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INTRODUCTION

Polynonnal sphnes are comparatlvely new, 1ntensely developmg a,ppaa:atu;a for the

' approximationof functions. This apparatus is being. applied for solving varied pro-
.- blems of numerical analysis and of technology. There are.a lot of, monographs and
- .papers which are devoted to spline-functions. -A remarkable area in, the .theory of
. :splines is the. investigation of local splines.” This paper is a survey of some results

established by the author in. this direction. As it is.manifested in. the t1tle of the

- paper, the subject of the discussion will.be local sphnes of arbitrazy. degrees and of
i defect 1 constructed on a uniform mesh.

. The. term "local spline” of the degree m — 1 is to be underetood throughout the

: paper asa polynomial spline of defect 1 constr_u_cted on-a uniform mesh with the step
h —{z,} which is a linear combination of shifts of the:central B-spline 7 (z) of the
n:t degreem — 1 o x P

S (58) = Zlk P¥ee i) )

with coefﬁcz,ents Ix( f ) given exphcﬂ:ly as fimte 11near combma,tmns of samples { flze)}

of the function.
Almost all authors who write on local splines take note on their ‘advantages in
comparison Wlth the global 1nterp01atmg and smoothmg; splines such as easy and

the point z values {f(z,)} when the value S™(f, ) is being evaluated. Moreover, a

* local spline can provide the approximation of most. po-ssible order, although constants
" in ‘the estimations of the remainder terms of approximation for local splines exceed

those for interpolating splines. It should be pointed out that local splines permit
to process an information on the real time ‘scale. Moreover, local splines provide a
certain smoothing effect which makes it possible to use these for recovering functions
and their derivatives from discrete noised data.

First local scheme of the spline approximation had appeared, to the author’s
_knowledge, in the famous paper of I.J. Schoenberg [19] wheére the author suggests,
in’ particular, an algorithm for ¢omstructing local splines of arbitrary degreé on a

.umform mesh which reproduce precisely pelynomials of corresponding degrée from
““their d1screte values. Later there Had appeared local schemés of the spline approxi-
_ ,matlon on arbitrary meshes with various coefficients [ ( f) in B-sphne expansmn We
“mention in this cofinection the papets [1], [2 .

In [14], [25] general formulas are given for constructing #local sp]mes of arbitrary
degree on arbitrary meshes which reproduce exactly polynomla,ls of corrésponding
degree and the estimations of the remainders of approximation had been established.
However, very little is known about a reasonable numerical values of constants in
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these estimations. The formulas.suggested are very complicated and hardly can be
used for constructing the spliries-of dégree more then thrée. The various:topics of local
spline approximation were being investigated lately. In the papers [27], [28], [23], [24],
local schemes were being elaborated to improve the preciseness of approximation.
Local splines on a uniform mesh are being regarded usually as a special case
of splines constructed on arbitrary meshes. Therefore the theory of such splines,
is advanced only a few further then the theory of splines on arbitrary meshes. In
[12] the precise estimations of the remainders of approximation for splines of second
degree and their derivatives have been obtained. In [8], [13], [23] the local splines of
~ second-and third degreec have been appeared which: quasiinterpolate functions. In 9]
" there were studied local splines of the fifth degree near-boundaries of: the. interval of
definiition, In [25] the asymptotic expansions and the exact estimations of remainder
terms of approximation for cubic local splines on & uniform' mesh were established.

© +Tt should bé mentioned thé paper [4], where loéal schemes of defect 1 and: 2 were

~ presented and linear combinations of B-splines were used as basic functions. -

. The distinctive feature of the presented work is that local splines on a uniform
mesh are being considered as an independent subject of investigation. ~To study
- these splines special techniques have been’ developed which' exploit: essentially the

* i uniformness of the mesh: This approach yields the reniarkable progress:-in the: study

" of known ‘classes of local ‘splines ‘and makes it possible to define new specialized
classes of local splines. Our approach is based on some new properties of B-splines
constructed on a uniform mesh, established by the author, in particular, on the
stability of discrete moments of B-splines.
. As it was mentioneded in (19}, b™ () is the probability density of the sum of m
" independent random variables distributed unifortnly on [~h/2, h / 2] ’It 1s gwen in
. [19] the generating function of moments

hoe fe
- [mmb.(m)dw.;

3

M=

. .wof this distribution. In the. presented paper a recursive formula, for evaluatlng, the

.momerits- is given-as well as explicit expresmons for s = 1,...,8. and any m. The

functwn
.9—|—1

i (- hk)sbm(:n - hk)

k—-noo

Z"’(:v) =

we call the discrete moment of the B spline bm(a:)
It was pointed out in [5] that pi(z) =1, u(z) = 0 Tt is esta,bllshed in presented

. paper that u™(z) by s = 2,m — 1 are mdependent of z and colnudes with the

:,';correspondlng moments M™. Moreover the structure of moments’ sz m(g) by s =

- m,...,m+ 3 is established.. These results, which are of some, concern in the theory of

probabﬂlty, are exploited essentaa,lly in the paper for the study of loca.l sphnes
The aforementioned properties of B-splines lead to asyrnptotlc formulas in powess
of h for the elementary splines. The 1a,tter splines which are bemg constructed by

-' - means of the formula '

S?ff=¢_):'Zf(;r:_k)b’”(_:;_—@,;), e
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" are named the Bernstein-Schoenberg splines (BSS). First they were studied in [20]
where it was pointed out that these splines reproduce exactly polynomials of the first

degree. Moreover, the following asymptotic relation was established in [20] provided

: 7

Se(fre) = f(@) = g £'(@) +o(mh?) as mh* 0.
Although BSS were studied intensely (see for éxa,mpie [16], {7]), no one.of resedfchers,
to the author’s knowledge, tried to establish the forthcoming terms of the asymptotic
expansion of these splines and of their derivatives on a uniform mesh. However, it

turned out that ”deep” asymptotic formulas permit us to construct explicitly the

. splines ensuring an approximation of much more accuracy;

" Exploiting the property of stability of discrete moments, we ha;ve"esta,blié;h_{’éd as-

ymptotic expansions for BSS and their derivatives gmts(f )8 in powers of h up
to A™F1. It was turned out that the terms which-contain h* k < m, vanish when
kis odd. If k is even, k = 2/ then they have numerators of the kind co FHs) ()
where ¢5; are independent of z. Due to this fact we succeeded, via combining BSS,

in 6btaining_fo'rmu1as for constructing loc¢al splines of degree m — 1, which reproduce
éxactly derivatives P,S‘fgs of polynomials of degrée n + s;n '< m — 1,. “Among others,

we establish formulas for constructing local splines which reproduce exactly deriva-
tives Pf(,fll, +, of polynomials of most possible degree m — 1 + s using least possible
number of the samples { f(z+)}(so called splines of minimal span-SMS). For SMS we
have established an asymptotic expansion of the remainder term in powers of k up to
R+ Ty some cases which are important for practice, we succeeded in obtaining an
explicit form of the remainder term. The explicit form derived makes it possible to
establish exact estimations of the error of the approximation. The formulas obtained,
which are of independent concern, permit the expansion in two directions.

On the one hand, the splines of arbitrary degree m — 1 are constructed which
quasiinterpolate functions and their derivatives of any order s in the nodes {zx}.
There is established an asymptotic ‘expansion of the remainder term of these splines
in powers of k. As an immediate consequence of this result we obtain the asymptotic
expansions for cardinal interpolating splines, It should be pointed out especially that
we succeeded in constructing splines of arbitrary degree which, using as initial data
the samples of & function f in the mesh points, almost coincide with the splines
interpolating derivatives of this function. ‘In the cases m = 4,5 = 0,1,2, we have
established exact estimations of the error of approximation by these splines.

On the other hand, the opportunity appears to gain insight into the smoothing
properties of local splines and to exploit these purposely for recovering functions and

. their derivatives from discrete noised data.

Many authors pointed out the smoothing properties of local splines (see, for exam-
ple [19], [25], [26],[8]) but, to our knowledge, no one investigated this problem syste-
matically. It is defined in the paper a new kind of local splines - the local smoothing
splines with regularizing parameter (LPS). The approximating and filtering proper-
ties of these splines are studied as well as filtering-properties of SMS, which are the
special case of LPS.;The computational experiments demonstrate the great efliciency
of the LPS for recovering functions and their derivatives from discrete noised data.



4 ) © . VALERY A. ZHELUDEV - -

To avoid overloading the text: we shall. omlt the proofs of some proposﬂ:lons The

co necessary references will be cited.

1 SOME PROPERTIES OF B SPLINES

We introduce some notation. As usually, C® is the space of functions f such that

f(2) are continuous, L2, is the space of functions f such that F(5~1) are absolutely”

- continuous, f(*) are locally bounded If f € C-then w(f,F) will denote the modulus
- of contlnmty off Suppose T4 = (:r:—t— }3;|) fk (hk) LT

. m : { hk 1fm1s even
T
B h(»k - 1./2) if m is odd. -
Hence, if © € [a]}, 2], +1] then g = am " | ht,t e [0,1] _‘ We‘ c_l_enoﬁ"e' by &3 _.tlfiejlcéntral

~difference: o o
—629(9:)'“_;-;12(—1% (Z)g(m— =3

kO

V‘. l m—-l

Denote bm(a:) = 5h (ﬁ) ThlS ig the central B- sphne of degree m — 1 with nodes
. in the points z7*. Point out that it is a sphne of the defect 1 and 1t possesses the
following properties:

mh mh.

TR, s =) (L)

b"(2) 20, suppb™(e) = (-

. We aeﬁne the ‘momeni;s

¥ st

Lol h_3 hm/2 7 . R
7 S ff 2 b™(2)dz, M“'J —1 .M':J = 0Vs #£.0.

o ~hmf2 . .
It is known (see [19]) that M{* = 0, MZ’" = At the same paper [19] the Fourier
transform is written: gl (h 12) .
e : : 251n w/2 I . _
@ i e o N e ' (1.
(6™, w) = ( " ) S (1.2)

As a consequence of this can be obta,med the genera,tmg function for the moments -
compare with[17]- : :
(M) ZMm s, o (13)

- 'Multiplying the series, we come to the 1'dent1ty

Mprsyome a0
=0 L ’

Let 1 us. erte down some. Imtlal moments o N .
1r1fb(‘?‘:5m--2 A2y + 16) ‘

. m(bm 2} .
T TET60 M 2908040 o
g - m(175m? —420m’ +4o4m—144) S
e T TAR34ROON T T
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All of the odd moments are zero: ' :
+ Point out the following property of the 1B- splmes whmh can be ver1ﬁed from the

deﬁmtlon
o™ ()% = §56™" 3(3:)

. We now introduce the d:lscrete moments

=75 (ort- m/?-)%m(h(r +t—~m/2)) Coas
The relations ave known ([3}):
() 'E:;l,#f‘(t) =0 -

The functions ,us ™(t) are of important concern in studying the approximating proper-

......

ties of local splines. Therefore we consider these functions with s > 1 in ‘details.

Lemma 1.1.. ([29]). The following relations -I-L_wld:

1 R '
[ u (e =M™, (1.6)
0 ‘ )

urey —ﬁs (- ZL—QJ—T—] m*l(t) o)

: P 28—T(S

Point out the foliowmg pr0perty of the moments ,u (t) If to keep in s1ght the
symmetry of b™(x) then the relation

W@ =2 3 mpay e —m/2),

entails that pa(0) = 0 = p*(1) provided s is odd,
The following propomtlon is basic for a lot of the forthcoming results. We denote
by B,(t) the Bernoulli polynomial of degree g-

Theorem 1.1. If s < m ~ 1 then the moments p3*(t) are
independent of t € [0, 1] and the following formulas hold

U () = MM, s = 0,...,m«-1, a8
Ifs=m,m+1 then
_ L Bt _ | ,
) = (e Bel Ly )
m B (2

M$+;_(f_) = (w.l)m“m + MR, (1.10)
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Proof First we prove the formula (1 8). Makewse of the. induction. If.s = 0 then
pi(t) = Win-> 0. Suppose now that ph(t) = gl =. const by all p< s, l > 5. Let
m > s. Then R

(t) = yr 1+Z€rﬂm - .a=const. |

Hence p™(t) = at + c. But, owmg to symmetry of ™ (z), we have u7*(0) = u3*(1).
‘Therefore a == 0tand p7*(t) =y = const: The relaﬁmn (1.8) follows now immediately
from the formula (1.6). (4, S{J

Proceed now to proving. The following properties of Bernoulh polynomla,ls are

Bu/(t) _ B—1(t) /l Bp(t)dt =0

m! (m— 1)

" The formulas (1:8),(1.7) imply: - -

known:

O NE I = L= R

2m— ""(m —r)!

e l(t) |

Integrating the latter relation and employing (1. 6) and the fact that p3*(0) = 0 =
p(1) provided s is odd, we have Can41 = MZ" .
It is easily seen that ¢y, = 0. Let us con51der first an odd m = 2n 4 1 and prove

(1.9) by means. of the induction. I m = 1 then ,ul(t) =t= 1/2 = Bl(t) Suppose
that the formula (1.9) is true if m = 2n'— 1, Then

13 ™ an'l(t)
Mﬁnii(t)” = ppm1(t) = Gn 1)

Therefore
: Baint1(?) e
(2n + 1)'+t+b ce T

Hania(t) =

But _
- Wit (0) = ﬁ%ﬁii(l) = 0.

The same is true for Bay41(). Hence

L B

LML) = Baati(t)
Han1 (2n 4 1)!

- Differentiating the latter equality we arrive at

N .
crun — () = 2D
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But, as it was marked above, cont1 = :“This fact concludes the proof of (1.9).
Let us prove now. the formula{1:10). The formulas (1.8), {1.7) imply

) = ) —LZ ;L_“rﬁmlff e R

= (1) — )

It is easily seen that cppy1 .= 0.- We prove (1.10) by means. of the mductmn It

can be verified immediately that ,u,3(t) = —2 By(t). Suppose that (1 10) is true with .
m.==2n — 1. Then : ‘ L , , .
an A " o 2nDBar, t)
pansa (B = #zn(t) - ) + an = on )1( o,
M T (2n— 1) “Ton+ 1)l ‘
- But #2n+1(0) Ban41(0) = B2n+1(1) 1“’211.—]—1(1) =0.
. on 2nBzata(t) A
Therefore #§n+1(t) = W,
" n om - (20 + 1) Baaga (¢
LAY = i) - ﬂznﬂ(t) - )

~wHence.. o _ .
It is easily seen that - MZZ:IZ} g | |

Throghout the paper Zr - gtands for E:i': u- Here p = [m/2] = v if m is odd

and g =m/2—1,v =m/2 if m is even. Denote
LT e
)\;’Is(t) = T Z Hc?}’;(hk — 2)" bz — hk). (1.11)

.+ Theorem 1.2. { [29]) The f'oﬂowmg relations hold: a)lsm>p then

L

;"ﬁss(t) = )\}?I‘;Ss =(= 1)"’ Z th = 1)"’ M g (1.12)
TR el ) L
b)If p=m,m + 1 then
m Bui(®) . iim
Amts (1) = —-«--—T"# + M +"‘;. X (1.13)
Bm , |
miiﬂ a(t) o Dt (t + M, +m- (1.14)

(m+ 1)

oy
\
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2. ASYMPTOTIC FORMULAS FOR.-
BERNSTEIN-SCHOENBERG SPLINES
Let f(x) be any continuous function and fr.= f(zx). Each local spline of defect
1 and of degrée m — 1, constructed on a uniform mesh with the step h from the data

{fx}, can be written in the
followmg form if z € [e, 27 1] ¢

S0 <3S BRI B,
: £ ey e T

where FI™ are finite linear combination of the samples {f¢}. ‘A’ ¢hoice of the func-
tionals F{™ determines the propertles of splme The derwa,twe of the spline of the
degree m 4 s — 1 :

m-ts

S"”"*’(f ) = h 2 Fm+ose bm (i — hik) 2D

is a spline of the degree ™m — 1. ‘Note, that= i s =2/ is'an éven number then the
formula (2.1) can be written in the' f‘ollowimg form'

- SmARA(f,2) 00 = hz 5”(Fm+21)bm(;c hk). (2.2)
‘ ' - . k P

Suppose that to compute the value of a sphne in a point z one needs the values of -

function a,pprommated in the pomts {hk} g Then we call the set {hk}%_ . the span

of the spline.
We consider at thxs section the BSS apprommatmg f(s) namely

m+4-g

Sm+s(f, a’:)(s) =h Z fktshbm(w — hk) Y (2‘3)

In the case s = 0 these splines were studled by Schoenberg in [20}. In partlcular it
was established there that 1f fe C’2 m > 2 ‘then

SPU,5) = Fla) + P12 o (a) + o)

We will obtain further Tormulab of such kind for the splines STH(f; #)0).- These
asymptotic formulas which are of independent concern, serve us as a basis for con-
. structing and: studymg sphnes app10x1mat1ng functlons and t11e1r derivatives w1th

*
Let f € C*t?. The Taylor formula entails
sty (g
o= f—*ﬁ(—)(wk— 2)' + Rpio(2h),

=0

1 - L 1 Ek d g — 8-
Ben) = o=y [, (oo,
t U
where g3t?(y) = FCTP(y) - U (a).
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s Henee

m+s

5;;““( f, m)(s) =h Z fka,,bm(m ~ hk)

m-ta 3+.P ) T ' . g
> {3 e +Rp+s(mk>}6hbm+8(m—hk>

, m stp ('l)_\ -
R I 1!( ?Mx — ) b™(x — hk) + F;"(2)

k =0

Poop(oF (Y .
= @) + 3 I :0(”’)6;‘: (31 )’“ + F“m(mJ

mts

where “Fi™(a) =h Y Rprs(2e)Si" (@~ bE).
k d

In accordance with (1«11) we have

:

: 5m+s( I: :,;)(s) _ f(s) (x) + Z h X;’f,:';ss(t)f-(” Oe) + Fy™ (=)

Point out that F“’m(m) = o(hP‘l"s) Keepmg in S1ght (1 12), we can write

[(m-1)/2]
s, 2 = f%) + }: M )

+ E sxhz)\?j,ffs(t)}f(s;ﬁ)(m) _|_F;m($) IR

T i 1<y
Here e1=43 . .p. .
Yo i I>p

Note that if m > p then there holds

[(m—-l)/2]
SO = fO@) Szlhz’M”"“"f“””(m) + (o).
o L o 7'l=1 ‘ ‘

“We point ‘sut especially the case p="m+1:
((m=1)/2]
S = FO) 3, M)

=1
h"")\m"'s (t)f(s+m)($) RS s(t)f(s+m+1)($) + mi1(2)-

n+s,8

The formulas (1 13) a,nd (1. 14) now enable us 0 formulate the followmg result:

(2.4)

4
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- Theorem 2.1. Let z € [z7, 2 ], t = (x — x™)/h,t € [0,1). Then the following
equality holds provided m > 2, f E C’”’m"'l : :

Cfminm
Sm+3(f :C)(S) _ f(a:)(s) + Z Mm+sh21f(s+2l)( )
| Eegt [”‘ T . W 4
+ hmf( )(3+m)[ m(t) _'_Ivfm-]-s] S ) i 9.5
mBm+1(t)

R )Y +M ’”‘*f ++F (),

Filtae) = WO, B),

For the linear splines (m = 2) there holds:

SEF ) = f) + 5 f(w)(“’”’(9+ I (2.6)
%9(75 —~ /2R f(@)D + Fi(z), =41 =t) e

" Remark 2.1, We sée from (2.6), '(2.5) tha,t the:splines S;“""rs( frz)(®) reproduce exactly

the derwa,twes P _H(ib) of polynomials of the degree s + 1 and if f € C*t7,p > 1,
then :.;-, 7 a }}‘.‘ } . . L - . S
SEre(f,2) == f(2)? + O(h?).

3. SPLINES.OF THE GREAT APPROXIMATION ACCURACY

Inspecting (2.5) , we see that a part of addends in asymptotic expansion of BSS
have constant coefficients with derivatives. To increase the order of approximation
we eliminate these addends by means of combining appropriate BSS.

Let f € C**P 2 < 2r < p,2r < m. In accordance with (2.4)

Sgrtetin(f, gyt = - | (3.1)

p—3r

= 2 EAE @) By (@),

Pomt out ‘that Sm+8+2T(f :v)(“""'zr) = hzm+s+2rf (53+2rbm(az hk) is a spline of
the same degree m — 1 as S **(f,z)(*)- Suppose that an integer ¢ is such that the
inequalities hold: 2 € 2¢ < p,2q < m-~ Let us make the followmg linear combination
of BSS of degree m — 1:
Syt (he) = @’%ﬁf”h”ss“““’"(f, @)t = (3.2)
. . =0

m+.9

‘ :“_" h Z 5}ibm($ - hk),fq, fk + Zﬂg-{--ﬁh?rézrf ﬁm+‘.3 _ 1
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This is a spline of degree m — 1. In accordance with (3.1) we have

Sm+3(f,m)(s) _ Zﬁm_l_s : (33)

x Z h“’Aﬁtitﬁ,zﬂr(t)ﬂﬁ'“ﬂ(sc) £ RTE (o))

= Zﬁ"“*” N RO )

=2r ‘
— Z h?lf(s+2t') :E) ZﬁmHMZ’?ﬁ'ﬁz" S v
S =0
D SNCELT)S BN ) + (),
I=2¢+1 r=0" e
here Fpy™{w) = Z‘Bm'”hzrﬁwi_;:’m(xj. . (3.4)
r=0 - S

Let us choose now the. coefficients ﬁm+3 in a way to eliminate the first group of
addends in (3.3):

Z /Bm-i-sM‘;T(ll-'-sr-;zr = Ogl : 1,2, ’q

) ) r=0 o
This relations produce the foﬂowing recursive formula:
g =18 jindd — E Zﬁ;’f“M""“‘“ gy =0 (35)

2(n—-0)
=0

To ﬁnd ﬁm"'s one can use the genera,tmg functmn whlch was estabhshed in [19]:

| (?arcsln(v/z)) Z( i 21"".

r=0 .

- .

Substituting the derived values of 8 into (3.3), we obtain
Sm-#a(f, a:)(s) _ f(s)(x)

++ Z R f(*’“)(a:) E ﬁmmmﬁ;(t) + F;ém(x).
I=29+1 - - - rbx:() oo

We distinguish two cases.
a) If m > p then
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ISTREAT S ST L A SR

fp/2]
Sm+3(f )(s) _ f(s)(m) + Z thf(s+21)( ),Y;?;’»:I-s Fs m(w)’
: I=g+1 ‘
%T;-s — Z’B;?"-l_s zz_:};—l—?.r (3.6) )
r=0
As it easily seen from (3.5) that : | ,",._’9'
’Y2n;i§ 2¢ = ﬂ%i; L (3.7

Point out that 1fp > 2(q +-1) then
| Spe(f,a)9 = fO @)+ O(h“q*”)
and if p<2(¢+1) thenn . . o :
(1,20 = $Oe) o)
b)Let p = m + L Then . . . . Ce
| Sp(f, 37)(3) = f(a)(’m) (3.8)

[m/2]+1 .
+ Z h2[f(s+2l)(w)7$.—;,9 +hmdms(t)f(w)(s+m): .
I=g+1

o RPTRATS q(t)f(ﬂf)(”m-hl:.) Folen o @)-
, g
Here dms(t) — i‘;’s(t) n Zg$+sti;i2r

mt 8 T ) t 8
—— ( ) +Z'B2n;:+3 T‘r;l+2;i—2 _ m( ) m+

ca'vermE .m’q-- SRVt

in accordance with (3 6) and (1.13). S1m11arly we have

7 mBm+1(t
dﬁil,q( )= "(—'+—1)1 + 'rn”iif,g

Once m 18 gwen then the order of approx1mat10n can reach its chmax it we choose
g = [(m —1)/2]. The considerations carried out and (3. 7) enable us to formulate the

following important assertion.

Theorem 3.1.. Let f € C’*“"""""1 g = [(m —1)/2]. I the coefficients § have been
chosen in accordance with:(3.5) then for.any z € [27',274], t = (a, - :r:m)/h the
following relations are true:

STH(F,2)D = f(@) D+ hmd (1) £(@)F et
. + hm+1dmi (t)f( )(s+m+1) “|“ F;T] q(w)
dms(t) (t) ﬁgﬂz+s’ mii(t)

— mBm+1(t _ﬁm_l_s' -:f--‘..“-,--"‘, Coe
(m 4+ 1)! m+1 S TH IR
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Remark 3.1. One can conclude from the latter relation that the splines Ste(f, z)(®)
with ¢ = [(m — 1)/2] reproduce exactly the derivatives Ps(:_)m_l(:r:) of polynomials of
degree 1+ s+ 1. This is the highest degree of a polynomial which can be reproduceed
exactly by means of a spline of degree m — 1. The span of this spline consists of
m+s+q points and is the least among splines which reproduce exactly the derivatives
Pa(i)m_l(a:) of polynomials of degree m+s+1. We call the spline defined S7*+°(f, z)(®)
with ¢ = [(m — 1)/2] the Spline of Minimal Span (SMS). :

Let us write now some initial values of S5%: S

W om L meme28 . m(35m? $U62m £1528)
Pa _—225’[3,4_ ~ 5760 b= 2903040 ’
m | m(175m® — 462m?® 4+ 40724m — 119856)
bs" = 138345900 '

4 EXPLICIT REPRESENTATION OF THE
 REMAINDER. TERM OF APPROXIMATION

.. The asymptotic expahsions of the remainder terms of approximation functions and

- their derivatives by local splines established in previous sections ‘enable us sometimes

to derive the explicit representations of these terms. Such representations turn-esta-
blishing the exact estimates of errors of the approximation into a routine procedure.
The explicit representations are obtained for BSS of arbitrary degree which reproduce
exactly the derivatives Ps(i)l(sc) of polynomials of degree s + 1, for SMS of the first
— fifth degrees which approximate F( ( s is arbitrary). One of Kornejchuk’s results
[12] enable§ us to establish the explicit: representations of the remainder terms for
~SMS of arbitrary odd degrees approximating f. We study the splines mentioned by
means of the integral representations of the remainder terms. Furthermore the so
called Peano kernels appear. ' ' '

- 4.1." Peano kernels. Let T be a linf_:_a,r‘dperaﬁor C — C . Denote by T(f,z) the
result of the application this operator to a function f- Suppose that operator T is

o such that there holds the following relation, for any polynomial Pr..s(z) of the degree

m -+ s:

T™ (P @) = Pia(@)- - (4.1)

If f € Lts+1 then provided z € [a,5]

F(@) = Pap(e) + sy [ (o =P FS @

(m + s)!
e PO (o) = F@)® = — f (o A ) d
s-tm i (m). J, +
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In "-_a',cco‘f.dan‘ce 'with (4. 1’) we have

§

‘ ']I‘m(f,a;) ( )—l-( —li— )I/ f[[‘m((a;—u)mﬁ g;)f(m‘i'-si-‘l)(ug)du

= @ - ] K fmreids, © 4,
z (1 . )
(m +s)!

The functlon K m(,q:,u) we call the Peano kernel of the operator TT. Thus we have

I(m(m,u)z_lm(m—ﬁj+ L S P R O

f(w)“) (7, - / kPG, u)f(m+°“+”(u)du (4.4)

Lemma 4.1. ([30]).Let 'Il‘m be a 11near operator and ¢(z) be any continuous function.
If the foHong xepresentatmn is true for each function f € getmil,

T’”(f,w) f(cv)(s) + hm“fﬁ(ﬂ?)f(fv)(”m“) FAPHOW(FOT™Y B, (45)

 then: 1. The relafuon (4. 1) holds. 2, Prowded K m(w u) is the Peano Icernel of type
. '-(4 3) the foﬂowmg relation is true: . L ‘

L / ke, wd = hm+1¢(w)
o - k . . M
3 Corollary 4. 1 Let 'the representatmn (4 5) be true for each functzon f €
" If thé Peano-kernel KJ"(x,w)<of the operator Ty doesn’t:change the sign within its

- domain of definition then the following relation holds o

ds+m+1

Fa)® = TR(f, ) = —hmH (@) (€, € € [a, B

The Peano kernels of operators coniidéted with splines, which aré studied in this

: __sectmn ‘do not change the sign. We adduce the proof of this fact for SMS of second

and fifth degrees only. The proof for other splinés the reader can find in [30]; [31].
Point out that when u > z, we have in accordance with (4.18): *

K (z,u) = - ! T (2 — u)7T°, z) (4.6)

(m +3)!
If m is odd then it can be easily verified that Ll
e 1 m ]' g 8
K (z,u) = (v —a2)}) = m(—l) Ty ((u — 2)77°, ), (4.7)
-and, provided z > u, o

( 1)s+1

e T () 2) (4.8

Y K™ (a2 u) =
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"\ Assume that a local spline S(f; z)(*) reproduces exactly ngm—i(?ﬂ) and, given an x,
" the span of this spline is contained in [a, b]. Suppose that the following rgpreéég!;?tion
. is.true with any function fecd stmtl, I, o
CS(RAN 2 f(@)O F B (49)

o | . +hm+1¢($)f(m)(8+m+1) + hin;hlO'(w(f('a+m+1‘),;.-h))._'_._ : - '. | s
., Here ¢(x),4(z) are some conﬁnu_dus funlcti'or"ljs.'_ Let us_aéﬁﬁe the operator T™ on the

. .Space gatmy e B L L BT R TR N
‘ T (f,) = S(f, 7)) ~Hp(a)f@)T™. - o (410)

There holds the following relation provided v > B R

1 m m ; T o
_~m?s ((z —u) ;‘f , ) (4.11),
. |

= - S(e =W 4 B -l

Ko (z,u) =

# M u<zandmis odd then

(-

K (z,u) = it o)

S((u—z)y™, ). T (412)
" The operators T™ defined above are used to study SMS of even degreeé. In the other
cases we suppose that the splines S(f, 2)(®) under consideration reproduce exactly

Pij_)m(m). In those cases we define the operator as follows!

- T(f,2) = S(fe) (4.13)
The latter relation means that in (4.9) ¥(z) = 0. The formulas (4.10) and (4.11)
- remain, of course. . : o

} Lemma 4.2_..5(_‘[30]).}_"{&!; z € [227%, 28 1), 2 = 27°+ hi. Denote

]

e =ab ) —ht,u=28""+ ho,u' = zb ] — hv,t,v € [0,1].. |

- Suppose that a spline SP( £,2)%) of the degrec p — s — 1 reproduces exactly
Ps(j_)m(:c), m is an odd number, K™ (z,u) is the Peano kernel connected with this
spline. Then: 1).K™(z+hN,u+hN) = K™(z,u) for each integer N D.K"z,u) =
K™(z' u'). ' . - ‘

Corollary 4.2. Suppose the assumptions of Lemma 4.2 hold. If K™(x,u) > 0(< 0)
by u > z then K™(z,u) > 0(< 0) within the entire its domain of definition.

Kornejchuk in the paper [12] 'preserits without a prbdf the following assertion
concerning the Peano kernels K{(z,u) connected with SMS of arbitrary odd degree
2¢ — 1 which reproduces exactly polynomials of the degree 2¢ — 1. o
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' ',Proposﬂ:lon 4,1. The Péano kernels K (:r: u) do not” change their 31gns within their
“ entire domain of definition. : o . o . :

Proceed now to considering specific splmes It turns out that for all of splines
- studied, except 'SMS of even degrees, the first term of the asymptotic expansion
determines the form of the remainder terms. For an SMS of even degrees the form of
the remainder term is detérmined by two initial terms of the asymptotic expansion.
- The asymptotic formulas we use follow from the general formulas of Section 3.

4.2. Representatlon of the remamder term of appr0x1mat10n Throughout

‘- rthis section we shall use the notations: & =t — 1/2, 8 = ¢(1 — 1), w(f(‘9+2) h) is the

meodulus of continuity.

‘a)BSS of degree p —1 approﬁcirxi.a’ting.f(s):.
| X phe
S5 (f, ) = h Z fk5hbp($ - hk) (4.14)

Provided p > 2, f € C*F2, the following relation is true:
ST F, ) = fz) + hz%if(m)(wz) + B2O(w( ), b)), (4.15)
For the linear splines (p = 2):

Sete(fim) = f fa)® 42 f( )<S+2>(9+ )+h20(w(f“”’ m). o (a16)

. I 0 . ) rf— i
These splines feproduce exactly Psi)l (:c) T u>a “then

K;(:ﬂ,u)

(1 -+ 3)7 Z bP T — hk)fsh(h(k‘ +]) —- u)l-l-a-

But 5 Hr—uw)it = (C u)_,_ > 0 Since b”(m - hk‘) > OVt then Kl(:z: u) <ro prov1ded.

> T,
Corollary 4.1 and formulas (4 15}, (4 16) enable us to formulate the followmg

assertion.

‘Theorem 4.1. Ifp>2,f € C’s+2 then the following relatlon ho]ds
SR = fe) 9 + h2p L2 5o+,

For the hnea.r sp]mes (p 2)

s ><s> _ f(:v)(“') + f(o‘””(f’ + 12)

o If:ce[ zf, n+1] then{@ [mP -I—h(l—l’—), n+1+h +3]
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" b)Cubic SMS reproducing exactly 'Ps(i)s'(?:)‘-_ B TR

418
3 3 4: + L3
SH(f,2)P = b (fi = B _24fA§,§‘f&)6,L-b4(:c — hk).(417)

. H:f € O} then;the following relation is frue:

e b sy R (G -GSt 4e62s 1160,
S4(f,2) = f(2)) — 57 f@) O + =)

+ +RAO(W(FETY, BY).

LA

Theorem 4.2. Let Sf+3( £, 2)() be an SMSof thethlrd degreéj__deﬁ;i'ea by (4.17)
" and s be arbitrary natural number. Then Vf € ‘(rs+4 the following relation holds:

' ht 5s? + 62s 4 160
(8) _ cits (8) .. 2 (s-+4) | g2
f@)™ =51 (£,2) 24f(£)i';(9 T 540 )

I € (hn, h(n + 1) then & € [A(n —2— ), K(n 349

c)Splines of the fifthi degree -which 'repro:duce .eXaci;t‘ly Pii)g(w).. These will
be needed for the study of the fifth degree SMS . '
SHe(f,2) =h> (fu — b 50 62 )65 0% (z — hk). (4.18)

. YoLoani L . g AERE
Theorem 4.3.,_L¢t Sf"‘s( f,;z:)(s) he a spline of thg-ﬁfﬁh—gégree defined by formula
(4.18) and s be an arbitrary natural number. Then V.f € C** the following relation

holds:
X!

5760
Ifz € [hn, h{n+1)] then § € [A(n— 3= 5),h(n+4+ 2)].

F@)? — S8 f,2)) = FE)CHD(6 4 s)(5s + 52).

d)Fitth degr ee SMS W"h'-i-"ch' rel:;i;dduce exactly ng_)s(mj:; o

s 3 8 - ‘
Sg-l;_ (f:m)( ) = hZ(fk —h? 2486]21‘}"&, _ (4.19)

5760

B ' .
+——(6+5)(5s + 52)6;’;fk)6;b6(:c — hk).
If f € C* then the following relationﬁ is true:

S () = @) + %f@)@“) [6°(0+1/2) C(420)

3558 - 100252 4 108525 1 332643 .
+ e ] 4 RO (£, ).

Yo r
s .0
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Lemma 4.2. The Peano kernel K§(z,w) < 0-within its entire domain of definition.

This is a spécial casé of Préi)OSition 41 L T

Lmnma43.hﬁsﬂﬂfmyﬂbeSMSdfmhd@ﬁe&ﬁéahfgimgmagbe
an arbitrary natural number, Then its Peano kernel K3 (a: u) < 0 within its entire
dornain of definition. : f

K2, (:L' u) < 0. In accordance Wlth (4 19)

RS

iy

' 6+r+1

56~{—T‘+1(F w)('r—i—l) _h Z F('B[c h27+T

24

52F($k)
4 ' Co

5760 (7 + 7")(5?‘ + 57)54F(32k)5r+156($ hk)

64+r 6-|—r L
-hj£: 5hﬁxxk)—-h2 626hPka)

};

5760
’ h3 6+'f‘+1

P (6hF(wk RO res 0 - )

5hF($k) rbﬁ(a‘; — hk))

3h5

640 §§:551r(mk V6EBS (% — k)

2

““‘Sﬁ+r(5hF m)(’r‘)_____56+r(63F )(r) +3h 56+T(§5F )(r) R

640 " .

If e L8 then the formulas (4.4) and Theorems 4.1, 4.3 enable us to write

v

SG+T+1(F m)('r-}-l) . 6hF(r)($) |
B2
s f ff5<m,y)F(6+’">(y>dy - —ath(m)

v 1

+h%6+awr+5f
T S0

6405 F ( )+

63F<f+4>(£)

(r+2)
5120 LF (19)
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- Tu> ¢ then.

ERTES R TR

. .“ 1 T . ‘—I‘.:." r . .T R
K?+1(m,u) T §+f+l((sc u)-ifc,,-m){(_ +1)

= 120{N(w ) +M(m u))

Mz, u) = —7206h/ Ks(m y)bl(y—u)dJ

h6(6+r)(5r+52)3 3ht . R R
384 (5)++512b(“‘9)’. W

V(o) =Bl ) - L b Wl %455( - ) ' |
Since, by suppos1t10n K (a: u) < 0, we have M (:t: u) > 0. Let us consider the
function N(z,u). Ku > 'z:-|—3h/2 then N(&: u) >0. Let h/2 < U< 3h/2 Denote
az—u—hzze[ 3_ ]Then :

N(e,u) = (;4(z+s/z)6 ol 528 —5(e 4372 ])

Assume now that 0 <u—z < hf2,2 €= 1/2 0] Then.

N{z,u) =K ’((z + 1/2)° —@-.b [(‘z +3/2)° — 362+ 1/2)°]

+ 540 g [ 5/2)6 CB(et 3/2) 410z + 1/2)6])
Cis 6 |
= 1530 [2260(z +1/2)° = 125(-+ 3/2)° +9(z +5/2)°) >

. Thus K}y (=, u) < 0 as ¢ < u and, consequently, this 1nequa11ty is true within the
entlre domain of definition of the function K7, (,u). :

As a consequence of this lemmaand Corolla,ry 4.1 we have

. Theorem 4.4. Let Sg1°(f,z)\® be the SMS of the fifth degree defined by (4.19)
and s be arbItra.ry natural number. Then Vf € C*1¢ the following relatmn holds

= S 2
35.9 + 109232 + 108523 + 33264
. 4032

m (o““) o )+
Itz € [hn,h(n + 1)] then 5 e [h(n — 4 —) h(n +54 ).

e} Splines of odd degrees. Theorem 3.1 and proposﬂnon 4.1 lead us to estabhs—
hing the explicit representation of the remainder term of approxithation for SMS of
arbitrary odd degrees approximating f
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Theorem 4.5. Let S7™(f,),q = m — 1, be a SMS of the degree 2m'— 1 which re-
produces exactly polynomja.]s of the same degree and m be ar b1trary natural number.
Then Vf € C?™ the following relation holds: ‘

) - 52m<f,:c)-—hsz@m)(a)(fzm(f) Y )

If z € [hn, h{n + 1)] then & € [A(n — 2m + 2), h(n + 2m — 1)]
The aforesaid consideration enable us to come-up with the following
Conjecture 4.1. Let ng*"’(f 2),g = m~1, be SMS. of the degree 2m — 1

which reproduces exactly Pé,n,z 1‘ 4 (z) and m,s be a.rbltrary natural numbers. Then
Vf e C?™Fe the foﬂowmg relation holds: "

(s) . 2m+s - (s) _ h2m (2ml+s) B2m(t)
f ( ) S (f: ) f (5)(( ) | ﬁQm-}-s)

If:c € [hn, h(n + 1)] then ¢ € [h(n —om o 2 - 3/2) h(n +2m I + 3/2)]

Turn now to splmes of even degrees. ;
f) SMS of the second degree which reproduce e*cactly +2(:c):

3—1-.9 (s _ =, 23+.s
(f,2) hZ(fk h

If f € C*t* then the following reiatmn holds:- .- -

fk)6h63(w — Kk). (4.20)

; ' ‘ B3 -
Site(f m)(S). = f('m)‘(;?) 1+ _-.é;f(m)(:s-ra)gﬁ ;

s 5 ? 4525 + 135 s
2@ (302 - 2 EEEEI | pou(seto, 1),

To study the sphne S3t2( £, 2)0) as well as SMS of fourth degree, we use the operators
T™ of such kind as in formula (4.10). Namely,

" ($)<s+3>en

. M) = ST e)) - ,!
Then, provided u > z, the Peano kernel is .
. I{O (i, u) 1 3+3(($ u)3+s 3;)(_-‘.3)‘_ .

‘ (3 + s)' v
We consider ﬁrst the case ‘when s 0 It is ea.sy to t;a,nsform the splme to the
following form: ' : : e

Si’(f?ﬂ:)= ZﬁmP(t )t = h7 e = = 3/2)

.t ' . 3____2 oo
| Pg( )= 82, Pi(t) = (1 + )2+ 1382,
Py(t) = (2 + 1) - 13(1+ )% + 34t2 ,Pi(t) = P,(l — t).
~ Provided u >z <= > t the Peano kernel cah be ertten a8 follows: -+ - -

(e = i “>+,:c> %Z@H/z—v)m(t)

el TR LTy
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Lemma 4.4. The Peano kernel'of the operator T3

— K(z,w) > 0 within its entire domain of definition.
Proof. "It can be. verificd immediately that Po(t) < 0, P2(t) = 0Vt € [0,1]. Denote by
D the domain {z € (h{n —0.5), i(n +-0.8)];u € [z, h(n +2.5))}. Assume that in some
point Hy(zo,uo) € D the both following relations hold simultaneously:

2
K3 (wo,u0) =0 <= (i +1/2 - v0)3Pilto) =0,
- 3=0
4
K3 (o, uo) =0 == »_(i+1/2~wv0)3Pi(to) = 0.
‘ S =
Substituting one relation into the other, we have:

o (2'.5;—- v;,.jiiégaaj = (5?5‘;4' vo)if-’@a(-t-‘i’:)?—

‘that is impossible with ¢ € {0,1],v < 2.5. Therefore, if there exists a point Hy € D
such that K3(zo,uo) = 0 then ; - )
K3 (z9,u0)0, and the equation K3 (z,u) = 0 defines an implicit funétion u(z) on the
interval (hn,h(n 4 1)]. H the variable u with any given z passes through the value
u(z) then the function K2(z,u) must change its gign. SRS

Let us consider first the subdomain D! = {z € (h{n—0.5), h{n+0.5));u € [z, h(n+
1.5)]}. It can be verified easily that if u'= @ then - . ‘

. . Tt 2 . R
9613 K3 (u,u) = » (i +1/2=v)3Pi(v) > 0.
1=0 '
If ¢ = h(n +0.5),u > h(n + 0.5) then
06h 3K 3(h(n +0.5),u) = (2.5 — v)} ~9(1.5 — v)A >0 as vl
If v > h{n + 1.5) then 96h‘-3Kg(a:,"'d')Az (2.5 — v)%#* = 0. Therefore neither in the

domain D', nor by u > h{n + 1.5), the function K 3(z,u) can change its sign. Hence
it follows the assertion of the lernma.

The proof of the following proposition is related to the proof of Lemma 4.3.

Lemma 4.5. ([30))Let §¥t+e(f,2)(?) be an SMS of the second degree defined by
(4.20) and s be an arbitrary natural pumber. Then its Peano kernel K3(z,u) 2 0

.. within its entire domain of definition.

“.. ‘Hence itrfollo.ws ey S R T
. Theorem 4.5. Let $31¢(f, ) %) be an SMS of the secorid degree definéd by (4.20)
and s be arbitrary natural number. ThenVf € C st4 the following relation holds:

e - S = g
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h* C oo 5% 4525+ 135,
n- (3+4) 2__, s 3 ‘ L4 P i
+ 4f($)~ (36 & 240 . )- S

Ifaze[ (n~1/2) h(n—]—l/Q)]thenEE[ (n—2——~*~),h(n-{—2+ )]

g) Fourth 'degi'ee' SMS which reproduce exactly P +5($)

5+s

SEH(f )™ = B (e~ W eh fu (421)
k

)(53 +. 47)5 fk)efhbs(m - hk)

5760

‘Theorem 4.6. ([30]) Let S37°(f, :z:)(a) be an SMS of the fourth degree deﬁned by
(4.21) and s be arbltrary natural number. Then Vf € C°T° the following relation

holds

f(:c)(s) S5+s(f,$)(3) m{\__‘__f(m)(s+5)9&(9 + )

Ao 353 + 9877 +87733+24045)

(.9-[—6) 2
+720 7 ) (6 (9+1/2) 4032

' ‘ Lire
Ifze [h(n —1/2), h(n + 1/2)] then E € [h{n — 4 —£ ) h(n+ 4 —I— ")]
Theorem 3.1 enable us to propound the following
Conjecture 4.2. Tet Szm.'“”s(f: z)(), q=m- T, be'an’ SMS of the degree 2m — 2

which reproduces exactly Pg(nz () and m, s be arbitrary natural numbers. Then
Yf e P the following relation holds: o : '

f(sj(:v) . S2m—-‘1+s(f,$)(3) .
—1 m—1+s Bam -
h?m f(2 1+ )( )( Iz(l-t))'

h?mf(2m+a) (6) ((2 )'?;’m()t') ;g::-—;H—s) oo RERF R

. QUASIINTERPOLATING SPLINES

Denote yi(t) = Bx(t) ~ Br,z(t) = Bk(t) By, where Bk(t) is the Bernoulli
polynomial of a degree k, By = B(0) is the Bernoulli number-and By = Bk(l /2). It

s well known.. (see [6] e.g.). that:

yk(l) = yx(0) =0, '91(5) =3 Vmn(l/2) = zam41(0) =0,
yzn(l/Z) = -—(2 - 21#2").8271, y2n+j(t) = Zzn+1(t) = B2n+1(t),ﬂ = 1, 2,
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We consider first splines of odd degrees (m = 2g).-In accordance with Theorem 3.1,
an SMS can be written in the following form:

S2( )0 = )19 - hf"*’(yéq{f.) )f( yar+o) G.)
+ 2¢ R2atl (yz?q:(lt))' f( )(2q+s+1) + O(h2q+1)
. Byy +ﬁ2q+e. R

(2 )
Hence it is'seen thit the a,pprommatmg properties of the SMS can be 1mproved via

»

' ehmmatmg the constants nzq in the formula, (5 1) Let us construct the spline

2q+s

cm S ) e
égk’ —fk’l'Zﬁ _I-‘_Sh2r52?fk+h2qﬁgg529fk : . (53)

' The spar of thls sphne contaans 4q + 8 points, two pomts mole then the spa,n of the

corresponding SMS.. If f €. 02q+3+1 _:p = h(n + £} then the asymptotlc expansion
holds: . . , ‘

24,8 s .qu2q(t) (2443 Coe C
CSE(fe) = F@) P~k (zq),f( LI

i
st gﬂqi(l))ff(w)(?q““) olir).

: For SMS of even degrees (m = 2q - 1) the followmg expansuon holds prov1ded fe
: C’Z‘H‘" :c-h(n—1/2+t) ‘ _

(24— 1!
+h%f<‘*"qﬁf)(mf)((2 -1)"'(24(),) fes ) o).

Considerations similar to a,foresaid ones lead to constructing a spline which’ possess

2q_1+3(f, )(3) . f(‘")(:c) h?g 1f24_‘1£ﬂf($)(2q 1+3) L -7 (55)

7 the grea,t apprommatmn accura,cy

SZq 1, 3(f, .'B) Z 2!? 1, 35ab2g—1(m _ hk), - (56)

f?.q Ls _ fk ‘|" Zﬁ;a:+sh2262efk + hzqﬁqulﬁzqfk

=1t
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There holds the asymptotic-; expansion: :

s ) = Fla)® — - 15—”—%f(m)‘?qf“” (5.7)

+ (20— D Zég(;) f(m)(”“) +ofB20)..
The formulas (5. 4) (5.7) imply that whereas the apprommatmn of f(z)® by meanf
of the splines SQ *(f,z), inside the interval [@n, Tnis)ds of the'order O(R™),, the
approx1ma,t10n in the points # = @, = 0if m = 2¢,¢t = 1/2if m = 2¢ — 1)
is of the order o(A™*1). i If f is a polynomial of the degree m - s 4 1 then. the
spline SQ *(f,z) reduces to the. interpolating one. These are the reasons.to call

the splines S’m’ (f,z) the Quasymtelpolatmg Splines (QIS) It should be po111ted

. -out that the cublc sphnes SQ S(f, ) quasnnterpolatmg function (not derivatives) had
‘been constructed via another approaches in [11], {52]; [69]. Their approximating
properties haven’t heen studied systematically.

- Remark 5.1. Emphasme that the spline S0 ( f z), being a local one and using the
closest to the point z sa,mples of a function f only, approzimates the derivative f(:c)(s)
with almost the same accuracy as the spline interpolating samples of f(z)*). Due
~ to this property, quasnnterpolaﬁmg splines SQ o £ z)- perform; recovering functions f
" and their derivatives f(*) from samples of functionis f with distinguistied accura,cy
We shall cite further corresponding evaluations for the cubic splines.

: Remark 5.2. Point out that, varying the constant E2q, in the formula (5.3) we can
provide vanishing the first term of asymptotic exparnsion of splines of odd degree in
two arbitrary points of each interval [Tn,2n41] which are symmetric with respect to
the centre of the interval. The appropriate choice of the parameter provides vanishing
in the centre of the interval the two initial terms of asymptotlc expansion. The related
- assertion holds for splines of even degrees.

Denote by S™( f, z)} a spline of the degree m = 1 which 1nterpola.tes 2 function f
in the points {£x}%,. Since the spline So O(f,z) is interpolating one provided f is
a polynomial of the degree m + 1, then the formulas (5.4), (6.7) with s = 0 yield the
" asymptotic expansion for- ca,rdlnal interpolating splines S™{ f, ).

It should be pointed out that asymptotic expansions for periodic interpolating
splines and their derivatives have been established in [46] [47] via another approach.

Now we present evaluations of the ‘errors which appear in process of approximating
functions and their derlvatlves f (a,)(s) s = 0 1 2 by means of cublc quasnnterpola,tmg
splmes T -

Theorem 5.1. Assume Flte ¢ Loo,s = 0,1, 2 Then the foﬂowmg mequaJltIes
hOId ' ) T :

S (f z) = f“’)(ﬂ«")l < h4R llf“""”ll

Ro ©1.60881 1072, Ry 2 1. 93092 10~2 R, & 2 29846 1072
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Iffe Cote s =0,1,2 then the following relations hold in the nodes of the spline

S (f,a0) = PO () = —hEpa fEEI (),

DRSS (> SRS SO
| - Po __2_16’_?1 = 967{680”02_._ 189’_ | n—2+s) Ln+2+s]- |
The constants occurring in the relations are unimproveable on the gfveﬁf_'éiaéé_gs of
functions. -

For comparison, we adduce the corresponding evaluations of errors for interpola-
ting splines as well as for SMS. R

If S(f,=) is a periodic interpolating gpline of .thir_d degree constructed by values
{f(ze)} then'the following inequality holds provided f# € L, (see [25], e.g.): -

L ISUi) — FE) < R0 = e 13107

The constant 2 occufring in the inequality is unimproveable on the claés,eg._éf f@}lcti—
ons considered. For SMS the following unimproveable evaluations of errors are being
derived from Theorem 4.2. o ' '

If fOH) € Lo, s =0,1,2 then the fdlloWing inequalities hold: |

St - FI@)] S KT,

35 | 121
=22 ~304.10723 T = —— =242:1072
 Tigg 20410 YToass0 T

T = S = 5.54-1077.

To

The estimations presehtéd confirm our contention advanced in Rema,_rkls._. 1.. These

showthat quasiinterpolating splines demonstrate remarkable adyantages before SMS
when approximating functions and, especially their derivatives and that quasiinter-
polating splines are comparable in sense of approximating accuracy with the splines
interpolating derivatives. The computational experiments carried out support also
these conclusions. ' -

6. LOCAL SMOOTHING SPLINES
 WITH REGULARIZING PARAMETER.

We shall present in this section a new kind of local splines - the Local smoothing
Splines with regulariziing Parameter (LSP). These splines, provided the appropria-
te choice of the parameter value, provide remarkably efficient tool for recovering a
function and, especially, its ‘derivatives from noised samples of the function. The
algorithm of their constructing is related .to the algorithm of (;Qnstructing the quasi-

interpolating splines. To be-specific, we add to 4 SMS the certain BSS furnished a

" parametér. This BSS influences the constant entries in the-asymptotic expansion of
© - the ' SMS. The difference is that for quasiinterpolating we eliminate these entries but
for smoothing we enhance thesei . . - ' L
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Henceforth we assuine that r= [(m —1)/2], # = {z§} Sy~ Let

Sm+s(z :17)(8) _ Zﬁm+35m+s+2l(z 31‘)(3+21)
=0 L

be SMS of the degree m—1 Whlch a,pprommates f (s) proV1ded ZE = f(a:k) f e’
We definie now the new local spline of the degree m — 1 : 8 ‘

(Z :E) Sm+s(z gj)(s)tagﬁ 1 |
+(— 1)rph2(r+1)5m+s+2(r+1)( )(3+2(T+1)) Co

T

Here p ig-a parameter, S ;o (z 3:) we ca,ll the LSP Pomt out that lf T

= 0 then the LSP reduces into the corresponding SMS. Tf we choose p =
(— 1)1"5; < 0 (“#}, are defined in formulas (5.1), (5.5)), then we obtain the quasiin-
terpolating spllne If the parameter p turns positive then approximating properties
of the spline deteriorate but the smoothmg propertles 1mpr0ve as it will be shown
".1nSe0ﬁ10n7 ' Tt : S e :

We can write: - Fvooera o T 0T
m+s

S (Za) = h Z Fe(p)50™ (2 -~ hk) (62)

Fk(P) =2kt Z ﬂ;’}“hm(S ‘2 + (-;1)Tph2(r+1)5ﬁ(r+1) "
=1 -

First we dlscuss the a,ppromma,tmg propert1es of LSP prov1ded zk = f(ﬂ:k) The
following assertions hold. :

" 'Theorem 6.1. ([32]) Let % f(a,k) fe C"’+m+1 Ifz e [m?,wnm_‘_l], Tt =
"'7'(m—a:m)/h then S , - S
| S’”f(z o) = )9 o WG p)f(w)(”’“) o
BT (2 ) (@)D 4 PRl (eie)

If m = 2n then | ‘ -
R O ) =0
'1fm-2n—1then e | L
N dm(t p) dm*’(t) d; ll(t,p) dﬁii(f)ﬂ 1)“ o

ot

;. ) : ',r‘_tThe functwns ams (t) dm+1(t) are deﬁned in, Theorem 3. 1* S _
Rema,rk 6’1 "Fhe formula (6. 3) 1mp11es that . the sphnes S (7, 7) .S’,‘fi'!?,hi ;,aﬁi;:}’o"itra.ry

valué of thie patameter p reproduce exactly the derivatives PS( +)m,_1(a:=) of polynomials
of degree m + s — 1 just as the corresponding SMS, =« Lriove o
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Theorem 6.2..([32]). Det zi = f(zx), f.€ C*,r =4,p.2.0, 1) s =0,qis

Si0(2,8) = f(z) + h?&:d;g;?f‘(t_,_ P) f:(g)_(?q). SR
2)Ifq=2,3,s IS arbitrary natural number then
20, 5) =f(2)() + W10 (8 p) RO,

; SH7I(Z, ) =F (@) = BTN (6 (@)

+ R (8, ) F(EPH.

"Itz e o™, am,,] then

o mts. a + s,
& € [mn + h(—_"r"“ ﬂ—%dz_i)vmﬁ-{-l —}-h(?‘—l— 1 +T""2"—?)]>m = 2‘172‘1 -1

Ifz € [h(n —1/2),h(n 3 1/2)] then § € [~ — 2m + 2 - 5/2),h(n +2m — 2+ 3/2)].

o SMOOTHING' PROPERTIES OF LOCAL SPLINES.”

The most frequently used apparatus for rétc;vér_iilg a fun:ctioﬁr and its derivatives
from noised samples of the function are the global smoothing splines which had appe-

~ ared for the first time in the pé,p%fs‘gf Schoenberg [22] and Reinsch [18]. Nevertheless,

at certain circumstances, in particular, when the data array is rather large, or when

‘it is required to process the data:in the realitime scale, local splines.offer remarkable

advantages before the global smoothing splines. constructed, by the entire array. We

discuss opportunities for recovering which provide the local smoothing splines with

regularizing parameter (LSP) defined in Section 6.

Throughout this section we assume that {zz = fi +ex},

fr = fler), 2 = kh,k=0,.., N —1;ey are uncorrelated equally distributed random

errors with the mathematical expectation E(e)x) = 0 and the variance Dlex) = d.

Denote a = £(|ex|. Let us construct LSP S7,°(%; ) with data 7 = {2z}, Then
Sf;’a(ﬁ',:ﬂ) = S°(f, =) + Sﬂ;s(é', z), (€= {ex})

is & sto_chasﬁé variable, moreover
E(S3*(2,0)) = ST (F. ),

D(SY’(7,)) = D(SI;’(8 2)) = df;’ (),
E(SEIE D) = afy(@).

" To study the smoothing properties of LSP we use techniques developed in [33] for

smoothing periodic splines. o S
The smoothing properties of LSP we characterizé by ratio the variance of the
spline D(S?)*(#Z,z) to the variance of initial data D(z) = D(ex) = d. This ratio
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- ié}, obViens'ly,' independent of the step of a'mesh and of the interval where.the point
z lies. Therefore we can assume swithout loss of generality that. A = 1/N,N € N.
Suppose also that = € [a:f’+3 mp"'s] c (0, 1) a,nd that the span of the spline 57:°(7, z)

with a given z — *{mk}kwa € (0y1).
g i k=af " T

_Let ka{ :

N = {Z
0, i k=0,.,a~L8+1,., N~ 1 { ’°}

Now we construct a periodic spline (compaié with (6.2)):

.-(-

o -1
SAZ) =N QSR (0D
Qk(P) Zk 1 Z ﬁp+352[Zk + l)rp62(r+1)zk

Where MP(z) is s the 1- pemodlcally expanded B splme bP (3:) “Since the’ funchons b?
and M? coin¢ide on the interval (=, 2N) the splines, S (Z z). = S (7,2) if
T € [a8te x ﬂj’_l] and, consequently,

dp’ (g,) D(S,J(Z cﬂ))

The va,lue of ’D(S (Z m)) we eva.luate by means- of the methods of [33] To,carry
t out we erte in a,cc‘orda,nce with (7 1) R R P BT

8420 = z;z‘kzp<m—mk>

L) = NP5 MP($)+ZﬁP+362’M”(w)+( 1)*"p62“‘+”MP(m)]
2

Therefore  D(S,(Z,2)) =d Y Lp(x —ax)* = dN Y |An(2)[?,

A1 N- S
An(z) = Z w0z + k) =

k0

= N*" 1(w Y+ Z B (1Y (Woa)™ — p(Nva )2 F}m? (),

,,-}.'!“.‘.7 . i S TR . . ) e '.ll-:A{}=“:A.,_. .
where - D

k=0
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‘Hence

<3)p(z )= Lo Z( onf "l

n=0

1.i

+E P-I-S( 1) (an)zl — p(_Nv )2(T+1)]mp(m)} -

If x = z, then-we ha,ve, getting
ST = m(0),

o od N—1
D(Sp(z,a:,;)) = 7\,- N* Z(fun)“’”{[

I : - Lo i

+§jﬁp+3( 1 = o0V )2<r+1>1up}2

We define now the followmg polynomial of the degree 2(r + 1) + s}
(y =y Zﬁ"“ DY (1 e = (-2 (72)

It can be verlﬁed 1mmed1ately tha.t 'u,p Z 10 fyl 21 ng('vn) is a pol"ynonna,l of
degree 2r with respect to v Dénote nOW.

W“(y) PP = Y, o (73)

This is & polynomlal of the degree 81‘ —1— 4+ 92s. The followmg identity is well known:

‘—;w>ﬂ(%%-

It follows from thrs 1dent1ty that

. Yoo

: - d N :
D(S (z z,)) = V" Z (v,,) (7.4)

'4'r'+2+s : (21)

=5 ey

, We refer the téader to- [33] for the proof of the following assertion. . _
Theorem 7.1 pr is arbltrary even number thendp“"(a:) < dP"’(:z; ) '3‘5;—., 0,155, If
: . p 21 e ,6 theﬂ ‘ ’ _ - ' : o -1‘ S
dp, ((y 8 1/2)/N) < dp,s(m) < dP’ (3:,,),3 - 0 1 e E 7' .

i © Sisice: d (:1:) ’D(.S' (Z m)), the relatlon (7 4) and Theorem 7 1 enable us to come
up with the followmg proposition, SUEERE R
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Theorem 7.2. If p is arb:trary even number or SRR
2)p = 3,5 then the foﬂowmg ummprovab]e estunat:on is true

(;c) < BTRdAL(p), s = 0,1,

Conjecture 7. 1 The assertion of the theorem holds Wxth ar bitrary natural values
As it follows from (7.2)—(7.4),' the function AP*(p) is of such structure:

AP: (p) e apas 2 26]’5'9’0 _I_ CP:

Therefore for each specific spline we can find the value p = P which minimize the
variance of the spline.: The spline provides the greatest smoothing effect with p =P.
It is obvious that ' "

P = bp,s'/'ap.s A-p,‘s(P) L P (BP0)E P L

Point out, that AP>°(0) = ¢°. In this case LSP reduces into SMS. We demonstrate

now the smoothmg characteristics of some LSP (AP*(P)) and SMS (AP’S(O)) For
,comparlson we cite a,lso the correspondmg charactemstlcs of BSS (AP ).

T

NIV ORI

1 1 1/3 || 1/3
11 2 2 0zl 03
I 6 6 0.285 || 0.29

0.58 || 0.83 || 0438 |]0.135|
0.81 1.69 0.346 ||0.134] ¢
211, 571 0.586 |[0.138
05 || 072" || 0415 [|0.162
0.563[] 1.25 0:3 [|0.155
1.285|| 3.84 0.48 . ||0.1561
0.532|! 0.75 0.49 |[0.062
0.43 1.39 0.44 1]0.063
10.802] | 4.52 || 0.801.]|0.067]
0.396|{ 0.69 0.467 ]]0.078}
|0.300(] 1.14 0.395 |]0.077
l0.551 |1 3.44 [l 0.687 || 0.08

Tabh.7.1
It is manifested in the table that the effect of smoothing by means of. LiSP is.of the

G O O TT OT O A B P 030000 DD N NS
o OMN R, O NMOMNMEREONR O @

¢ .. same order as by means of BSS and exceeds remarka,bly this effect for SMS especmlly

when recovering derivatives. But the approximation of f ) from the samples F( 1) by
means of LSP is of the same order as by means of SMS and much'moré accuraté ‘than
by means of BSS. Tt-enable [us'to-say that LSP combine the-advantages of BSS and
SMS. In [32] results of computational experiments are adduced, which demonstrate
a remarkable efficiency of LSP for recovering functlons and,’ especmliy, .denivatives in
one- and multidimensional cases. R TS A IR RN RPEAS
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