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Periodic smoothing splines of arbitrary degrees and deficiency 1 on a uniform grid are studied.
The method proposed for constructing such splines, based on the discrete Fourier transform,
obviates the need to solve systems of equations for the coefficients and yiclds explicit expres-
sions. This made it possible to investigate the approximating and smoothing propertics of
splines and their derivatives. To illustrate the applications, formulae are derived, by means of
which it is possible to reduce the data arrays to be processed and the computational load

involved in using fast Fourier transforms. .

INTRODUCTION

To CONSTRUCT smoothing and interpolating splines one usually has to solve systems of equations
with band matrices, in which the number of diagonals increases with the degree of the spline. Thus
the construction of high-degrec splines, particularly in many dimensions, involves cumbersome
computations. It is due to the lack of an explicit representation that relatively little progress is being
made in the investigation of the approximating and smoothing properties of smoothing splines and
their derivatives. ¥ o

- However, the situation becomes simpler for periodic splines of deficiency 1 on a uniform grid. It
was pointed out in [1] that, since the matrix of the system to be solved in computing the coefficients
of periodic interpolating splines is the circulant, there are explicit expressions for the coefficients in
terms of the discrete Fourier transform (DFT) (see also [2, 3]). Similar formulae have been de-
veloped by others. Explicit formulae for calculating cubic periodic interpolating splines — based;
however, on different ideas — were given in [4]. Formulae for the characteristic functions of cardi-
nal interpolating splines have been given in [5]. In the same paper, and also in [6-8], these formulae
were studied in detail, which proved rather useful for investigating periodic splines. Formulae for
calculating cardinal interpolating splines were also given in [5-8). Incidentally, such schemes were
published even before, long before Schoenberg first introduced the concept of splines [9]. .

The technique proposed in this paper is based on a special operational calculus in the space of
periodic splines. It enables one, in particular, to obtain explicit formulae for the coefficients of
smoothing splines of arbitrary degrees. The usc of DFTs makes it possible.to apply fast Fourier
transform (FFT) algorithms to reduce the volume of computations. This makes it possible to deter-
mine the optimal value of the smoothing parameter without having to calculate spline coefficients
explicitly at each iteration, as is necessary in the usual algorithms. The prospects for the use of this
technique are in fact considerably greater (see [10]). : N

The availability of an explicit representation for splines makes it possible to investigate a number
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of their properiics. Asymptotic formulas, in terms of powers of the step size, are obtained for the
remainder term in approximations of functions and their derivatives by smoothing splines. Sharp
estimates are derived for the variances of these splines when the grid data are random variables.

If the components of the vector z={z,}; ~* are the grid values (possible with errors) of a
sufficiently smooth function and the FFT of z is to be computed, the use of splines of even degrees
yields a marked reduction of the data blocks to be pmccsscd and the volume of computations. Error
bounds will be derived for this technique.

Though the results outlined below pertain to one- -dimensional splines, they can all be generalized
directly to several dimensions.

1. PRELIMINARIES

1. Notation; some known facts

Let w=¢?""¥ and let N be a natural number; v,= 2 sin (wn/N), V,=[sin (ma/N)] X (wn/N)~*. The

DFT of a vector a={a,}§ ' is
' : Zl
T.(a) =- w ",
(@) N& *

Throughout this paper the symbol 3, will stand for 1. The norm of the vector a is
. 1 2 ]"‘
a =—-=[v——-- axt
fall=] 57 2w 2

The following properties of the DFT are known:

Oy = 2 w™T. (a), . .1y

7 Liabie LI,@T®) <h>=>nau==-2|ur @i w2

We introduce two grids over the x axis: §= {£k=k/N}, EP = {x,, =(k+ p/2)/N}. Let &7 denote
the. space of 1-periodic splines of degree p—1 and deficiency 1 with nodes at the points x/. The
symbol M?(x) will denote the central 1-periodic B-spline of degree p—1 (see [11]):

Mo(g)em Y, V,oeins K

- 00

The support of the B-spline is

suppMe(z)= | @2, == (k+p/ (2N), k—p/ (2N)).

A=—o0

In the interval {3 we have
M2 (2)=N?O? (z. " H(p—1)1), 2,=0.5(zt|z]).

The symbol 9, as usual, denotes the central difference with step size 1/N. We set
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My (2) = %Z‘ WM (ztm,), (1.4
-1 1
Mr (U@} T (M) 2 Y el (). (15)
Obviously,
P, (25). (L6)

The functions u,” were investigated in [S~7)]. Recurrence relations and explicitly formulae are avail-
able (see [6]) for the first values of p. The following representation holds for arbilrary p (see [6]):

!
uﬂ”=_2. went,  I=[(p+1)/2], Yor=1. .7

om0 .

It is important for our purposes that
0<up_,-—-u~ﬂg~<.u,,’”€un”é=i, #p=XK,[2/n]?, ‘ (1.8)

where K, is Favard’s constant (see [7]).
If g{x) is a 1-periodic continuons function and g= {g(x,) }3 =%, there is a connection between the
Fourier coefficients of g:

caf{g)= 5 e~ nvg (y)dy,

0

and the DFT of the vector g:

fﬂ (gl) Z Cn;ml(g)-

les—o0

This formula, together with (1.4), (1.5), imply the relation

oo .u'np= Z an":HN— . . : (1'9)
T 00
2. Auxiliary relations
Any spline in &° may be written as
@) =1 Yl (w-m). (.10)
. L : . . .

It is evident from this formula that the spline $¥() is uniquely defined by its order p and its coefficient
vector = {q,}3~'. Let us put {7,(q)}¥~'=Q(S”) and call this vector the transform of S7(x). The
correspondence S*(x) «»Q(S”) is one-to-one: given any vector Q it is easy to recover S¥ by using (1.1)
and (1.10).

Put 8#= {$7(x,)}§~*. By (1.10),

4 1y
52 (@) =7 D () =4 3 0. 21,
k k

This is a discrete convolution and, by formula (1.3),
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T.(8?)=Ta(@us. (1.11)

Formulas (1.10) and (1.4) now yield expressions for the Fourier coefficients:

i

a(87y=  etmims? (y)dy— o w12)

1

1
N Zu s j et e (y—z ) dy=Ta (@) Va?.
k [ ) ]

For the derivatives
€ (7)) — (2min)* T (q) VP (iNv, ) T (@) VS . (1.13)

The following theorem is an obvious result of (1.12) and (1.13).
Theorem 1. If §” € &P, then the derivative (5°) € &*~* may be written in the form -

1
5@ = D h (o).

Moreover, if we put 87={($7(x )9} ', ¢’ ={q}7 "', then
Tol@)=TolQ) (iNv,),, T (S™)=To(q) (Vv )ul™" (1.14)

Let §'€ &' be a spline such that
{
8{z)=— Zr,M' (z—as).
N k

There are valid analogues of the Parseval equality. By this equality,

-]

jSP(x)S‘(x)dm= Z Ea (5" en (SP)= 2. T (DT () Vi =

= 50 Fr e 05

= ZTn(Q)m 2 Vf:iH#Z Tn(q)mu:‘ﬂ

T3 T e O »

by (1.12) and (1.9). Hence, in particular, using (1.14), we obtain

' S
s @eraz= Y 1T @) 10 (o). (1.15)
0 o n :
The discrete “Parseval equalities” now follow from (1.2) and (1.11):
j—vZ (o) S ()= ML ROTAS
Hence, in particular, it follows that . .
S @=L T @

These formulae will be used to construct and study smoothing splines. .

Je——
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2. THE CONSTRUCTION OF SMOOTHING SPLINES

Suppose we are given a vector z= {z,}§ 1.
Problem 1. a. Find a spline $?(x) € & that minimizes the functional

) .

1($")=N-* [ [87(z)™]* do
LU 7
provided that
' 1
E(S?) —— 2 [S?7(x.) —z:]<e’.
N~ -

b. Find a spline $*(x) € &7 that minimizes the functional
Jo(8P)=E(S*) +pI(S7).
¢. Find a spline §7(x) € & that satisfies the conditions
S*(z,) =2, k=0,1,...,N—-1,

Solution of problem 1. b. Write the unknown splines 87 (x) in the standard form (1.10). By (1.15),
| 1(5)= Y | To(@) [0 oo, |
and formulae (1.2), (1.1_1) yield
B8 = | Tn( @ 1) |2 e

The DFT of the vector a may be written in the form T,(a)=C,(a)—iS,(a), where C,(a) and S ,(a) are
the cosine and sine DFTS, respectively. We now write the functional in the form

14(8%) = E(87)+pI (57)= X, pLCa (@ +Su (@) us™ ™ v+

FICo (@) 1"~ () I*+IS0 (@22~ () ).

It-is easy to-see that J (§%) will be a minimum if

- Co(2) o Sa(@uat |
Colglp)) =~V g (q(p))m ot (2:2)
(g(p)) 4.0) q(p)) 2.00)
An(p)____pv;mnu:ﬂ’.—m)_l_(unp)l. (2.2b)
This implies the following theorem, -
" Theorem 2, Th;: following spline solves problem 1b:
_'Spp('z,a:)='=71.,r2q,.<pmv(:c—x..), q(p)={a:(e)} ", @23)
- ' . . I i’ . : .
T (q(p)) =T (2) un®/An(p), e

where A,,(p) is give'n.by formula (2.2b).



154 i V. A. ZHELUDEV

Solution of problem 1a. Put e(p)=E(S 7).

Lemma 1.

: O ON—t R nﬂﬂ'.'T,;\ :(p-m} . ,
(o) = 3y L1 Aiz()p";z | @5)

el

The function e{p) is strictly monotone increasing, and

- -1
e(0)=0, lim e(p)=&é—|z|*—%*, z= v E 4 T (2.6)
proo "
Moreover,
o L G Lo W N i BX CO T
= = = 2.
e(p) ; (12,7)* - g (%p—1)? (2.7

2

p .
s e 62’" 3=e .
(xp—|)2“ z” l(p)

Proof. The truth of (2.5) follows in an obvious way from (2.1), (2.4). Relations (2.6) and (2.7)
follow directly from (2.5). It is not difficult to calculate the derivative

2p] vat T, (2Yui" ™ u,?|? -

This proves the lemma.

Theorem 3. Problem 1a has a unique solution for any value of & such that
e 8, (2.8)

This solution is the spline S/ (z, i) constructed using formulae (2:2)-(2.4), where P is determined
from the equation e(P) =&’

Proof. Let 1, denote the set of splines in &7 that satisfy condition (2.8). If §,=1z, then E(S,)=¢
and therefore S,@11,. Suppose that inf.I(S) in the spacc & is achieved by a spline o.and E(c)=
I <g’. Obviously, there exists a neighbourhood C(g) in the n-dimensional space &7 such that for
any $ € C(o) ‘

_}\-,. Y (s —at@) 1< @-r1)2.

Hence it easily follows that S € 11, But since S,&11,, it follows that there is a spline S, in this
neighbourhood for which I(S,)<I(c). Therefore inf I(S) in &? cannot be achieved for a spline with
E(S)<#? so E(o)= g% But by condition (2.8) the equation e(P) = £” has a unique solution and for the
corresponding spline we have E(S#) = &%, Consequently, S¢¥(z, x) Is a solution of problem 1a.

Remarks. 1. If e2]z]), the solution of problem 1a is not unique. Any constant @ such that N™'Z,(¢ —2)’ <
&’ is a solution. In particular, one can take a=%.

2. Put t=1/p, b(v)=e(1/7). It is readily verified that b(t) is monotone decreasing and convex from below.
We can therefore use Newton’s method to determine T=1/P from the equation b(T)=¢ It is easy to see that
the number P, = (ex,-,)*||5*"2] % determined by solving the equation e(p)= & is less than P; accordingly (T =
1/P,)>(T=1/P). We may thereforc find T by the method of chords, taking T=0, =T, as the initial points.
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Solution of problem 1c. Put p=0 in formulae (2.2)—(2.4). Then we get the spline
S0 a) = Mg OMa—z), TO)=Tu@/r. @9
k

This spline solves problem 1c for any vector z. The solution is unigue, and S (z,x) is an inter-
polating spline for the vector z.

Remark 3. Note that §#(z, x) is easily constructed directly. Thus, the relation Sfx)=2,k=0,1,.. ,N—1,is
equivalent to T(8)=T,(z), n=0,1,.. ,N~1, 8= {SF(x:)}e . But by formula (1.11), T,(Sf) = T (q(0O))uF, and
this implies (2.9).

Splines of the type S *(z, x) arc known as. smoothing splines. They made their first appearance in
[12], where it was established that if p=2m the splinc 8,(z,x) is a solution of the following
extremal problem (see also [11, 13]). ‘

Problem 2a. Find a function f€ W’z’" that minimizes the functional

) _
(=] )t
on condition that
E() =5 Ll @)-al<e!
b. Find a function f& W, that minimizes the functional J,(f).

Here Wz’" is the space of periodic functions f such that f™ " are absolutely continuous and " are
Square summable over [0, 1]. The norm in this space is

W { J 29 dit § 1m0 310 ac}

Note that when p=2m
T.(q(p))=Tu(z)/us’(p), = ua""(p)=p(va)*"+u." (2.10)

A mnatural tool for the practical construction of splines is provided by fast Fourier transform
algorithms. As the degree of the spline increases the computational load remains almost unchanged.

Note, moreover, that our explicit representation has enabled us 1o investigate the approximating and

smoothing properties of splines.
- To end this section, we will present formulae for the derivatives of splines. By Theorem 1, the sth
derivative of a spline $2** & ©?** has the form - T

8™ (z) 7’;2 ot ()M (z—a,);
L} Lo

this is a spline in the space &7,

S (@) DSy () = %,Z. a7 () M (2—z,). @211)
1Y

It we put ¢***(p)={gt**(p)}§ ", 4”(p)={g”(p)}}"", then

To(q¥")=T,(q"*) (iNv,)*=(iNv,)* T (2)u, (2.12)

An(p) ’

. A, (p) _"_zpunz"';u:ﬂ'ﬂ-‘-m} + (u:ﬂ )’.
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Formulae (2.10) and (2.11) furnish an explicit expression for splines of any degree to approxi-
mate the derivatives of arbitrary order. If p=0 these ar¢ the derivatives of an interpolating spline. If
the available data involve errors, it is natural to use derivatives of smoothing splines in the approxi-
mation, with the smoothing parameter determined as in the algorithm of problem 1a.

3. APPROXIMATING PROPERTIES OF SPLINES CONSTRUCTED FROM EXACT DATA
Let £ be a continuous function. Suppose we have at our disposal a collection of data
N—-1
2a={fp._+8p.}n=o, h=f(x),
¢, are random errors, x,=k/N. Put f={f,}i2}, e={e}i=s. Then we can write

Sy (z, 2) =S, (f, z) +S5.* (e, z).

In this section we will consider the first term.
Put b,(f)=B,(f) /k!, where B,(f) is the Bernoulli polynomial. There are asymptotic formulae for

interpolating splines. _
Proposition 1 (sce [14-16] for the case s=0). Let f& CP****, Then, if x € it i t=NEx—
x2**), h=1/N, the following asymptotic formulae hold:
S48, 2) =1 (&) HhPPP (1) Ha) 0+
P (B () o (R () ),

P ()= — [y (1) — b2 (0) ], P:m”"°(t)=—bam—a(¢),

am—1,0

P (1) =2mbamsi (8, Py (8) = (2m—1) [bem (1) —bem (*/2) ).

if >0, then P,=()=B,(¢) /11, P2~Y(8) =(2m = 1)by (£) + b3 (0). In all other cases, P,*()=1b,..,(2).
Lemma 2 (sce [16]). Let f& C***. Then for any p>1

MY JEN R VL O XY

~*'We now consider smoothing splines. To avoid complications, we will confine our atiention to the
‘cases p+s=2mandp+s=2m—1. o R

Theorem 4. Let fEC***1, Then if x € [x§**, x1i], t=N(x~x}**), h=1/N, p+s5=2m, p+s=
2m—1, p>>0, the following asymptotic formulae hold: ' o

S (1, 7) = (@)W () (@) 4 ¢2
+REHW () f () o (f, 2),
lo(f, z}lle.=0(R?*'f(2) "***1),
‘where, if >0,
W (g (o) =[P () (~ 1) o8lg (),
(g () =P T (D8 (2),
Wi (g (2)=Pi" " (1)g (=),
e @)g () =[P () (1) p8t1g (2),

i
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and if §=0,
W™ (1) g ()=[P™ (1)+(—1)"*plg(2),
W (g @) =P (g (z), W (Dg(@)=P ™ (t)g(2),
W (g @) =[P (1) + (~1)"pl g (2).

Proof. We will first consider the case when p +s=2m. Here formulae (3.1} and (3.2) give
S (8, 2) =8, (f, 3) ———Z ™ () > (z—=,), (32)

T (g% *(p) } =Tu(g"(p) ) (iNv,)*—
= (iNU“) .Tn(f)/uﬂzm (P) ]
unzm (p) '=P( vﬁ)zm.l_ unlm=p (U") 8m+un2m-

Hence o _
r, (qu-—-c,c (P) ) - (ian)‘Tn(nlun’m'*'PN‘Tn(Q(Pl) ’r
T (Q(Pi )E_(l’) vzﬂH" T (f)/[uﬂim (pl)]'! plE[01 PI-

-t follows from (1.7) and (1.8) that

wr—A+U,?, U ,_Z wot  I=[(p~1)/2],

R i
and morcover %, <U7F <0, Thercfore,
@™ (py} =14+0,* 4. (py, 0.2)>0,
where A,(p,,y) is'a certain polynomial in y, n=0, 1, .» N1, and we can write

"™ (py) | =21 4-p,? gn(vn‘), lg.(va2) | <G,
n=0 1,...,N—-1," B

Hence we obtain | |
Tn(Q'(b's))==Tﬂ'(Q°(p.))+T,.(Q’(p,)),
7o (Q(p)) =~ (1)'va T, LD=(=0)"T, (1),
T (@ (p)) == D™ g 0T, (B = (=), ey g (0.3).

We have used the notation f2={d%f(x,)}¥-¢ and the fact that T,(F)=(iv,)*T,(f). Let Q'(p,)=
{Qé(p ) Wad, i=0,1. Put . - ;

)= ¥ _o;' (pIM™~4(z—3,).

Then by'formulé (3.2') we obtain, using Lemma 2,
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ST Ag, 2) =S (], ) N[ S () S8 (@) ], B3
8 (@)= (1) Nt Y, O ()M (2m) —
= ,

= () PHN-OAOm (z) 4o (N max | 914 () ]).

Consider the term S*(x). It follows from formula (1.15) that

1

f 15 @1 dom X 1T, (@ ) 0 < 09

0

(]

<G Y [T (Pt |2 i
Let
1
$4(2) =1 D O (0 M+ (2—2,).

We then see by (3.4) that

8% (2) .. < GYlS () <G max | f(x) <. - . B

S GN- ! max |ai+sf(am+i) (m) | =,0(N-2m-—| max |5‘j""‘+” (.1‘) I )_

The assertion of the theorem for p +s=2m now follows from (3.3), proposition 1 and (3.5).
To get the proof for p+s=2m—1, we write

¥

T (g1 (0) )=T'a (g () ) (iNwa Y= (INva) T () /87" (p),

" (p)=p (W) ™t U o A= un™ " ud = 142G (0,
Gu(2) [Ke,  n=0,1,...,N=1,

The rest of the proof is more or less analogous to that of the previous case and is therefore omitted.

Remarks. 4. 1f p is bounded as N—»oo (this may be ensured by coordinating p with N as the error level
decreases), then the smoothing splines with p+s=2m, p+s=2m -1 will approximate ¥ to the same order in
terms of A as the corresponding interpolating splines.

5. For what follows we specially mention some asymptotic formulas for splines of even degrees with s=0:

2m-1,0

8p , x}=f(2}- hﬂfn— by s (1) = bpemt (M2) 1f(2) B0 )
B 2= 1) Do (8) = Bamn () 1 (= 1)+ pN=2m) () (-0 (M ) 5m)),

If x =%, = (k— V2)/N, 1=0, then

" 2me~1,0

Sp (1, &) = (E0) + B {@m—1) [bgm (0) —Dam (2} I+
+ (= §) ™4 p} [ (@) 20+ (hEmf () {zm})  (p orpaHnyes).
Thus, for splines of even degrees, the pointé %, are “quasi-interpolation” points, in the sense that at these

points the first term of the asymptotic expansion vanishes. Of course, we are understanding o(K"f(x)*) in the
sense of the norm |||, : - : : o o
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4. SMOOTHING PROPERTIES OF THE PERIODIC SPLINES
Throughout this section, {z,=f,+¢,}, fi=f(x.), e, will be assumed to be uncorrelated, identically

distributed random variables with expectation E(ek)ﬁO and variance D{e,)=d. We also put a=
E(le]). Then : : '

- 8" (x) = _!1\72 0" () M? (Z—2,) =8,* (£, ) +5,7 (e, z)
- :

is a random variable, E(S /*(z, x))=82(f x), D(S(=, x))=D(S57(e, x))=d*(x), E(|5F (e, x)))=
al (x).
Let

SPHW A =LIE),  y=(4,0,.,0), TG)=1N, @)

1 - 7 N o N=y '

Lot (a) = - Db MM ), 1P (p)m ()}, @.10)
13

T (‘i=(p-) )= (iNv,)* wt o (4.16)

n n NA,,‘ (p) " |

A (pY=p| 0, |, g (0, )2, ' @4.1d)

By (2.12), T,(@"(p)) = NT,(2) T,(I(p)). Hence

g (p)= Zlv” "(0) Zv, -
Sp*" (z, 1) = 7:— Z, M?(z—z,) 2 L (p)2y-v=
5 . : .h o b
. 1 ' '
= Z Zy 'I'V"""Z Mp (x-—-x,_vl\,"‘ (p) )#2 z];Lpp. (x_xk)'
v h k ’

S"p‘ (B, .T) = ZBthm (.‘E—-'Ek) .

1

Therefore, since the r.v’s €, are uncorrelated, we obtain
& ()= @ YL (o=2,)" «2)

Let us transform L (x—x,), using relation (4.1b):
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L =)= 7 DA O e

P

| u,
—— P ] ( B} L A
2 ,M (a: 1) 2 ; (iNv,)*w WA, (p)

- Y u" * —hY —
= Z(anv) ‘w WAy N ZMP(x+m,.)w

= Z,iu"""ﬁ'v(x),

F.(x)=(iNv,)*

,-H

NA.. (p)
The function m,? (x) is defined by (1.4). Hence it follows, by (1.2) and (4.2), that

——ee—m? (z).

4,2 (x)=dN Z,m(x) |2 =

= dN Z[” A, (p,). g

f

If x=x,, we oblain, by (1.6),

@5 (2,) =dN™- Z,[v M:(p; ]a

Ifs=0,

4,7 (,) = —— d Z[ (un’)a] .

A.°(p)

in particular,

" d uﬂ!m 2 i .
d:m (x")=W'Z'[T“—J . M (p)=p|v, |**u,",

Theorem 5. a. If
1) p=3,5,
(2) p is any even numbet,
then d2*(x)Sd(x.), s=0,1, ...
b. If p=2,..., 6, then &7 (x)=d/" (h(k+'2)).

Proof. a. (1) was proved in [17].
a. (2) By (1.3),

ey B e

New =0

Hence

@.3)

@4

@.5)
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, N | '
m?(x) = Veginingo s ) pin-hv (4.6)
1w e 00 N v
N - ezm‘nNs
— e gins (/W) Y
( i I (A+NR)/N)P?

einl'(l—ﬂ)Nx

Imlﬂ(x)l2=sin‘i’(nu}v) Z lﬂ(a'_‘_Nn)/N]P[n(a,‘i"Nl)/N]?s-

hylwmem oo

1

SN D WG~ I e

E T

Part b was proved in [17]: We need only note that there the assertion for P=6 was proved on the
assumption that a certain quadratic form A;(x), whose arguments are the coefficients of the spline, is
non-negative. Later [18], however, we were able to prove that this is true for any values of the
arguments. . . . - D _ : - :

Conjecture. Theorem 5 lolds for any value of p.

5. THE RECOVERY OF FUNCTIONS AND DERIVATIVES

The accuracy with which f®(x) can be recovered depends on two factors: the accuracy with which
fPx) is approximated by S¢*(f.x) and the spread of values of §7*(e,x) relative to zero, These
quantitics may differ greatly for different splines. The specific spline used should be chosen depend-
ing on the actual conditions of the problem. Namely, the choice of the spline is influenced by the
value of D(e,)=d, the required accuracy and smoothness of the recovered function, the possibility
of varying the step size, and so on. It should be noted that the simplicity with which splines can be
constructed and the smoothing parameters selected offers considerable room for manocuvre. This is
especially useful when solving ill-posed problems. = - :

As in [17], we will consider a specific probability model: the r.v.’s ¢, will have a normal distribu-
tion. Then R,”*(x) =S 7*(z, x) — f“)(x) is a normally distributedr.v.,

E (Rpp' (£))=8,%" (f: x) () ""epp“'“, ‘37)‘1
2 \ 7
E(]5," (e, ) |)=a,* (z)= L™ (z)]™.
As a measure of the deviation of the spline §(z,x) from fY(x) we take the quantity

QF(z,x)=E(R7(x)). -
‘ Propq.srition 2.If €, are normally distributed r.v.’s, then

0 (s, ©)<1.303 max {je* (1, 2)], 0 (@)).
Moreover, if '
|es* , ) |<0.250,% (), (5.1)
then o

Qo (7, ©)<1.02¢," (z), - (5.2)
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and if _
a," (z) €2.5[e,."; (f, :n) l,
then
Q. (z, £)<1.004]e>(f, 2)|.

Information about the quantity e”*(f, x) may be derived from the asymptotic formulas of Theorem
4, if information is available about the values of the derivatives occurring in those formulae,

47 &)= L4 () ) < =L (e 1™

the quantities d*(x,) are given by (4.4) and (4.5).

6. THE CONNECTION BETWEEN PERIODIC SPLINES AND THE FAST FOURIER TRANSFORM

. There is a two-way connection between splines and the FFT. On the one hand, it is natural to use
FFT algorithms to construct splines, as they considerably reduce the necessary amount of compuia-
tion. On the other hand, there are many situations in which one has to compute FFTs where the use
of splines may reduce the size of the data blocks to be processed and, consequently, the computa-
tional load. The idea of using splines in such situations is obvious. The “decimated” data are used to
construct splines, and the omitted data are then filled out in accordance with the values of the spline
at the points in question. It has been found that the use of periodic splines of even degree for such
. purposes produces very “technological” formulae and guarantecs that the missing points can be
determined with a high degree of accuracy. _ : L

The spline may be used as-follows. One of the basic FFT algorithms is the “decimation-in-time”
algorithm [19]. It is used in situations where the dimension K of the block is a power of 2, and
consists in successively splitting cach DFT of length K into a combination of two DFTs of haif that

length: if K=2N, z= {z,}3"~, then
AN~

THEN (z) == HéiLN—- u)“l'lkfzzk — ’ ' : ) ) (6.1)
R0

1(1 1 |

o L1 (&) 0T ()],

2= {Zy}o - 2= {zzh+|}ow_|; k=0,1,..., N-—‘l.

It will suffice to compute T,2¥(z) for n=0, 1, . . ., N—1, and then, for the other » values, to use
the fact that T, .y (2°) =T, (2°), T, n(2") =T, (2z').

Now let x, = k/N, x 405 = (2k+1)/(2N), k=0, 1, ..., N— 1. Using {x,} as a grid, construct a spline
of even degree from the data 2°:

5™ (2, ) s DL ),
k

! - - — - - —
Let m,=M*"1(x,,05), m={m}{?, -5'2:+1=S|2:m M2 X145 ) Sz:=S§"’ (2% x1), s®={su}0 ", st=

{S241}0” 1. We have
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1
Sarqq =5 o Z Aaimty g,
N =

Hepce .
T (8) =T (@) T (m) =T (m) T (2°) /™" (p),

2m—i 2(m=—1)., 2m=—) 2m=1
# o (p)=plva|*™u, " Ta,  tu,

1 :
To(m)= o, 2 G (L 40.).
k

Lemma 3. T, (m)=w"",, where {£,}§ " are rcal numbers with t,, y=—1,.
Proof. It follows from (4.6) that

IT,, (m)=m,"" (—% ).= w™* gin®™* (nn/N}X

—1)*
% ,_Z‘_m [u(n-lle))/N'j et
Since T, y(m) =T, (m), w¥ 2= — "% we have ty,,= —1,
Lemma 4. Let z,=f(x,). If fE C?", then
Ty (8') =T (2') =N-"T, (F') otgrp+o (N-),

Gan=(2m—1) [Bam (0) —bu (') 1+ (—1)™H1p,

Fi= ffom} (-rk-i-o.a)}:r_‘ .

The pfobf follows directly from (3.3). We recall that the points x,,,5 are quasi-interpolation
points for splines of even degree; hence the spline reproduces the value of fat these points with very
high accuracy,

Corollary 1. The following estimate holds to within o(N~*"):
|70 (8")— T (2!) [<N-*" max | f% (2) | | ten]. :
N .

Obviously, T, () = T,z" 2~ /u~'(p). i p=0, then T,(s)=T,(z"). .
- Lemma 5. Let Z={(x,,,). I fE€ C?", then |
T (3°) =T (2°)=N-2T_ (F°) (—1 ymHp-+
Fo(N-3m), P (fi2m) (g,)} V-1,
The proof follows directly from Theorem 4. '
Corollary 2. Thc following estimate holds to within o(N~%"): _ :
| 70 (s")— T (2°) | <N-*" max | f* (z) | p. S,

Now let s= {§2"(2° x,,,) }¥; . By (6.1) and Lemma 3, we can write
1., - -
T ()=~ To (2°) (" ) 1" (p). 6.2)
If p=0 (an interpolating spline), then

R (s)=_--;-T,, (2°) [ 1+t /u" " (0) ], 6.3)

CHMP 32:2-B
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We can now siate the following theorem.

Theorem 6. Let z;=f(x,,;). If f€ C*", then

T8 (8) =T, (2) +N-"{(2m—1) [ Do (0) —ban () 17 (F) + 64)
+(—1)"HpT2¥ (F)} +o (N-*mf(z) @),

F={f® (@0)}s"
The following estimate holds to within o(N~2"f(x)*™):
| 7% (8) — T (z) | <N-*" max (| {(x) ™™ | { (2m—1)}| [ 02 (0} — (6.5)

—bam('/a) ] l+p} ).

Formulae (6.4) and (6.5) show that if z,=f(x,,,),1=0, 1, ..., 2N—1, and f is sufficiently smooth,
then the DFT of the spliné of even degtee given by (6.2), (6.3) is an excellent approximation to
T,%(z). In order to compute T,2¥(s), however, we have to evaluate only T,%(z%) and, therefore, to
process a data block only half as large as for 7,%¥(z). If there are no reading errors, it is natural to use
an interpolating spline and use formula (6.3). When that is done, as in the computation of the FFT,
it suffices to compute 7,2(s) for n=0, 1, .. ., N—1 and to determine the rest from the formulae

1 e n—
n+.|\' (S)“ e T (ZO) ( : ‘_tn)/u’: ' (P)
If p=0 (an interpolating spline), then
Thn= —2- T, (2 {1—to/ua" (0)].

The coefficients ¢, are readily determined for splines of any degree. The algorithm we have proposed
may be called the spline-FFT algorithm (or SFFT). To computc T,(z°) one can use FFTs or, if the
solvability conditions permit, SFFTs again.

The smoother the function f, the higher the degree of the spline that must be used in the approxl-
mation. If z,=f(x,,;) + ¢, one should use smoothing splines.

We add here that, since all terms in (6.2), (6.3) are real, these formulae may be used dnrcctly to
calculate sine and cosine DFTs. The method yields even greater computational economy in the
multidimensional case, to which it is easily generalized.

As pointed out previously, the variance of a spline of second, fourth and probably all other
degrees is minimal at x=x,,.s. Formula (6.2) yields a formula for the variance D(T”(s)) if
D{e)=d:

m—1t

D(T, (8)) = --—[ @ ) @)
Note that D(T,%(z)}=d/{4N). Numerical experimentation has shown that, subject to the optimal
choice of the parameter p, the SFFT algorithm possesses very good filtering properties.

To illustrate this we present the DFT for interpolating splines of second and fourth degrees. Let
y=cos (wn/N). Second degree:

. 1 (1+y)?
N (g = ——- 0
T2 (s) 2i",.() 1+"
fourth degree:
1 5+88y+18y*+8y°

N —— 0y
T*" (8) 5 Tw(2°) SY By
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AN ALGORITHM FOR INVERTING DISCRETE
CONVOLUTIONS BY SECTIONINGT

B. V. Titkov

St Petersburg

(Received 17 May 1990; revised version received 23 January 1991)

A method is proposed for inverting long discrete convolutions by the method of sectioning
with overlap. Cyclic convolutions of short sections are converted into triangular Toeplitz
systems of equations, thus permitting rapld solution in many situations of practical impor-
tance, without using Fourier transforms. :

1. INTRODUCTION

THE INVERSION of convolutions is a key problem in applications arising in many branches of modern
engineering: television, photography, optics, tomography, radio-astronomy, computer vision, etc.

The usual approaches rely on the general theory of the solution of ill-posed problems, in which
the chief tool is Tikhonov’s regularization method. There is a voluminous llterature on this subject
(see, e.g., [1-3D).

We will be concerned with convolution inversion in a special case: in the processing of long
streams of data, containing hundreds and thousands of readings, we propose to use sectioning with
overlap — a widely used method in practical work pertaining to the computation of long convolu-
tions [4, 5]. In this method the initial flow of data is broken up into short sections, and each section
is processed in turn wsing a cyclic convolution, for which many good and fast algorithms are avail-

able. A large part of these algorithms presuppose frequent use of fast Fourier transforms, as there is -

a direct connection between the eigenvalues and eigenvectors of the circulant matrix operator and
the discrete Fourier transform.

Unfortunately, this of little use in convolution inversion, since in many important special cases
the Fourier spectra of the transformed impulse responses of the filters contain zetos and it becomes
necessary to deal with division by zero.

Direct inversion of the cyclic convolution matrix is rarely a feasible approach, since the circulant
matrix operator frequently turns out to be singular.

In this paper we will use another property of the circulant: the connection with triangular Toeplitz
matrices which, under the conditions of the problem, are always invertible. This enables us to devise
fast algorithms for inverting long convolutions without having to use Fourier transforms.

The aim of the paper is to propose one such algorithm.

2. CONVERSION TO A TOEPLITZ EQUATION
Consider the equation of a cyclic convolution

t Zh. vychisl, Mat. mat. Fiz. Vol. 32, No. 2, pp. 199-207, 1992.
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