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Abstract

Automatic acoustic-based vehicle detection is a common task in security and surveil-

lance systems. Usually, a recording device is placed in a designated area and a hard-

ware/software system processes the sounds that are intercepted by this recording device to

identify vehicles only as they pass by. An algorithm, which is suitable for online automatic

detection of vehicles, which is based on their online acoustic recordings, is proposed. The

scheme uses dimensionality reduction methodologies such as random projections instead

of using traditional signal processing methods to extract features. It uncovers character-

istic features of the recorded sounds without any assumptions about the structure of the

signal. The set of features is classified by the application of PCA. The microphone is

opened all the time and the algorithm filtered out many background noises such as wind,

steps, speech, airplanes, etc. The introduced algorithm is generic and can be applied to

various signal types for solving different detection and classification problems.

1 Introduction

Moving vehicles produce typical sounds that are mainly influenced by their engine vibrations

and the friction between the tires and the road. Airplanes, helicopters, wind, steps and speech

create sounds that have different acoustic features when compared to vehicles. Similar vehicles

types produce similar sounds, however, it is not a trivial task to identify similar vehicles that
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travel in diverse speeds, in various distances from the recording device and on different types

of roads (land, asphalt, etc). Our goal is to separate between vehicles and non-vehicles sounds

by analyzing their dynamic acoustic sounds. The recording device is ON all the time.

Every sound emitting device can be characterized according to acoustic features of the

sounds it produces. These characteristic features are referred to as acoustic signatures and

are used to differentiate between vehicles and non-vehicles sounds. Usually, these signatures

are analyzed by traditional signal processing methodologies. The proposed scheme uses ideas

that come from compressed sensing [7, 8, 10] to uncover dominating features of an unknown

acoustic signal. The short-term dynamics of the acoustic signal is treated as a point x ∈ Rm.

It is correlated with approximately logN random vectors in Rm, were N is the total number of

points. The outcome of this process is a set of features that is further processed to obtain an

acoustic signature that differentiates it from others.

The algorithm has two phases: offline training and online detection. In the training phase,

the data, which consists of vehicle and non-vehicle recordings, is analyzed and features that

characterize it are extracted to produce their acoustic signatures. These signatures are used

during the online detection phase. The proposed algorithm is generic and can be tailored to

different tasks that need to separate between different clusters regimes.

The rest of this paper is organized as follows: Section 2 reviews previous work related to

the problem at hand. Section 3 gives a short overview of the dataset and the algorithm goals.

Section 4 outlines the structure of the proposed algorithm and in section 5 we describe it in

details. Experimental results are given in section 6.

2 Related Work

Several papers deal with the problem of separating between vehicle and non-vehicle sounds.

Most of them describe systems for a military context.

Extraction of acoustic features by using the discrete wavelet transform is described in [12].

The feature vectors were compared to reference vectors in a database using statistical pattern

matching to determine vehicle type from which the signal originated. The discrete cosine

transform was applied in [17] to signals and a time-varying autoregressive modeling approach

was used for their analysis. A system, which is based on wavelet packets coefficients in order to

discriminate between different vehicles types, is described in [2]. Classification and Regression

Trees (CARTs) were used for the classification of new unknown signals. In a later paper [1],

2



the same authors used similar methods with a multiscale local cosine transform applied to the

frequency domain of the acoustic signal. The classifier was based on the “Parallel Coordinates”

[13, 14] methodology. Another recent paper [4] distinguishes between vehicles and background

by using wavelet packet coefficients with a procedure of random search for a near-optimal

footprint. In [21], wavelet packet coefficients follwed by the application of Diffusion Maps [20],

was used for vehicle classification. The “eigenfaces method” [22], which was originally used

for human face recognition, to distinguish between different vehicle sound signatures, was used

in [11]. The data was decomposed into a series of short-time frames. Then, each frame is

transformed into the frequency domain. Classification is done by projecting the new frames on

the principal components that were calculated for a known training set. Comparison between

several speech recognition techniques for classification of vehicle types was presented in [19].

These methods were applied to short-time Fourier transform of the vehicles’ acoustic signatures.

Different types of moving vehicles in a wireless environment, which includes acoustic and seismic

sensors, were classified in [9]. Each sensor extracted features by the application of the FFT. The

averaged low frequencies values are saved. A local classifier like K-nearest neighbors, maximum

likelihood or SVM classified the signal at each sensor. Then, a global fusion process classifies

the final signal. A remote netted acoustic detection system for detection and classification

of targets at tactical ranges was described in [23]. Hamming window and FFT were applied

to windows at each sensor. Uniformly spaced beams were formed and frequency peaks were

marked. The signal was classified according to harmonic lines that were generated from the

frequency peaks. Multiple hypothesis tracking and Kalman filter algorithms were used for real

time target tracking.

Because of the military context of these applications, there isn’t a benchmark dataset that

is commonly used. The comparison between the work that has been done is difficult. The

datasets that were used in the different papers were taken at different sample rates and the

experimental conditions were not alike. In several papers the settings are different, the vehicles

are classified by using an array of sensors rather than a single one, this makes the classification

task easier.

3 Structure of the dataset and problem description

The dataset contained almost 100 recordings that were collected in several different settings.

The recordings sample rate was 48000 samples per second, they were downsampled to 2000
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samples per seconds. In some of these settings the recoding device was close to the road (5−10

meters), while in other settings it was placed further away from the road (up to 100 meters).

Most of the recordings were done when the vehicles traveled on an asphalt road, in one setting

the vehicles traveled on a sand road. In addition, in some of the settings the road has sparse

traffic, while other settings recorded busy roads with vehicles traveling at higher speeds. These

varied settings made the classification task harder, and the designed algorithm, although is it

generic, was constructed in a way that best utilized varied dataset and achieve good results

even when applied to data in a low sample rate like 2000 Hz. With this wide-ranging structure

of the dataset, methods like eigenfaces, which was introduced in [11] were less promising. In

[11], the training set was constructed under the assumption that there are a lot of samples of

the same class, i.e., from the same kind of vehicle, recorded under similar conditions.

Furthermore, the algorithm presented here was to constructed so that it will be suitable

running on a small portable device, which would do the online processing and could be left

unsupervised in a target location. This constraint led to utilizing the newly introduced random

projection method, as an efficient tool for feature extraction, which does not require heavy pro-

cessing. In addition, this paper gives some comparison between the use of random projections

as opposed to more traditional signal processing tools like wavelets, and more sophisticated

dimensionality reduction methods like Diffusion Maps, which were used in [4, 21].

4 Structure of the Algorithm

An Algorithm, which classifies acoustic signals and filters out non-related sounds, is proposed.

The algorithm consists of two consecutive phases:

1. A learning phase in which acoustic signatures (features) are extracted from sample record-

ings whose classification is known.

2. A classification phase, which processes every newly arrived acoustic signal in order to

determine according to the previously constructed acoustic signatures whether or not it

is a vehicle.

The learning phase analyzes a known sample set of recordings TSS = {si}τi=1 whose clas-

sifications are known a-priori where si is a recording of length |si| and τ is the number of

signals in the training set. The signals do not necessarily have the same size. Each signal si is
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decomposed into overlapping segments Wi =
{
wij
}

that are referred to as windows. A window

size is l = 2r, r, l ∈ N. The windows are grouped into a single set Ω =
⋃τ
i=1Wi. For notational

convenience, a single index is used in wij and the output is denoted by Ω = {wj}nw

j=1 where the

total number of windows resulting from the decomposition of all the signals is nw , |Ω|.
Following the decomposition, features are extracted from every window by the application

of random projections. The classification phase does not process the entire signal in a batch

mode but a short segment at a time. This fact along with the high efficiency of the algorithm

render this classification to fit real-time applications.

5 The Classification Algorithm

The applicability of dimensionality reduction via random projections was proved in [16]. Specif-

ically, it was shown that N points in N dimensional space can almost always be projected into

a space of dimension ClogN where the ratio between distances and error (distortion) is con-

trolled. Bourgain [5] showed later that any metric space with N points can be embedded by

a bi-Lipschitz map into an Euclidean space of logN dimension with a bi-Lipschitz constant of

logN . Various randomized versions of this theorem are used for protein mapping [18] and for

the reconstruction of frequency-sparse signals [8, 7, 10]. Recently, machine learning techniques

used in compressed sensing (random projections) were used for finding the intrinsic dimension

of the data. It can replace traditional feature extraction methods to go from high dimensional

to low dimensional space. In this case, the projected data becomes the feature space and these

features are classified by some classification algorithm. Manifolds construction for learning,

which is based on random projections, is given in [6]. Random projections were used in [3] to

extract features from face images. In addition, random projection can be added as a dimen-

sionality reduction step to algorithms that select features in different ways. For example, noisy

speech signals in [15] were classified and random projections were used as a tool to reduce the

data dimension to get faster computational results.

We assume that the acoustic data signals have some sparse representation. The goal is to find

the most important coefficients, which contain information that will discriminate between input

classes. The application of random projections to the signal is used to extract the dominating

features, which will later separate between vehicles and non-vehicles. The PCA later saves the

features that are most important for the separation process. The use of random projections

in this algorithm is equivalent to applying wavelets (or any other method for acoustic feature

5



extraction) followed by the application of PCA.

In order to reduce the dimensionality by using random projections of a dataset Γ =

{x1, x2, . . . , xn}, which holds column vectors in Rm, a random matrix Υ = (ρij) , i = 1, . . . , q, j =

1, . . . ,m, is generated, where q is the dimension of the target reduced space. Two common

choices for generating a random matrix are:

1. The columns of Υ are uniformly distributed on the q dimensional unit sphere.

2. The column elements of Υ are chosen from a Bernoulli +1/-1 distribution and the columns

are l2 normalized to have length 1.

The embedding x̃i of xi into a low dimensional space is obtained by

x̃i ,
(
Υ · xTi

)T
, i = 1, . . . , n (5.1)

where T denotes the transpose of a vector/matrix and · is an inner product.

Following the random projection stage, the classifier concatenates every µ consecutive pro-

jected windows and further reduces the dimensionality by applying Principal Component Anal-

ysis (PCA) to this concatenation. PCA, which is common way for dimensionality reduction of

high dimensional data, projects the data onto the direction where the variance of the data is

maximal. The classification is done in the dimension-reduced space. Thus, two dimensionality

reduction steps are applied to the data. This, assures a better compaction of the data than if

a single dimensionality reduction technique had been used.

5.1 The Learning Phase

The learning phase uses the random projection methodology in order to extract features from

every input window wj ∈ Ω. Algorithm 1 outlines the main steps in the learning phase.
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Algorithm 1 Learning Phase

1. Every signal is decomposed into overlapping windows.

2. The windows are transformed into the frequency domain via the application of the Fourier

transform.

3. Dimensionality reduction via random projections: each window is projected onto a given

number nRM of random generated bases.

4. Paths from the random projections are constructed. A path contains the random projec-

tions of µ consecutive windows where µ is a given parameter.

5. Dimensionality reduction of the paths via the application of PCA.

In the following, we describe steps 2-5 in details.

Step 2: Since the data is changing with time, the comparison of windows in the original time

domain is difficult. Transforming the signals from the time domain into ones defined

in the frequency domain, is a common step in signal processing applications, where the

input is non-stationary, see [11], [9] and [19]. For this type of acoustic data, the acoustic

signature of a signal is better seen in its frequency domain. The Fast Fourier transform

(FFT) is applied to each window wj from step 1. The magnitudes of the frequencies

are saved. Furthermore, the dynamic range is reduced by taking the logarithm of the

magnitudes (a small constant is added to avoid taking a logarithm of zero-magnitude

frequencies). The output of this step is denoted by U , {uj}nw

i=1 , uj ∈ Rh, h = l
2
, where

l is the window size.

Step 3: A number of random matrices RM = {Υi}nRM

i=1 are generated where Υi is the ith

matrix of size r × h. The dimension of the set U is reduced by projecting it using every

matrix in RM , as described in Eq. 5.1. Every projection, which uses Υi, produces a single

embedding into a dimension-reduced space. The random projection of U onto a random

basis Υi is denoted by Ũ i ,
{
ũij
}nw

j=1
where ũij ∈ Rr. Each projection ũij describes the

acoustic signature of wi. A single projection is referred to as a dimension-reduced-window

(DRW) and the set of all random projections on RM is denoted by Ũ =
{
Ũ i
}nRM

i=1
.

Step 4: Given a random projection Ũ i =
{
ũij
}nw

j=1
, all sequences of µ consecutive DRWs are

constructed. These sequences are referred to as paths. A path captures the short-term
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dynamics of a signal at a specific time. Furthermore, a path is more robust to local noise

(such as a wind gust) than a single window since the duration of the dynamics it captures

is longer than that of a single window. This construction is done separately for each

subset of DRWs according to the original signal classification. Specifically, every vector

ũij is labeled according to the class of its corresponding signal sk. As mentioned above,

the classifications of the signals, which are analyzed during the learning phase, are known

a-priori, so a label is associated with each signal. Ũ i is separated according to the labels of

the DRWs and the paths are constructed in each set by concatenating µ sequential DRWs.

Denote the paths constructed from the DRW of all the signals, which were obtained by the

random matrix Υi, by P i , {p̃ij}
nw−µ+1
j=1 , where p̃j ∈ Rr·µ. The output of this step is the

set P = {P i}nRM
i=1 that consists of nRM learning-sets that contain the short-term dynamic

paths of the acoustic signatures. These sets are organized according to the classification

(labels) of the paths.

Step 5: Let P i be the paths constructed from the DRW of all the signals via the random

matrix Υi. The paths in P i are shifted to be centered around the origin. PCA is applied

to the set P i. The projection of the dataset P i onto the first k principle components

yields Qi , {q̃ij}
nw−µ+1
j=1 , where q̃j ∈ Rk. This step is performed for every set of paths

P i, i = 1, . . . , nRM , that was produced in step 3. Thus, nRM low-dimensional learning-

sets, Q = {Qi}nRM
i=1 , are created by projecting the paths, which were created in step 3,

onto the PCA bases that were constructed in this step.

The flow of the learning algorithm is presented in Fig. 5.1.
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Figure 5.1: Flow of the learning algorithm

5.2 The Classification Phase

The classification phase is performed online. There is no need to wait for the entire signal

to be received. In order to classify the signal at time t, the algorithm only needs the path

that ends at time t, i.e., the µ consecutive overlapping windows of size l that immediately

preceded time t. The values of µ and l are the same as those used in the learning phase. Let

σt = (σ (t− ν + 1) , σ (t− ν + 2) , . . . , σ (t)) be a sequence of ν signal values that were received

up to time t where σ (x) is the signal’s value that was captured at time x. σt is decomposed into

µ overlapping windows {ωj}µj=1 of size l. In order to classify {ωj}µj=1, an algorithm, which is

similar to Algorithm 1 in section 5.1, is employed. Algorithm 2 outlines the steps for classifying

σt.
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Algorithm 2 Classification phase

1. Application of FFT.

2. Application of dimensionality reduction using random projections via the matrices that

were generated in step 3 in Algorithm 1.

3. Construction of a path from the output of step 2.

4. Application of dimensionality reduction using the principle components that were calcu-

lated in step 5 of Algorithm 1.

5. Classification of the newly arrived sample according to its nearest neighbor in the reduced

space produced by the PCA.

Here is a detailed description of each step in Algorithm 2.

Step 1: The FFT is applied to each window in {ωj}µj=1. As in step 2 of Algorithm 1, the

logarithm magnitudes of the frequencies are saved and the result is denoted by {υj}µj=1.

Step 2: The dimensionality of {υj}µj=1 is reduced by random projecting it using all the random

matrices RM = {Υi}nRM

i=1 that were generated in step 3 of Algorithm 1. The projection

via a single matrix Υi produces a set of reduced dimension vectors
{
υ̃ij
}µ
j=1

.

Step 3: For each single matrix Υi, the vectors
{
υ̃ij
}µ
j=1

are concatenated into a path φi. Thus,

the output of this step is a set of nRM paths {φi}nRM

i=1 .

Step 4: The set of paths {φi}nRM

i=1 is projected on the first k principal components that were

calculated in step 5 of Algorithm 1. These embeddings are denoted by {ϕi}nRM

i=1 .

Step 5: Let Qi be a low dimensional learning set that was generated in Algorithm 1 by using

the random matrix Υi and let ϕi be the new embedded signal that was produced by using

the same random matrix Υi. The δ nearest neighbors of ϕi from the set Qi are found

and their labels are saved. The classification of the new arrived signal is determined

according to the label with the highest number of occurrences within the group of the

nearest neighbors that were gathered from the entire learning set Q = {Qi}nB
i=1.
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6 Experimental Results

The algorithm, which is described in Sections 4 and 5 is applied to a sample set of 180 short

recording. Each recording, which belongs to the sample set, was identified by an expert as

either a vehicle recording or a recording that contains background noises such as helicopters,

speech wind and airplanes to name some. In the given sample set, 120 recordings were vehicles

(cars, trucks and vans), while the other 60 recordings were of background. The recordings were

sampled at 2000Hz.

In order to analyze the performance of the algorithm, we applied a 4− fold validation. In

each iteration 90 vehicle recordings and 45 non vehicle recordings were used as a training set.

The test set at each iteration consisted of 30 vehicle and 15 non vehicle recordings.

The following parameters were used for the learning and classification phases: Window size,

l, was set to 1024 and the overlap between consecutive windows was 50%. The number of

random matrices, which were generated in Algorithm 1 step 3, was RM = 3. The number of

random vectors in each random matrix was r = 30. By using Johnson Lindenstrauss lemma

[16] for random projections, the dimension is reduced to O( ln(512)
ε2

), 0 < ε < 1. Setting ε to

0.5 implies that the dimension can be reduced to approximately 30. Figure 6.1 shows how the

embedding of the training set changes according to different values of r. Raising r from 5 to 15

and then to 30 improves the separation. Raising it beyond 30, to 45 and 60 does not improve

much. This implies about the dimension of the feature space.
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(a) r = 5 (b) r = 15 (c) r = 30

(d) r = 45 (e) r = 60

Figure 6.1: The embedding of the training set via the first two PCA coordinates, after random

projecting the dataset to different number of random matrices, r. The red points embed

windows that belong to vehicle recordings and the green points embed windows that belong to

background recordings. It can be seen that the separation improved as r is raised from 5 to 30,

and stays quite stable for r = 30, 45 and 60.

The path length µ, defined in Algorithm 1 step 4, was set to 5. This parameters depends on

the sample rate and window length and it should grow if l is set to 512. The number of principal

components used in step 5 in Algorithm 1 was k = 5. Figure 6.2 shows the spectrum of the PCA

eigenvalues. It can be seen that the first two PCA coordinates are the most important, but

setting k = 5 improved the results. This parameters was determined empirically after testing

various values of k on a set of vehicles recordings that were taken in convenient environmental

conditions.
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Figure 6.2: The distribution of the PCA eigenvalues.

A new point, which is embedded online by Algorithm 2 into principal components, is clas-

sified according to its δ = 7 nearest neighbors. This parameters was determined empirically. It

was tested on a set of vehicles that were easy to detect. Figure 6.3 shows the classification of

a car and a truck that pass by at t = 40 and t = 50 seconds with three different values of δ.
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(a) δ = 5 (b) δ = 7

(c) δ = 11

Figure 6.3: Classification of a car and a truck that pass by at t = 40 and t = 50 seconds

with three different values of δ. It can be seen that when δ is set to be 5 in (a), the vehicle

classification percentage is smaller than 1 at all times. On the other hand, setting δ to be 11

in (c) generates a false-positive classification at the beginning of the recording. Setting δ to 7

( in (b)) yields the best results for this recording an for a larger set of simple test recordings.

Table 1 presents the averaged results in percentages of four confusion matrices. We see

that the correct vehicles detection rate is very high while the correct background detection

rate is lower. The cause for this is both the large recoding types diversity that are classified

as background and the relatively small number of background recordings. The correct average

detection rate for the test datasets is 86%.
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True class

Predicted class

vehicle back

vehicle 95% 5%

back 23% 77%

Table 1: An average of the four confusion matrices, which are generated for each four-fold

application of the algorithm. The values in the confusion matrix are given in percentages.

The results are compared with another vehicle detection algorithm, which uses wavelets

rather than random projections as a feature extraction method. The classification is achieved

via the application of PCA. The feature extraction steps are similar to those that were used in

[21]. The classification in [21] was achieved by the application of Diffusion Maps. In order to

compare directly with the presented method, we use PCA as a classifier in both algorithms.”

1. Application of the wavelet packet transform, which uses spline wavelet of order 4, to each

acoustic window.

2. Calculation of the energy distribution of the wavelet coefficients by summing the coeffi-

cients in every frequency band in each block.

3. Every 5 consecutive segments are averaged to achieve noise reduction.

The 4-fold cross validation is applied to the same sample set. The confusion matrix are

presented in Table 2. The average correct detection rate for the test data sets is 84%.

True class

Predicted class

vehicle back

vehicle 88% 12%

back 20% 80%

Table 2: An average of the four confusion matrices, which are generated for each four-fold

application of the wavelet based algorithm. The values in the confusion matrix are given in

percentages.

These results emphasize the strength of the random projections as method for feature ex-

traction. The results using random projections are slightly better then those of the algorithm

which uses wavelets.
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7 Conclusions and Future work

We presented a two-phase algorithm that detects vehicles according to their acoustic char-

acteristics. Every acoustic signal was decomposed into overlapping windows and dominating

features were extracted from each window by using random projections. Short term dynamic

paths were then constructed from sequences of features that were extracted from consecutive

windows. In order to detect the vehicles, these paths were embedded into a lower dimensional

space using PCA. The online classification of new signals was obtained by employing similar

steps.

The results, which were presented in section 6, were based on a relatively small training

set. The experiments indicate that the accuracy of the classification is affected by a number of

factors:

The size of the training set : Using a larger number of recordings during the learning phase

provides a more reliable training set which results in a more accurate detection.

Coverage of the test sample set : Coverage of the test sample set: The training set should

include a large variety of background noises that are typical to the detection area or oth-

erwise discrimination between background noises, which are not included in the training

set, is not guaranteed. This fact is reflected in the results that are presented in Tables

1 and 2. The correct vehicles detection rate is high, since the dataset included a large

number of vehicle recordings examples. The large variety of background noises, which

may change with time and are more difficult to gather for the training set, affected the

correct detection rate of non-vehicle acoustic recordings

The introduced algorithm is generic and can be applied to various signal types for solving

different classification problems.
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