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Periodic Splines and Wavelets

VALERY A. ZHELUDEV

ABSTRACT. We present new computational techniques named as Spline
Harmonic Analysis (SHA) and its applications to wavelet transforms. SHA
is a version of Harmonic Analysis (HA) based on periodic splines of de-
fect 1 with equidistant nodes. The discrete Fourier Transform (DFT) is a
special case of SHA. The continuous Fourier Analysis is the limit case of
SHA as the degree of splines involved tends to infinity. Thus SHA bridges
the gap between the discrete and the continuous versions of the Fourier
Analysis. SHA can be regarded as a computational version of the har-
monic analysis of continuous periodic functions from discrete noisy data.
We demonstrate this on the basis of periodic splines wavelet transforms of
periodic functions., The SHA approach to wavelets yields a tool for con-
structing a diversity of spline wavelet bases, and a fast implementation of a
decomposition of a function into a fitting wavelet representation. Via this
approach we are able to construct wavelet packets {WP) bases for refined
frequency resolution of signals.

‘1. Introduction

We present new computational techniques named as Spline Harmonic Analysis
(SHA) and its applications to wavelet transforms. The starting point for this
work was motivated by the papers [2], [3] by C.K.Chui and J.Z.Wang on spline
wavelets. Once we have at our disposal a finite set of functionals of a function
under consideration and any information on regularity properties of this function,
usually, the best we can do is to approximate this function by an appropriate
spline. This spline can be a polynomial but need not be. Then, as a matter of
fact, processing the function is processing the spline.

Harmonic Analysis, in particular the Fourier Series is a powerful tool for solv-
ing many problems, especially the associated with the operators of convolution
and of differentiation. But it should be emphasized that this apparatus is not
quite suited for an analysis of a function of finite order of smoothness from dis-
crete noisy data because of at least two reasons: 1) Basic functions of the Fourier
Analysis — the exponentials are of infinite order of smoothness; 2) The practical
computation of Fourier coefficients poses a lot. of problems. The alternate version
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340 VALERY A. ZHELUDEV

of HA — the Discrete Fourier Transform (DFT) is HA of discrete data without
taking into account regularity properties of the function under study. More-
over, it is peorly suited to the operations of differentiation and of continuous
convolution.

Therefore it is desirable to have a version of HA which operates in spline
spaces of appropriate smoothness, moreover the ” Fourier coefficients” in their HA
should be computable immediately from discrete data. Such analysis promises
remarkable benefits for dealing with splines. SHA to be presented is a version
of HA based on periodic splines of defect 1 with equidistant nodes. DFT is
a special case of SHA. The continuous Fourier Analysis is the limiting case of
SHA as the degree of splines involved tends to infinity. Thus SHA bridges the
gap between the discrete and the continuous versions of the Fourier Analysis,
SHA can be regarded as a computational versions of the harmonic analysis of
continuous periodic functions from discrete noisy data.

SHA techniques had been employved advantageously for solving some problems
of spline functions [13] as well as for regularization of ill-posed problems arising

“in the numerical solution of some differential and integral equations connected
with the convolution operator ([14]-[17]). However these topics are beyond of
the scope; of this paper.

Here we discuss a recent application of SHA techniques, for the basis of peri-
odic splines wavelet transforms of periodic functions. SHA approach to wavelets
yields a tool for the constructing a diversity ‘of spline wavelet bases, and a fast
implementation of a decomposition of a function into a fitting wavelet repre-
sentation ;and its reconstruction. It is worth noting that this family of bases
contains periodizations of compactly supported spline-wavelets by Chui~Wang
[2] and the Battle-Lemarie type orthonormal wavelets (cf. (7], {1]). Via this ap-
proach we are able to construct wavelet packets (WP) bases for refined frequency
regolution of signals.

We consider first the basic notions of SHA and define the ortsplines (OS).
Then, after an outline of the spline wavelet analysis of periodic functions, we
introduce the notion of father wavelet (FW) and suggest a diversity: of father
wavelet bases. Next there introduce a two-scale relation and ortwavelets (OW).
Then we discuss mother wavelets (MW) and a diversity of mother wavelet bases.
In section 7 employing the techniques developed we construct WP. Further we
describe the decomposition of a spline into a wavelet representation by means of
ortsplines and ortwavelets and its reconstruction.

Abbreviations:
DFT — Discrete Fourier Transform,
FW — father wavelet,
HA — Harmonic Analysis,
MW —— mother wavelet,
08 — ortsplines,
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OW — ortwavelet,
SHA — Spline Harmonic Analysis,
WP — Wavelet packet.

2. Concept of Spline Harmonic Analysis

We introduce some notions. Throughout N = 27 and ch stands for ﬁ;_ol.

Denote w = exp{2mi/N). The inner product of functions invelved is

1
<fig>=1/N f F@)Twdy, 112 =< £,7 > .

Direct and inverse DFT of a vector a = {ax}5 ' are

(2.1) Ti(a) = 1/N Zw g, ap = Lw”kTJ a),

Throughout ,D7 will denote spaces of 1-periodic splines of degree p — 1 and of
defect 1 with their nodes in the points {k/27},  =0,1...,k=0,...2/ ~ 1. The
central ﬁgure of most spline schemes is the B-spline. The function ,BY(z) =
NPVE(al Y/(p — 1)) where z; = 0.5(z + ||), is the B-spline of degree p — 1
with nodes at the points {k/27}. The symbol denotes the descending difference
with the step 1/27. Note that the support of B-spline supp ,%B7(z) = (0, p/27).
The symbol ,M7(z) will denote the 1-periodic B-spline of degree p — 1:

(2.2) IM:J Z SBJ (z+1)}) = i o Tinp/N (Sln.ff,:?j(rN)) e2mine.

Ad=—c0 n=—0o0

Shifts of the B-spline ,M7(z) form a basis of the space ,D7. Any spline ,57 €
»D7 can be represented as follows:

(23) p5(2) = = D an Mz~ K/N).
k

This representation is the most suitable one for compuiing values of the spline.
To start construction SHA we carry out a simple transform. Denoting ¢ =
{g}¥~" and, exploiting Eq. (2.1), we write the spline as

(24) L8(z) = Z Mﬂ:»s—rc/f\f)Zw‘*"’“r»'r (q) = Zeﬁpmr(a:)
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(2.5) ymi(z) = % i oM (@ — k/NYw™
K
pMJ' (x—k/N) = Z pmi(m)w_rk .

™
. - : j .
& = THe), d=) &
T

Egs. (2.5) imply that the splines ,mi(z),r = 0,1,...,2 — 1 form a basis of

the space ,D7, and {&/} — are coordinates of a spline ,57(x) with respect to

this basis. These basic splines possess a variety of peculiar properties which can

be readily checked by reference to relations established in [2]. These properties

relate the splines { ;m(z)} with the exponential functions u,(x) = exp(2mirz).
First define a sequence which will be needed in what follows:

o0

sin{wr/N}? Z (=1 {m(r 4 IN)/N)7P

l=—00

J
Pu'r'

i
= %; > W™ MO (p/2N — k/N) pmi{p/2N).
k .

This is a strictly positive N-periodic sequence. The sequences pul were stud-
ied in [11], [12]. These can be computed immediately. The the following two
relations hold

(2.6) (me-: pm':j;) = 6p2p].

> pmi(2p/N + k/N) ymi,(2p/N + k/N) = &} (uh)*.
ko

Here &7, is the Kroneker delta. Clearly,
(2.7) | pmil|* = opu.

Eq. (2.6) implies, in particular, that the splines ,mi(z) form an orthogonal basis
of the space ,07. Therefore we call these splines as ortsplines (08S).

It should be pointed out that OS have been suggested in [6] where the or-
thogonality of O is established as well as the following property:

(2.8) pmid(x)/(2pui)V? — po(x),r = —Nj24+1,... ,N/2—1, as p — oo.

The techniques of SHA have been developed independently in [13]-[17] under
the name Spline Operational Calculus and employed for solving some ill-posed
problems.
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In addition to Eq. (2.8) it can be easily verified that an orthogonal projection
of the function €2™*, n = r mod N, onto the space ,D7 is the spline

: p
(e (BN 1

The spline i (x) = ,mi(x + p/2N)/u) is an interpolating one for the
function g, (z) in the sense that ,mi(k/N) = p.(k/N). Splines which interpolate
the functions p.(z) were suggested by Golomb [5] as linear combinations of the
Bernoulli polynomials. Because of uniqueness of interpolating splines, the splines
»1(x) coincide with the splines by Golomb. There are estimations in [5] which
lead to the relation phi(z) — p.{x),» = —N/2,... ,N/2, as p — oo. And of
course, »hi(x) — p,.(x) provided N — oo, as an interpolating spline.

Besides the properties mentioned above we mention three remarkable proper-
ties of OS. :

Property 1. ,mi(z + k/N) = ,mi(z)w"t.

Property 2. ,mi(z)® = N*(1 —w™")* ,_smi(z) € ,_,D. Note that the
spline ,_,mi(z) is a replica of the spline ,mi(z) in the space ,_,D7.

Property 3. Given a spline ;57(z) € ;D7 as .

j . .
v () D 0 o (),
k

the convolution is ,mi x ;87 (x} =, ,mi(z)9l € p + 1D

The Properties 1-3 implies that the splines ,mi(x) are eigenivectors of the
operator of translation at 277 and generalized eigenvectors of the operators of
convolution with any fixed spline and of differentiation. Therefore the expansion
of a spline ,87(z) with respect to the OS basis {,mi(z)}, can be treated as
a version of HA of a spline ,87(z) and, if the spline ,57(z) approximates a
function f, it can be looked upon as an approximation of HA of f. We name it
as SHA. DFT is a special case of SHA in the space 197, whereas, referring to
Eq. (2.8) we can assert that the conventional Fourier Analysis is the limiting case
of SHA in the spaces ,D7 as p — co. So, loosely speaking, SHA bridges the gap
between the continucus Fourier Analysis and the discrete one. The coordinates
of the spline ,59(x) : & = (,mi(z), ,S(z))/2pu] we may regard as a spectra
of the spline ,57(z).

The natural fields of application of SHA methods, as in the case of classi-
cal Fourier Analysis, are one — and multidimensional problems in which various
forms of convolution appear, including differential equations with constant coef-
ficients. We enumerate some of these fields.

a) Problems of spline approximation, namely: interpolation, quasiinter-
polation, smoothing, projection a function onto a spline space, error
evaluation.

b) Numerical solution of differential and integral equations concerned with
the convolution operator, including regularization of ill-posed problems
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arising, such as convolution integral equation of the first kind, inverse
problem for the heat equation, Cauchy problem for the Lapalace equa-
tion etc,
We will not discuss here these topics ([13]-[17]) but turn to a recent and
very promising application, namely to

¢) Wavelet Analysis of periodic functions.

3. Outline of the Wavelet Analysis

We first formulate the concept of multiresolution analysis (MRA) of the space
L2(T) of square integrable 1-periodic functions {[8], [10]).

DEFINITION. An MRA of the space L2(1") is a sequence of imbedded closed
spaces V7 (5 > 0) such that

M Vicvic...cvic...c L¥D).

(2) U.so V7 is dense in L*(T).

(3) VVis {constant functions}, f(z) € VI = f(2x) € VIt!, f(z) e Vitl =
Fw/2) + flz/2+1/2) € V7.

(4) dim V¥ = 27 and for any value of § there exists a scaling function ¢
such that its shifts ¢ (z) = ¢4(x — k/27),k = 0,1,...,27 — 1 form a
basis of the space V7,

Because of Property (1), the space V7 and be represented as V7 = Vi~ @
W31, where W71 is an orthogonal complementation of the subspace V=1 in
the space V7. It is called the wavelet space. Property (4) implies dim WJ-1 =
27-1. Properties (1), (2) entail the representation L*(T) = VO @ | J,5, W7.

As it is easily seen, the spaces ,D7 generate MRA of the space LA{(T) with
B-spline ,M7(z) as a scaling function. The space ,D7~! of splines based on
the sparse grid is subspace of ,©7. Define the space of wavelets »D771 as the
orthogonal complement of ,D~1 jn , D7,

The outline of a practical wavelet analysis of a periodic function is as follows.

1) Projection (approximation) of a function onto a spline space ,D7 C L*(T)
such that f — ,589(f,z) € ;7.

2) Decomposition of the spline

S (fx) = SN f,z) © WL
where 87" tin, D71, Wil e ;D71
Then the spline ,57~! is decomposed in a similar way:
ij*I(f,:c) = ijﬁz(f, Ty ® ij*Z.
Continuing this procedure in accordance with the pyramidal diagram

(3.1)
T’Sj(m) - ij_l(.’E) — ij_2(:C) e — pSJ—m(w)

N pWITHE) NG GWITR() N e N oW ()
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where m < §, we obtain the representation:
(3.2) pS(fmy =8 Wile Wit Wi,

If there is a need for a refined frequeﬁcy resolution one can decompose a spline
2W?2(f, z) into “low frequency” and “high frequency” parts

pWS(fi x) = PWIS(f::E) ®PW}‘:(f:37)

and continue this process with ,W( f, z) or ,W3(f,z) or both of these together.
Then there appears the so called wavelet packet (WP).

3} Multichannel processing the spline represented in a wavelet (or WP) basis.
The appropriate choice of a wavelet basis is of prime importance for successful
processing,.

4) The reconstruction of the spline processed from its wavelet representation
in accordance with the reciprocal pyramidal diagram

pSTM(z) oG8y > 897 (z) - p8i(a)
PVITME) S W) S W ()

We will discuss in this paper the following problems:
a) Bases in the space ,Dv, ,BY, , D¢, ,B7 (the latter two are WP spaces).
b) Corresponding procedures of decomposition and reconstruction of splines.
¢} Projection of a function onto a spline space.

(3.3)

4. Father Wavelets

We present in this section a family of bases of the space ,0". In what follows
all splines involved are of degree p and usually we omit the index ,-.

DEFINITION. We call a spline “¢/(x) € ,D7 as father wavelet (FW) if its
shifts %/ (z —k/27),k = 0,1,...,27 —1 form a basis of the space »D7. Two FW
are regarded as dual ones if

(7~ k/2), %7 (- = 1/27)) = 6.

We give necessary and sufficient conditions for a spline to be FW and for two

FW to dual. '

THEOREM 4.1. A spline
. - J . .
(41) () = 279/ 3" Ylmi(a)

is an FW if and only if *pl # 0,¥Yr. Two FW are dual if end only if

(42) ‘ sz-gﬁz-Zpuf: =1

The following assertion relates the coordinates of a spline with respect to a
FW basis with those in the OS one.
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THEOREM 4.2. Let
j
() = 272 3 7 plmi(a)
. r
be an FW and suppose that o spline S7(z) is expanded with respect to two bases
§(z) = gl ¢ (@—k/N) = nimi(z).
Then
. . J . . . . J -
49 =Yl =Y
s k
Remark 1. If FW %7 is dual to FW %7, then
= (5, ¢ ~1/2)).
Remark 2. Eq. (4.2) implies that to make the change from an FW basis to
the OS one or vice versa, one has to carry on a DIFT. Of course, one should use

a fast Fourier transform (FFT) algorithm for this purpose.
We give some examples of FW.,

Examples
1} B-spline. Suppose !p? = 1, then we can derive immediately form
Eq. (2.5) that '¢/(x) = 2732 M7 ().
2) FW dual to '¢/(z). Suppose %pf = 1/g,u?. Then, in accordance with
Eq. {4.2), the FW %7 (z) is dual to ¢/ (z).

Note that if $7{z) = "7 %¢] %/(x — k/N), then
. o PN .
240 — 97912 / (5 — k/N)MI(z) da.
0

Provided that §7(z) = §%(f, ) is an orthogonal projection of a function
f onto the spline space ;D7 we have

‘ /N
PP ]p & — k/N)YM (z) da.
V]

3) Setting %pl = (2pud)~1/? we obtain the self-dnal FW %7 (z) those shifts
from an orthonormal basis of ,D7 (see [1]).
4) Interpolating FW. If we set *pl = 1/,uf then the FW

97 (@) = 279/2, L (),
where ,L7(z) is the so called fundamental spline, namely

. 1 ifk=0
7 =
pL7 (k4 p/2) {0 k=1, ,N~L
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Therefore the spline

| SH{z) = izkaj(m — k/N)

k

interpolates a vector {zx}. To be specific, 7 (k/N + p/2N) = 2, Vk.
In what follows w/ will stand for pul.

5. Two-scale Relations and Ortwavelets

The so called two-scale relations link basic vectors of the space V7~1 with
those of the space V7. These relations are fundamental for any wavelet con-
struction. We establish these relations for ortsplines where these relations have
an exceptional simplicity.

THEOREM 5.1. There hold the two-scale relations forr = 0,1,...,27"1 —1;

(5.1} mi"'(z) = blm](z) +b]

LNy M ngp(@) B =27+ w TP
The following identity follows immediately from the latter relations:
ul ! = gymi N (2p/N) =

472w (1w ™) (1P w0

The two-scale relations enable us to construct an orthogonal basis of the
wavelet space 8771,

THEOREM 5.2. There exists an orthogonal basis

{wi @)} of pB7 C D

(5.2) wi™H@) = ol mi(x) + aly yjn M (@),

o J J =P, (1 — TVt
@ =W Gy Uy npy =270 (1-w )”7-+N/21
moreover
i—1 j—1y . di—1
(Wl wl ™) ="

-1 _ 47 4, F j—1 . j—1 ol
where v = ulu | o ul G5 a2 -periodic sequence.

We. name the splines wi~!(z) as ortwavelets (OW).
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6. Mother Wavelets

We present here a family of bases of the space p‘,Bj“l. The contents of this
section are related to Section 4 where we introduced the FW.

DEFINITION. We name & spline %/=!(z) € B/~ as mother wavelet (MW)
if its shifts %7 Y(x — k/27° 1), K = 0,1,...,2~! — 1 form a basis of the space
»B77L. Two MW are regarded as dual ones if

(W71 = k/27), W~ 1/2)) = 8.
We give conditions for a spline to be MW and for two MW to be dual.

‘T'HEOREM 6.1. A spline
=1
(6.1) W~ z) = 2792 " Wi ()

is an MW if and only if 5] # 0,Vr. Two MW are dual if and only if
(6.2) 373_1"r,~?“12,,u£“1 =1

The following assertion relates the coordinates of a spline with respect to a
MW basis with those in the OW one.

THEOREM 6.2. Let
j—1
W~ z) =279 Wi ()
=
be a MW and spline W71 (z) € ,BI 1 is expanded with respect to two bases

j-1 Cog=1
Wil(z) Y Wl @ — 2k/N) = > n 7wl (z).
k r

Then
. j71
spifl — 2(17‘7)/22(.0274!‘:?7;?‘_1/373_1,
§—1
(6.3) ot = STf_IZ(I_j)/ZZspflw“%'k.
k

Remark 3. If MW %67~1 is dual to MW %71, then
P = (S, N = P h),
Remark 4. Egs. (6.2) iniply that to make the change from an MW basis to

the OW one or the reverse change, one has to perform a DFT.
"~ We present some examples of MW,

Examples
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1) B-wavelet. Suppose '77 = 1. The determining feature of the wavelet .
%7 1(z) is the compactness (up to periodization) of its support. To be
precise. supp 7 (z) C ({-2p)/N, (2p—2)/N)( mod N). The wavelet
201-3)/2 Wpi—1(y) appears as a periodization of the B-wavelet suggested
by Chui and Wang in [2].

2) MW is dual to %7~ (z). Suppose 77 = 1/vJ 1. Then, in accordance
with Eq. (6.1), the MW %07 {z) is dual to 47 1(z).

Observe that if $7(z)} = §7 () ® Wi 1{z) and

Wil (z) = E?pi W~ a - 2k/N)

then
- (2p-2)/N -
i =f S9(x — 2k/N) 6 (2) daz.
—2p/N
Provided that $9(z) = §7( f, z) is an orthogonal projection of a function
[ onto the spline space ;D7 we have

) (2p—2)/N )
= [ PNy ey
—2p/N
Loosely speaking, expanding a spline with respect to the basis { %/~ (x—
2k/N)} can be looked upon as a spatially local spectral analysis of the
spline.

3) Setting 377 = (vi7!)7'/2 we obtain the self-dual MW %7~ 1(z); those
shifts from an orthonormal basis of ,97~! This MW appears as a peri-
odization of the Battle-Lemarié wavelet ([1], [10], [7]).

4) Cardinal MW. If we set 479—1 = 1/0i~! then obtain the MW

hpi=l(g) = 2(1—3')/2239133' (z+1/N)®),
where 9,7 () is the fundamental spline of degree 2p — 1 introduced in
Section 4. 2(1=9/244i-1(3) is a periodization of the cardinal wavelet
suggested by Chui and Wang in [3].
7. Wavelet Packets

To obtain a refined frequency resolution we use the so called wavelet packets
(WP) ([9], [4]). We construct WP on the basis of OW.
We call the splines

i (w) = blwi (@) + b awihale) € B,
r=0,1,...,2772 — 1, low-frequency OW (LOW) and the splines
() = Yol @) + Ty g w4 (2) € B9,

j 1 2 1
IG‘J 2T bi+N/4”wr+N/4“2 =2 'pw27‘(1 - r)p J‘+N/4’
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r=0,1,...,27°? — 1, high-frequency OW (HOW).
"THEOREM 7.1. The following relations hold:
(w2 byl =2y = §SWI=2, (Td=2 Myi=2) — g3 MyI-2

where
WP o= e el 1"‘||b7+1\r/4“2 r+N/4
= (cos(2nr/N))*Pvi~! | (sin(2nr/N)})? pvr+N/4,
IR = TPl )] G1+N/4|| '”T+N/4
= (sin(2ar/N)* ol Wi}, 0) + (sin@ar/N)) ol 1) (077,

Moreover, ("wi=2,'wi=2) = 0¥r,s. 27 P (1 — w2 )? v;{;}\r/4,
COROLLARY 7.2. The splines {wi=2(z),wi~2(x)} 1 form an orthogonal ba-
sis of the space , 8771,

These results enable us to decompose the wavelet space ,B7~! into an or-
thogonal sum of spaces. To be specific, we define the space B892 ¢ B!
as 'B7°% = span {wi2(z)}{? and the space "B 2 C B! a5 PPBI-2 =
span {"w] 2(z)}42. Then it is readily seen that

prj71 — l%ij @ h%;j-—Q.

It is reasonable to name the space ‘B7~2 as the low-frequency wavelet space
and the space "B7~? as the high-frequency wavelet space.

If needed we can decompose in a similar manner one {or both) of the spaces
tR7 2 R8I -2 into orthogonal sums of spaces "B73 BT dandthBi—3 phhpi—3
respectively and iterate this process. So we have the diagram.

» B!
e N
lggi-2 @ hegi—2
(7.1)
Ve N\ v N
ltgi—3 G Mpi-3 g lhpi-i g hhggi~3

As in the precious sections we can find splines whose shifts form bases of-the
spaces ‘BJ~2 and "B7-2, For example, we call a spline &7~2(z) € BI~2 4
low-frequency MW (LMW) if its shifts ‘7 %(x — k/2772),k = 0,1,... ,207 2~ 1
form a basis of the space. Tow LMW are regarded as dual ones if

(a7 — kf20), L2 — 12y = 6L,
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THEOREM T7.3. A spline
(72) L g Ly

is an LMW is and ondy if 7372 # 0,¥r. Two MW are dual if and only if
Li=2lri=2 _ f75-2
Note that, setting 77~2 = 1, we obtain the LMW of minimal support, so to
say, B-LW.
Similar considerations can be conducted in the space {372
8.  Decomposition of a Spline into Wavelet Representation

We discuss here the decomposition of a spline S(f,z) € ,97 approximating
a function f into the orthogonal sum

5 (fiw) = pST N f,2) ® W (f, ).

where 87 1(f, z) € , DI~ WIi~l(f,z)e ,Bi 1,
Assume that the spline is expanded with respect to the OS basis

(8.1) S (f,m) = &mi(x).

The coefficients £2-1, 77! are needed for the representation

§7(4,2) Zsf nd~ 1w)+27r" Ll o)t

To obtain these coefficients we should form inner products (S7,m?~1) and (S7, wi~1)
and use Eq. (5.1}, (5.2). We then obtain

THEOREM 8.1. The following relations hold:

T = YT € bl s ),
wmt o= ()" (Eraiui+’?r+N/2“r+N/2ur+N/2)’

Then the procedure of decomposition is iterated in accordance with dia-
gram (3.1). Formulas of Section 7 enable us if necessary to subject the splines
WI~1(f,2) to a similar decomposition which leads to WP.

Remark 5. For analyzing and processing a signal we usually need the repre-
sentation of the splines W7=1(f, z) in an MW basis {%/~"(z—%/27-1)}i~1. Be-
cause of (6.3) and (6.4) we can maintain that the basis of shifts of MW %7 ~1(z)
which is dual to B-wavelet )7 ~1(z) appears as the most feasible basis for spa-
tially local analysis of a signal. For changing from the OW basis to an MW one
we employ Eq. (6.2).
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We now discuss the problem of obtaining the representation (8.1) which is the
starting point for the decomposition.

1. If we construct 57(f,z) as a spline interpolating the function f, then
& =T(Dped, [ = AN +p/2N)}

2. The most natural choice of the spline S7(f,z) for wavelet algorithms is
the original projection of the fupction f onto the spline space »07. In this case
& = TI(F) o, ¥ = {F},

. /N )
Fi = fo (@ — k/N)YM (z) da.

Once we have at out disposal samples of the function f we can suggest the
following approximate formula for computing the. values Fy, which follows from
some results established in [18].

THeoreM 8.2. If f € CP and t € [0,1] is any fized value, then

P
Fl =273 " f((l— k+)/N)M((1 +)/N) + O(NP).
=0

Remark 6. In the case when a function f is of less smoothness than CP one
may use that fact that B-spline ,B?(z) (recall that the spline ,M7(z) is a peri-
odization of ,B7(x)}) is the probability density of the sum of p random variables
uniformly distributed on [0,1/N]. Therefore F;;’ can be looked upon as mean
values of the function f(z — k/N) with respect to the distribution ,B(z) and

can be computed by means of the Monte Carlo Method.

9. Reconstruction of a Spline from its Wavelet Representation

After a processing a spline §9(xz) € »P7 in a wavelet basis it is required to
reconstruct this into the standard form suvited for computation.

§(2) = ~ 3 MY (@~ k/N)
[

First we should change from FW-MW bases to OS-OW ones in accordance
with Eq. (4.3), (6.2) exploiting in the process the FI'T techniques. So suppose
we have two splines : '

it
59 g) = Zmﬁ‘l(m)fg"le ot
i-1
WiHe) = Y wiT'(@)ni T e B
™

Let $9(z) = 871 @ W7~1(z). We are able to prove the following assertion.
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"THEOREM 9.1. The following relations hold:
_ 1~ . : i
Sz) = D aGMi(z—k/N) = &l,mi(z),
k S
- - . . . : J .
§ = B8 el gl =) Wl

This means that, given the representation of a spline in the form (3.2), it
is possible to reconstruct it into the conventional form (9.1) in line with the
diagram (3.3).

The algorithm suggested allows a fast implementation.

Remark 7. To compute values and draw a spline

j—1

Wil (@)=Y wi ™ (@) pl T € 87!

one may carry on the suggested reconstruction procedure assuming &7/ = 0.

~

10. ancluding Remarks

1. The techniques suggested can be expanded immediately to the multidi-
mensional cage. _

2.'One can develop a whole-azis version of the SHA which is related in some
sense to the Fourier Transform. By means of this SHA version we are ahble to
construct the whole-azis wavelet analysis.

-8, The relations of the wavelet analysis established in the paper by means
of the SHA approach as well as some results of the theory of local splines [18]
enable us to construct local wavelet a]gorlthms processing a signal in real-fime
conditions.

4. Since OS are generalized eigenvectors of operators of convolution with any
fixed spline and of differentiation, the approach suggested is natural for solving
problems where these operators are involved,

All these topics will be discussed in subsequent papers of the author,
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