter Tp.
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Theorem 3.1 The DFT of the filter Tp, which originates from the spline of order p, is

T̂ p(ω) =
(1 + 2 cosπω)p up(ω)

3p−1up(3ω)
. (3.10)

Proof: We have from Eqs. (2.7) and (3.9) T̂ p(ω) = Gp(ω)/up(3ω), where

Gp(ω) = e2πiωvp−1(3ω) + up(3ω) + e−2πiωvp−1(3ω) = (sin 3πω)p
∑
l∈Z

(−1)lp
(
1 + e2πil/3 + e−2πil/3

)
(π(l + 3ω))p

= (1 + 2 cosπω)p (sinπω)p
∑
l∈Z

(−1)lp

(π(l + 3ω))p
(1 + 2 cos 2πl/3) .

We split the sum in the last equation into three sub-sums along l = 3m, l = 3m+ 1 and l = 3m− 1.

Respectively, the function Gp(ω) splits as Gp(ω) = (1 + 2 cosπω)p (γ0(ω) + γ−1(ω) + γ1(ω)) , where

γ0(ω) ∆=
(sinπω)p

3p
∑
m∈Z

(−1)mp

(π(m+ ω))p
(1 + 2 cos 2πm) = 3−p+1up(ω),

γ±1(ω) ∆=
(sinπω)p

3p
∑
m∈Z

(−1)(m+1)p

(π(m+ ω)± π/3)p
(1 + 2 cos 2π(m± 1/3)) = 0.

Hence, Eq. (3.10) follows.

3.2 Convergence

The spline Lp(x) ∈ Sp, which interpolates the Kronecker delta sequence δ0
k, is called the fundamental

spline of the space Sp. The spline Sp(x) ∈ Sp, which interpolates the data sequence f0 =
{
f0
k

}
, can

be represented as

Sp(x) =
∑
k∈Z

f0
kL

p(x− k). (3.11)

Lp(x) decays exponentially when x grows. Therefore, Eq. (3.11) represents the spline, which inter-

polates the sequence
{
f0
k

}
, k ∈ Z, even in the case when the sequence has a power growth. In this

case, the spline Sp(x) also has a power growth. It was proved in [2] that the spline of power growth,

interpolating the data of power growth, is unique.

We prove that the values of the spline Sp(x) at any set of triadic rational points Sp(k3−j) can be

calculated by successive application of Triadic Insertion Rule, which was formulated in Section 1, to

the array f0. A similar fact holds for Dyadic Insertion Rule when order p of splines is even. But this

is not true for Dyadic Insertion Rule when p is odd. In this case, when p is odd, the spline-based

subdivision no longer converges to a spline but rather to a function, which is smoother than the

generating spline (see [6]).
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Theorem 3.2 Assume the spline Sp0(x) belongs to Sp, Sp0(k) = f0
k and f0 =

{
f0
k

}
∈ l1. Let Tp be

the filter defined by Eq. (3.10). Assume that for j = 1, 2, . . . , f j =
{
f jk

}
is the array, whose DFT is

found from the relation f̂ j+1(ω) = T̂ p(ω)f̂ j(3ω). Then,

Sp0(k3−j) = f jk , j = 1, 2, . . . , . (3.12)

Proof: We have Sp0(k3−1) = f1
k from the definition of Triadic Insertion Rule. Next step of subdivision

consists in the construction of the spline Sp1(x) on the grid g1 =
{
k3−1

}
, such that Sp1(k3−1) = f1

k .

Then, f2
k = Sp1(k3−2). We prove that f2

k = Sp0(k/9). The subsequent relations in Eq. (3.12) are

derived by a simple induction.

The array f2 is obtained by repeated application of the filter Tp to the array f0:

f̂2(ω) = T̂ p(ω)f̂1(3ω) = T̂ p(ω)T̂ p(3ω)f̂0(9ω)

=
(1 + 2 cosπω)p up(ω)

3p−1up(3ω)
(1 + 2 cos 3πω)p up(3ω)

3p−1up(9ω)
f̂0(9ω) =

H(ω)
up(9ω)

f̂0(9ω),

where

H(ω) ∆= 91−p ((1 + 2 cosπω)(1 + 2 cos 3πω))p up(ω).

Denote sk = Sp0(k/9), k ∈ Z. Then, the DFT of this array is ŝ(ω) = H̃f̂0(9ω)(ω)/up(9ω), where

H̃(ω) ∆=
4∑

ν=1

(
e−2νπiωwν(9ω) + e2νπiωw−ν(9ω)

)
+ up(9ω), w±ν(ω) ∆= mp

±ν/9(ω).

We can write, using Eq. (2.7),

H̃(ω) = (sin 9πω)p
∑
l∈Z

(−1)lp

(π(l + 9ω))p

(
1 +

4∑
ν=1

e2νπil/9 + e−2νπil/9

)

= ((1 + 2 cos 3πω)(1 + 2 cosπω))p (sinπω)p
∑
l∈Z

(−1)lp

(π(l + 9ω))p

(
1 + 2

4∑
ν=1

cos 2πνl/9

)

= ((1 + 2 cos 3πω)(1 + 2 cosπω))p
4∑

µ=−4

κµ(ω),

where

κµ(ω) ∆=

(
1 + 2

4∑
ν=1

cos 2πνµ/9

)
(sinπω)p

9p
∑
m∈Z

(−1)(m+1)p

(π(m+ ω) + µπ/9)p
.

It is easily verified that for µ = ±1, ...,±4 κµ(ω) ≡ 0, while κ0(ω) = 91−pup(ω). Hence, it follows that

H̃(ω) = H(ω)⇐⇒ f2
k = Sp0(k3−2), k ∈ Z.

Repeating our reasoning with the initial data set f1 instead of f0, we prove that f3
k = Sp1(k3−3) and

so on.
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Remark If the initial data is the delta sequence f0
k = δ0

k then we get f jk = Lp
(
k3−l

)
, where Lp(x) is

the fundamental spline of the space Sp. Therefore, we can extend the assertion of Theorem 3.2 from

the splines belonging to Sp to the splines that interpolate sequences of power growth.

4 Remarks on the computational aspects of the spline subdivision

It was stated in Section 3.1 that in order to produce the array f j+1 we need to filter the upsampled

array f j with the filter Tp. In the frequency domain, filtering is presented by Eq. (3.9). The frequency

response of the filter is given by Eq. (3.10). For computational purposes, we present filtering using the

z-transform. We recall that the the z-transform of a sequence a = {ak} ∈ l1 is A(z) ∆=
∑

k∈Z z
−kak.

The z-transform of the shifted sequence is
∑

k∈Z z
−kak+l = zlA(z).

Denote z ∆= e2πiω. Then, the DFT of a sequence a becomes its z-transformâ(ω) = A(z). The

DFT of a filter T becomes its z-transformT̂ (ω) = T (z) and it is called the transfer function. The

subdivision is represented as

F j+1(z) = T p(z)F j(z3), T p(z) =
(z−1 + 1 + z)pUp(z)

Up(z3)
, Up(z) ∆=

∑
k∈Z

z−kMp(k). (4.13)

The function Up(z) is a Laurent polynomial and the transfer function T p(z) is a rational function.

Such filters are called the infinite impulse response (IIR) filters as opposite to the finite impulse

response (FIR) filters, whose transfer functions are Laurent polynomials.

Proposition 4.1 ([2]) The roots of the Laurent polynomials Up(z) are all simple and negative. Each

root ζ can be paired with a dual root θ such that ζ θ = 1. Thus, if p = 2r − 1, p = 2r then Up(z) can

be represented by:

Up(z) =
r∏

n=1

1
γn

(1 + γnz)(1 + γnz
−1), 0 < |γ1| < |γ2| < . . . |γr| = e−g < 1, g > 0.

The above properties of the polynomials Up(z) enable to implement filtering via a recursive algo-

rithm, which is widely used in signal processing.

There are two ways to implement the described subdivision scheme.

Polyphase filtering: One way is to implement the filter Tp = {Tk} , k ∈ Z, using the so-called

polyphase representation of the filter:

T p(z) = zT p−1(z3) + T p0 (z3) + z−1T p1 (z3), T pν (z) ∆=
∑
k∈Z

z−kT p3k+ν , ν = −1, 0, 1.

Then, the polyphase representation of the array f j+1 is

F j+1(z) = zF j+1
−1 (z3) + F j+1

0 (z3) + z−1F j+1
1 (z3),

F j+1
ν (z) ∆=

∑
k∈Z

z−kf j+1
3k+ν = T pν (z)F j(z), ν = −1, 0, 1.
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Thus, in order to retrieve the sub-arrays
{
f j+1

3k±1

}
we have to filter the array

{
f jk

}
with the filters,

whose transfer functions are T p±1(z), respectively. Recall that
{
f j+1

3k = f jk

}
. The polyphase

components of the transfer function T p(z) can be derived from the expression for T p(z) given

in Eq. (4.13). Obviously, T p1 (z) = T p−1(z−1). However, it is easily seen from Eq. (3.9) that

T p±1(e2πiω) = vp±1(ω)/up(ω).

Direct filtering: Equation (4.13) suggests that, when several steps of the subdivision must be carried

out, a direct application of the filter Tp is preferable. It follows from Eq. (4.13) that

F j+1(z) = T p(z) · F j(z3) =
j−1∏
l=1

T p(z3l
) · F 0(z3j

) =
Up(z)

∏j−1
l=0 (z−3l

+ 1 + z3l
)p

Up(z3j )
· F 0(z3j

).

For example,

F 3(z) =
Up(z)(z−1 + 1 + z)p(z−3 + 1 + z3)p(z−9 + 1 + z9)p

Up(z27)
· F 0(z27).

Thus, the subdivision is implemented via the following steps:

1. The IIR filter with the transfer function 1/Up(z) is applied to the data array f0.

2. The produced array is upsampled1 and filtered with FIR filter, whose transfer function is

(z−1 + 1 + z)p (repeated j times).

3. The produced array is filtered with FIR filter whose transfer function is Up(z).

Note that the IIR filtering is applied only once.

Examples of filters

Linear spline: T 2(z) =
(
z + 1 + z−1

)2
/3, T 2

1 (z) = T 2
−1(z−1) = (z + 2)/3. This is a single FIR

filter in the family. All the filters derived from splines of higher orders are IIR.

Quadratic spline:

T 3(z) =

(
z + 6 + z−1

) (
z + 1 + z−1

)3
9 (z3 + 6 + z−3)

, T 3
1 (z) = T 3

−1(z−1) =
25z + 46 + z−1

9 (z + 6 + z−1)
. (4.14)

Cubic spline:

T 4(z) =

(
z + 4 + z−1

) (
z + 1 + z−1

)4
27 (z3 + 4 + z−3)

, T 4
1 (z) = T 4

−1(z−1) =
z2 + 60z + 93 + 8z−1

27 (z + 4 + z−1)
.

1Upsampling means replacing an array {ak} by the array {ãk} such that ã3k = ak and ã3k±1 = 0 .
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Spline of fourth degree :

T 5(z) =

(
z2 + 76z + 230 + 76z−1 + z−2

) (
z + 1 + z−1

)5
81 (z6 + 76z3 + 230 + 76z−3 + z−6)

,

T 5
1 (z) = T 5

−1(z−1) =
625z2 + 11516z + 16566 + 2396z−1 + z−2

81 (z2 + 76z + 230 + 76z−1 + z−2)
.

Spline of fifth degree :

T 6(z) =

(
z2 + 26z + 66 + 26z−1 + z−2

) (
z + 1 + z−1

)6
243 (z6 + 26z3 + 66 + 26z−3 + z−6)

,

T 6
1 (z) = T 6

−1(z−1) =
z3 + 1018z2 + 10678z + 14498 + 29336z−1 + 32z−2

243 (z2 + 26z + 66 + 26z−1 + z−2)
.

We now provide an example of a recursive implementation of an IIR filter. In [6] this is discussed in

more details.

Implementation of the filter T3
1. The z-transform of this filter is given in Eq. (4.14):

T 3
1 (z) =

25z + 46 + z−1

9 (z + 6 + z−1)
=
α

9
25z + 46 + z−1

(1 + αz)(1 + αz−1)
,

where α = 3−2
√

2 ≈ 0.172. Then, application of the filter T3
1 to an array a = {ak}, whose z-transform

is A(z), is implemented as a subsequent application of three filters: b = T3
1a = Rl Rr F · a, which are

are defined by their z-transforms:

F (z) =
α

9
(
25z + 46 + z−1

)
, Rr(z) =

1
1 + αz−1

, Rl(z) =
1

1 + αz
.

Thus, filtering is carried out in three steps:

A1(z) = F (z)A(z)⇐⇒ a1
k =

α

9
(25ak+1 + 46ak + ak−1) ,

A2(z) = Rr(z)A1(z)⇐⇒
(
1 + αz−1

)
A2(z) = A1(z)⇐⇒ a2

k = a1
k − αa2

k−1,

B(z) = Rl(z)A2(z)⇐⇒ (1 + αz)B(z) = A2(z)⇐⇒ bk = a2
k − αbk+1.

The filter F is FIR unlike the filters Rl and Rr. Application of the filter Rr is called causal recursive

filtering. Here, for the calculation of the term a2
k, the previously derived term a2

k−1 is used. Application

of the Rl is called anti-causal recursive filtering. All these procedures are implemented in a fast way.

Computation of splines of higher orders uses filters, which are factorized into longer cascades of the

same structure.
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