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A_ ‘On the approximation on finite intervals, - |
and local spline extrapolatlon

: .M G: SUTURINT and V. A. ZHELUDEVT

and Ffth degree local splines i is proposed
tlon polynomlals The procedure allowed

us to obtain ‘extremély easy-to-implement -and ‘stable- algorithm for constructmg the splines both on inner
subintervals and on subintervals adjacent o the endpoints. Tn some cases an explicit representation of
remainder terms of approximation of functions and their derivatives, as well as an exact estimaie of the
approximation  error; has been derived. Sphnes have also been cpnstructed wiich extrapolale an

' approximated functlon o {he extérior of the mLerval on whlch lts values. were “caleulated.

"

The n-th degree local ‘spline. -of defect 1 ‘on ¥ grld {}- is understood to be a
polynomial spline which can:be written:as a-linear combmanon of B-splines Bk(r) of

degree n, namely

S (fe) = % LB

" where [(f) are finite linear combinations of grld values { ) WhJ.Ch have been

constructed by a definite algorithm.
Almost all the authors contributing to the theory of local splines pomt put that,

unlike global interpolating and smoothing splines, local splines are easy and fast to

implement and with these splines it is possible to keep in memory only the grid values
{f(x)} that belong to the interval on which the spline is calculated and the closest

'adjacent grid. values. Local splines make it possible to attain the higitest passible

approximation order, however, in this case constants in the estimates are somewbhat
larger “than the corresponding ones for interpolating splines. Note also such a
possibility offered by local splines as real-time information proceSSmg

It should ‘also be “mentioned ihat general’ formulae ‘are available that allow
arbitrary- degree local’ splmes which e%actly reproduce polynomxals of appropriate
degrees, to be expressed in terms of B-splines [4]. However, these formulae are rather
bulky -and require- complex algorithms for. 1mplementmg even low-degree splines,
especially on- subintervals. close te, the endpoints of the approxlmatmn interval. With
such a representauon the study of remamder approx1mat10n terms - presents

lefflcultles

In this paper we' suggest a procedure for constructmg aﬂd analysmg the thxrd and

fifth- degree local splines. The- procedure is based Gn ‘the’ coanection between the

splines-and- mterpolauon polynormals It makes it possible” 10 ‘obtain extremely easy-to-
implement, stable algorithms for constructing the spllnes both on inner subintervals
and on subintervals adjacent to" the endpdints of 'the’ apprommanon interval,

T, - Petersburg Military Instifute for Construction Engineering, St. ~ Petersburg, 191194, Russia
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In some cases we have obtained an explicit representation of remainder terms of
approximation- of functions and their derivatives as well as an exact estimate of the
approximation error. This approach has been first applied by one of the authors of:the..
present paper in [10]. We present also splines which extrapolate approxmated
function to the ezferlor of the mterval on Whl(;h 1ts values were calculated,

L AUXILIARY INFORMATION - '

In what follows {%}, k= -, =, is‘an arbitrary. grid on the xr-axis, with
7 hk %1 ™ He Let f be a continuous function, ﬁc =f{x,). The basis of B-splines, 15“7:__:‘,?
05t frequently used as'a basis in the. sphne space. Following the terminology in (6];-

* thie following function will be called a normalized B:spline of degree r:

. Bff( ) (Tk+:;+1 k')gpn[r’x "-.' f-’;xk;'nd}-l] (1'1)

\_ﬁrhc;e‘_-cb fxix, ... k+n+1] is the divided d1fference:” f order n+1 of the functicn
q:;i(x;)'z)' (- 1)"*1(r~ Y, with respect to the variable y, and X, =(x+ ]r|)/2 In
general, the symbol glx,....%,;] denotes the.divided difference of order r of the,

~-function g. We can write' a B-spline in the. form:.

“ken+l (X-x )” '

(‘C) “+l(xlc+n+l _'I!c
p=k wz+1}c( )

- Y
k+n+l (xp x), (1.2)

= ('rk+Jl +1 - "
p=k Ct)t+1 k(c )

w (&)= T (x-x). (1.3)
r, ng p

Note that suppB,f‘(:c) = (G Z s 1)

If a spline S(f.x) is constructed by the values . of a function f{x) at points X by
its span is usually meant the.set of points {x} such that the values {jk} at these
points are required in Order to calcula.te the value of the spline § at the point x. Note
that spans of mterpolatmg splmes of defect 1 and of Jdegree higher than first, which

"-have been c¢onstructed od a given interval {a,b); always consist of -all the grid points
Az} belongmu <o this mterval

2. LOCAL CUBIC SPLINES ON INNER SUBINTERVALS
" In this section we suggest a conveniert computatmnal formula for constructing a local

- cublc Splme _with a.minimum span. (SMS), of . ),,tect 1. Th]S spline, as well as an
roduces the thlrd degree polynorrnals on submtervals

: B
the mterval [a b] which, are far from its endpomts
t‘_a‘._-_ro_, XS Sk = —b x e{ X, H_1] N = 3. Then every cubic

_splme can ‘be representect as

S(fo= 5 F,izsk(x) o (2.1)
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Evidently, we have

Co'.] n *1(r)
at x&x,x ], as well as the remaining coefficients of the divided dlffe,reuces
Therefore we can use the following mean-value theorem.

TE-DE ) g ) =%, ) > 0

fn—=

Proposzrzon 27 1fa [‘unctmn Fis contmuous o the interval (a,b] and the aumbers
o and ,8 are’ of the same sign, then’ '

aF(a) + BE(b) = (a + ﬁ)F(c) . c€lab]. o

Finally, we obtain the followmg representatlon for the remainder approximation
dermy :

xQn(“':) = w3,)1—1(x) + {1 - 0381: * r3d;l

=h¥h

i Bl

LA = Oy i (L-0)

n-

,,.(1_;)3;12/; (, o th +h j-h,+l)/[3(h +h 1)]

“The representatlon (2.4) is convénient for calculatmg the spline because it permits
the .use. of simple. standard aigonthms for constructmg mterpolanon polynomials..
Relfafion’ (2.5) also rmiakes “it 'oss:ble to derlve exact estnnates of the remainder
approximation terms. . ‘

Let us d_'enc_)L_e. _H” = rnaxrhs, [n _—s| <3,

”g“to = ma"’( |g(6)f 1 é € [‘t‘:,; _-‘2,I”+3] .

We Sha.ll say that ge, W, if ”g(r)ﬂ” <A <oca, It is easy to verify that the.
inequalities are valid:

0< 8,(x) < R¥(2 - 0 s -_?,;') .

This results in estimates for the remainder approximation term, both pointwise and
interval ones.

. Theorem 2.2. The following estimates hold for continuous functions fi

2, <AL, ity Gl =07 + B <R BN U, oty €Ul (2.6)
If fe, W; then : . o
I I)I < h“l[f DL -0+ 2) < 1152 fl4llf(4)|f” 2.7

Remarkf:’l Esnmates (2.6) and (2.7) retain the vahdlty for a uniform grid and
cannot’ be’ improved- in this case.” The equalities are .attained on the function

- fla) = (r-—r )*. Estimates (2.7) then coincide with the known esumates given in"’

(6,91 We would like to call attention to pointwise estlmates

pn(r) f[ n-1t 7;!_1\,2,5]!%‘(_"(), ) = [-“};_2’-\‘;.”.3} | (25)
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. then we obtain the. SMS that exactly reproduces the third-degree polynomials 12,67, .

‘interpolates the function f at the pmnts {r 1
.. The remainder, terms is o

- l.where ufk(r) are_some polynomlals of the thg_r

ty,

4
Approrr‘marr'on and extrapolation by local splines

bt Lo feies

IEWE Sﬂiﬁct F ‘Bk _lf'i: 1+ﬁk 0f‘€+6k lf}("'l’ )

“"r —hkz—l
"3"=‘-1 W Ben = S+ h)
: R 1"’ ilc) PAUPRE(™
ﬁko ﬂk e ﬁkl

It is easﬂy seen that the span of the splme 53(f r) at x & [x,x, ] consists ‘of six
{x, Let the symbol P(r) denote a cubic polynomial that

poinis- ey n”]
r+2} Then fx) =p (x)+R (x).

=2

Rl =y, ”F .(x)f[r Kpmgrer? %yl

The spline 83( f.x) exactly reproduces’ the third- degree poiynormals in the sense 'thatj
(”,x) £,(x). Therefore . : o
S¥fx)=P (x) +S3( ).
According to (2.1) and (2.2), we have
1+ 2
L R (5)
=n-

!
2.1 n( ”+3)B”_(;c) * &

!( l"r) ﬁﬂ—l —an(

-

T —Z)B” ﬁj(x) * ﬁu

}%n {x) =0

égree. However,

. + 2. Therefore o
B(f"r) = F (‘C) T ‘8.'1—1 -1 n(‘n Z)B" )+ ﬁn+2 I''n ;r+3)'3;(;g)

and substituting the values of B-splmes and R {x), we get an explicit representition
for 33( f,x).

k=

n—-l

t=(x~ “)/hn, t 0 1] Then a cubic SMS can be

Theorem 2.1. Let x «© [r”,xﬂﬂ}
written in the form:

Sj(f’x) = Pn("c) - ar:Rn(xn-—Z)(} - 03 ban(‘cH—S)f:‘s
3
6 f 5yt

,J:” +?.] (]

+ald, (2.4)

=P (x) - (1 —:)3f X g

h #2

2
n—lpn—_l’ h h +1/(3,ﬂ+2qﬂ+2)

%))

d h n
"

" nt+

1P &

- 2 _
b, =h, /z,“l/(3h”_2q”) p,,—(M ,,_1)/[3(,,+2

( nal Il"l)(-'r.'ﬂ_‘h_l “xmz)-("’n —In—-?.)‘ :

. 'Using formuia (2. 4) we can write the remainder terms as
" f(r) S3(f 2= Fg e |

B +(1~:)3f[f, 2

3:.+ 2

.r] w3 e

b+l

u +?.] -u'.r ! +3]dn

p,,(r)
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Now let us. consxder the derwatlves Accordmg 0 forrnuiae (2.4), (7j 5) we have
2 .
3(f..r) =7, (r) - (IR - 0%, R (5, ) =, R (3,.5)t)
differences. '
Do . =P'(I) _(3/]1 ){(1 —r)zf[xn_z,...,:gt”]ql—-tzf[,r“_l,... ﬂ+3]d } )
7
the numbers p,,(r) - P - Sy = R) = B/ = 0%, R (5, 5) b, Ry, 1)
For the second decivative we have :
' Sj(f’x)" = Prlfr(“c)._ (5//1”2){(1 = 1) anR:u( 11—2) +b T +-3) r
pproximation iis R ) |
.V- o . l _Pi (t)+(6/h KA -0f [n 2" ft+2€ +tf[ n—l’ n+‘3]dr'1}
@3 T ) = - S = R - (0 =04 (5 )+ 0,R ()0
In. order to estimate the remainder _approximati(m terms, we take advan_tage of the
inequalities éstablished in (S]. If f&, Wg,, x € {x,.x, ], then
|RO(x)| SK-?:""'"’||f{4)|t’;°, K =3 K= (2.8)
. ‘ . : ‘ ) o _-;The constants K i these mequal:tles ‘cannot be- 1rnproved As a result, we conclude
15e itlllplepmits_;; . _that for f €, !'ri’/4 the followmg estunates are vahd
polynomials. .=
| e < 1fr3||f(4)|| |p,1 r)l 3/12nf(4>1|';, -

& remainder:

3 CUBIC'L0 'AL SPLINES NEAR THE ENDPOINTS
OF THE APPROXIMATION INTERVAL' ~ *

3 1 Interpolation at nodes close to the endpoinis
. As before, let @a=x;'<x .. <xy=b. If x € [xy,x4] then the representation

§3(fx) = Pylx) + 53(Ry, )

holds true; however, at this point it is more convenient for us to write this spiine in

ify that the

wointwise and the torm:
53(f,x) = Pyl +5(x), 5 = SRy, ). @D

Let us take a further look at the spline s(x) near the point x, + 0. The funcnon
R,(x) vanishes at the points {.ro, X3}, Therefore, taklng into account (1.2). and

g%, - (2-6) ' (1.3), we can write
= g BMx) + qBH(x) = By Ry (x)B)(x) + quf(,r)
(2.7) S where g, and g, are some coefficients. For x & [x;,04, B-splines can be represented
_ in the form:
rm grid and o Bl o 3. R P U
the function - . By (‘c) = ax —x)*+ Blx - xy) Bi(x) = Pl —x5)7 .
ies given in o v rWe have

= /A (hy & ho)hy + 5y +h3)]
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while the other coefficients 8 and y are of no interest to us. Thus,

) = Az ”“DB + Cla - 1) .

= afy | Ri(x) = = flrg. ..oty alling + Ay + hy + h)/ 3y + hgdhy).
It is necessary to stress that '
= 5(x, + O)/hF = (S, x, + 0) —-fz)/hf’.
Thﬁs, we have _
s'(x2 ) =dhd,  s(o+0) =34k], s(x2-+ 0)" = 6.4k, . 33y

Now let us. pass on to the mtervai (%px,] and define the spline S3(f.x) on this.
interval as .

SH(fox) = Pyl + Alx - _.rjl)‘fi .
= Py(x) (= (53 + 0) = /A2 (3.4)

In view of (3,3), such a definition:ensures that the spline, as well as its Elrst and se-
cond derivatives, is, contmuous at-the point X, . The splire $3 f.x) possesses the same
property at the point’ X At the points T and X the ‘spline § 3(f,x) interpolates:the: . -
corresponding values: of” the Ffunction f, and on the interval [x;,x;] it coincides wit
the interpolation polynomlal P, ,(x). Note that the idea of extending local splines tothe:
endpoints, of the apprommauon interval by usmg mterpolatlon at grid points close to
the endpoints is not.new. It has been proposed for example, in (7]. However, the
‘procedure we suggest for such an,_ extension differs essentlally from {7].

Let us write the remainder approximation term

pylx) = fx) = S¥(f.2)
=R (x) ~ Afx ~x)% /h}
= f[xovﬁ»"2"‘3"‘]%.0('r)

()3 Flege x5 (g iy + Ry 1) [(BlRy + Bp)hy).

On the interval [(x,,x,], both coetficients of the dtfferences are positive and hence
puttmo t = (¢~ x)/hy we have :

| lrgoiy g €1 = )1

i

pl(_x)

% [(x - toHx ~ x,)(x = xqg) + (x —,. xl)zhg(ho +hy i+ 113)/(3(};1 + 'h_z')hl)]'

I

Flyy kg @,1,_{/;12(110 + (L - 1)y + hy(1 = 1)
# 302ZR Iy + Iy + hy + B /Bl + AN}

No we are prepared to formulate the result.




(3.2)
hy).

(3.3)
(f,x) on this

(3.4)
5 first and se-
sses the same
:erpolates the
oincides with
splines tp.the
pints close to
Jowever, the

-

ve and hence

LHRARD]

PPN
' 4
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Theorem 3 1 The followmg csumates hold for contmuous functicns f

]pl(:c)l <}:4u]‘ to,.rl, ,x3, ||1 r(r3 4r-/3-:+’))

{ 12\/§ h]_ “f[‘roi'rll‘rz:‘r'})é] "oo * . (35)

If fe, W3 then

myns—wnﬂwhn — 433 =t +2)

16 =3V2 a4y (a1 ) .
TV N TN P _ _(3.-6)_

Remark 3 I Esumates (3.5) and (3.6) retain their validity for a unlform grid and
cdfint’ be improved in this case. The equalities are attained on the function

f(x) = (t - rl)q

Now let us donsider derivatives on the interval {x 1,,rz]. For the remainder term of
approxmanon we have . . . o =

i) = (%) = @Uo
=R+ 3x —xl)zf[xo, X )2y + iy + By + ha) (3R + h)Ry) .
Now, usmg formulae (2 8), we obtain for fe, W4
o |Mmllﬂwwl
In a smular manner, for the second derivative we have
mﬂ = f'(x) = S¥fx)"
= Rl(r)" 4 60c = 3) g % g + By + By + By By + hgdhy)

™

Loy ()] < SR FYL, .

On the interval [x,,x,] the estimates coincide with the corresponding estimates.for

interpolation polynomials.

Now we shall dweil briefly on the ways of extending to the interval endpoint.

3.2, Extending a splme fo an ena’pomt wzm a given slope

Assume that, in addition to the values of the approulmated function f, = f(rk)

_value f (\:0) =my is glven Let P(x) denote a cubic polynommial that interpolates the

='___funct10n f.at the points {xo,rl,x.,} with P'(xy) = my
,written (1] in. the form

. Such a polynomial can be

(t) f(ro) +f[r0,x0](x I[)) +f[r0,.r0,x1](x x[)) + [ g %Xy 2](*"-' —-xG)z(x —-‘xl).

Here.

R f[xn, ]q_ hmf[ +s.xD]=f'(xo)fm0'
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’ Subsequent differences with a rnultlp]c node ro are defmed in a similar manner. Then
S r) P(x) + R(x). The remainder. term is
‘R(‘r) = w} D( 'C)f[}c IO,}CO, 11I2]
@y (%) = (7 = xg)"(x = x)(x =

Let S (f.x) be the spline constructed by ‘the procedure described in Secticn 2 and
Subsecnon 3.1 by using the values of the function f at the points {x,,x, + &,x,,...}.
" Let us define the spline $3(f,x) on the interval [xg,x,] as

S = lim S2(f%) .
g0 °

(3.7

Then at x & [x x,], x =x; + thy, the following representation s valid:

S3(f,x) = P_(x)_»- ¢ f{‘r:,’,_._ro,fro,xl,,rz]d

d = hhi(xy —x)x, —xg) "Y/3.

0:

(3.8)

The remainder approximation term is -

p(x) = f(x) ~ $3(f,x)-

= ay. o) f[x, xo,xo,xl, 5+t f[x3, XX Xq,%5]d

' =‘f[¢,x0,x0',x1,x‘2']‘(d:3 + @y o(0) e
because @ o(x) > 0 on this mtervai It is easy to verify that the inequalities are valid:

By o(x) < B =0(2 -0, d<if/2

Theorern 3.2. The following unimprovable estimates hold for differentiable
functions f at x & (xg,x,], ¥ =1, + thy:

9GO < Al F g gty g, 15 €207 = 5672+ 2) < FRPf Lty 2 61
IEfe Wg then [p(0)] < gxh ) fOIL,.
For the derivatives we have
2] < K AR FL, 170 | sfgh?nf(“)lll
with K, =7/48 and X, = 1/3.
Note that although the constants in the. estimates for the derivatives are not
unimprovable, they are still less than the unimprovable constants 1/6 and 3/8,

respectively, in thé estimates for tfie splines constructed-in Subsection 3.1.
"On the interval (xy,x,] the spline can be written as fallows:

S3fx) = Pyx) = (1=1) f[,r3,,r0,x0,xl,r2} - f['c3, AN )

t={x= x1)/h

The quantltms e, have been defmed in (2.4).

3.9)
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" because @y 4(x) # 0 on this interval.”

T fe, W then [p(a)] < 0.0265R AV,
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o -

. The remairder approximation term is

Con T

) = fll gyl - 0% ek o), B S <

IS

' Théorem:-j’.ﬂ'. Thé following. unimprovaole. . ps;i@q;@s hold for differentiable - -
functions f at x€ [xy,Xp], X =Xy + thy ' )

ol € g g2y %y Sl (7 =%+ § = 5 (1 = 0°)
< 0.638 R Flrg i rp i €lllys  1p s &<,

It can be shown that the derivatives obey the same estimates as do the estimates of
splines constructed in Subsection3-1. - '

3.3. Extending a spline to an endpoint with a fictitious slope _
With some modifications, the algorithm in the preceding subsection can also be
employed in the case in which the value. f'(xp) is unknown. Let £,(x) denote the
fourth-degree polynomial that interpolates a function f at the points {xo,...,xd}. Let
us put : '

my = Py(xg) = flxg.e )+ Flitgxp, %] (g = Xp)
' *+f [;rg,xo,,ris.\l:,z,i‘i](xoi-' ilf(xq = x5)(%g ~ X3) |
and construct a spline . S3(fx) on -the interval [xg %] by the formula D

Subsection 3.2, assuming that f(xpxgl = my and defining correspondingly subsequent
differences with a multiple node x,. Then we can prove the following propositions.

Theorem 3.4. 1t f&, W3, then the following estimates are valid for x € [ %y

1600 € HRAFOIL, +0.030267 I FN,

If fGIWi, then at x & (x;,x,} we also have .
oGl < 0026571 A

It can be shown that for x € {x),x,] the derivatives obey the same estimates as do
the derivatives of the splines constructed in Subsection J.1. As for the interval [xy,x,],
‘we give here .only the result for the first derivative on a uniform grid; namely if -

fe, Wfﬂ, then . _
|o'(x)| < 0.027447| FOL w020 FOUL +0.00514°) FOUL, -

VThough this éstimate is not optimum, it favours the use of the spline considered
here rather than the spline from Subsection 3.1 in approximating the derivative.
* Similar formulae are also true near the right-hand-endpoint of the approximation

: ipte_rval.
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4. EXTRAPOLATION WITH THE USE OF CUBIC LOCAL SPLINES

As previously, let us suppose that the values f(x) =/ are given at the points
a=2x;<x; <. =¢. Let x_| <x, and the function f i$ defined on the interval
[:c_l, ol We need exzend the splme Sj(fx) constricted by the data {f}, &> 0, in-
order to approximate the function f, We consider two methods for extrapolating the
spline which coincides with the interpolation polynomial £, (x) on the interval [x,,x,].

41 Extrapolation with a quasi-interpolation at a given point
Again we use the representation
. $3(fx) = P () +5(x) . (4.1)

Since s{x) =0 on the interval [x,,x,], then in order to ensure the contmmty of the

spline and its derivatives, put s(x) = A(r—r0)3 oun the tnterval [x_;,xp) Let
fx_,) =f., be an unknown value. Then we have :

Pllc_)=foy Rl )= foy -~ fle_pxgle ) —xp)(e ) = xl)(;r_l —ip)(x_p =)

- Thus,

plx_g) = foy = S(fix ) = flx g x]DGh) — Ak,
DY = b_y(h_ + hy)b_ + g+ h )y +hg+ hy +hy).
Now let us choose A4 = fx ,...,,r4]D(h)/hfl. Then

pMr_)) = DY Sflr oeaxs] = flage o xg D) = =DC(flx_ o xg, 0 DRy =)

Hence, if the fifth difference f[x_ 1oty ] IS bounded, thea p{x_q -= O(ES) If the

apprommated function f= F"’(r) is the fourth-degree polynomial, then S(fox_p=
PHx_).

4.2, Extrapolation with a minimum integral of the error

The method of extending the spline to the interval [x_,,x;] which is proposed below

is especially efficient when it is used for solving differential equations by methods like

Adams’ one,
As before, we extend the spiine -according to (4.1), where the function

s{x)y = Alx —x0)3 In doing so, we have
px) = f(x) = S{f.x) = Ry(x) — Alx = x)°

First fet us consider the integral

f:: R (x) éx

‘ J‘-To Flieg % %5, x3(x = xp)(x = ;ci)(.t = x)(x = xy) dx

pouy)

= f{x{,,‘xl,xz,_;.j:,e} d(hy, &€ [x %)

Ld(Ry=h3 /S + hE (kg + 20, + hy)/4

+h3 (3hE+ dhgh, + 2hohy + hihy + hD/3 + hE Ro(hg + B (hg + By o+ hy)[2.




Approximation and extrapolation by local splines " 85

L

Taking into account that. L - o L
o j Alx _xu)sdx ARb A e e
L troand x“ . e ERREI .
we put A = 4d(h) f [xo, ,rd /h Then we obtam

j ) e = )l 4,510:4 e

The following estimates hold:

“R(ﬂdx <—3%hf||f[x iyt ElL, < % llf('*)lll
’Yo : A ‘ ’ n . 3 r 0 B - - ;',,
L_ p(x)dx| < —5—3 O f Loy 2y 2, €N, € %ol"f"f(j)”iu o

5.FIFTH-DEGREE LOCAL SPLINES ON A UNIFORM GRID: /..
"The techniques developed above for constructing and analysing cubic splinies can -also
be applied to splines of other degrees. We consider here only the fifth-degree splines.
Considering such splines on arbitrary grids involves bulky” calculanons, and’ we
therefore restrict ourselves here to a uniform grid, i.e, h, =h for all k.

The span of - the fifth-degree SMS;- that exactly repmduces the fifth- degree
polynomials contains ten grid points; i.e, if x € (x 0%, 4 1], then the values { ]jc}”)' are
required in order to calculate §3( f.x). If n>4 then the spline:; $2(f:x): can: easily 'be
written explicitly [9], namely, putting ¢ = (x X )/h we get ‘ _,- -

S0 = 2 100, GO “(””1_")5 .1
x) = 3 5, 1) = et (5
e B0 2, 70 28800+ N st

4y =960, a = -4680, a,=1305, a,= ~190, ¢ g, =13

L

In {9} an exp11c1t representauon of the remamder approximation term for functions

fe ¢t has been obtained in the form:

. 2 .
6) = 705560 = ~nipey®| S L) am e

If xelx _,x ), then & [x - 41%, 4 5. From this Jmmedlately follows the estimate _

unimprovable in the clags C%
177

1, 81 £(B)pre = ’
|P,,(J§)f<C1|If I C= ey =0-0152. (5.2)

Now let us extend the spline S%(,%) to the inteval (x5,z,]. In (3] it bas been
proposed to extend the sphne 5o that S3(f, x)=hf, £=0,1, 2 3, and correspondmg

WL
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formulae have been derived for representing such a spline as a combination of
- B-splines. The formulae are rather butky and allow only order-of-magnitude estimates
of the remainder approximation term to be found Here-ve realise this idea in a
simpler form and obtain an explicit representatlon and estlmates for the remamder

approximation term.
Let the symbol P{x) denote the fifth- ~degree polynom1al that mterpolates the

function £ at the points {x,,. - %} Then f(x) = £(x} + R(x). The remainder term: IS
. R(x) = ws. ol e, xg, o xs)

The spline Ss(f x) exactly reproduces polynomla[s of the fifth- degree therefore at
x € [x,,x;] we have , : S

S3(f,x) = P(x) + SR, x).

Let us write the expression for § 5(R x) on this mterval using representation (5.1).
Since R, R(xk) =0 at £=0,...,5, we have

S5(R,x) = gﬁ RO =h~° és ROA(x~)/h)

ho3

* 80 [- 4680(x — x )7 +1305(x — ) - 190@: - ;_52)5 * .1'3(.; ~x )R

+ (1305(1: —x4)5 = 190(x = x5)% + 13(x - x, )3)R7

(= 1900k = ) + 13(x - x3))Rg ]

Now, let us define the spline Ss(f,,x) at x & [x,,x,] as follows:

-5 . L T
o [(1305(x - x,)%: — 190(x ~ ,)3, + 13(x =x)3 )R,

$3(f,x) = Px) + >

+(=190(x - £;)%, + 13(x -1, )R, + Bz ~v,)S Ry ].

Such a definition ensures that the function S$3(f,x) is continuous, together with its
derivatives of order up to fourth, on the interval [xgrag) : '
On the interval [xn, .| we have § 3(f,x) = P(x). The remainder approximation term

is
p(x)= fx) = $(f.0) = R(x). .
" The following estimate holds
[P < 16.90094 ) £ x,, 1,x,,,xq,x4,r5, ||1 < 0.0235h0 FOL
On the interval (x,,x,] we have ' ' A

13r75
§3(£,2) = P(x) + 28500 (-1’ Ry.

The remainder approximation term is

(5 3)_:”
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On the interval {x,25] we have

-5 . - '_
8505 L( 190G =) + 13(x - xR, + 132 ~5)°R ],

S3f,x) = P(x) +
The remainder approximation term is

p(x) = x)——z—%b—[( 190(x - x2)5+13;c .r)s)R6+13(x x)5R7]

[p(x)] < 1144308 £ [xg, 3, x5 25, %, 5,:]|11 sOOlSQhﬁl[f(ﬁ)”l
On the interval [J.’3, ] we have -
See o o ' 5 5
S3(f,x) = P(c) + 28800 [(1305(x 53’ = 190(x - 1,)° + 13(x — x,)°)R

(19002 ~xg)® + 130 1) )Ry 13(2 =55l Ry].
The estimate for the remainder approximation term is
lo(x)] < 11.443;:6” F ey g g 05,8 2L, < 0.005948) FOpL

Note that unlike the estirmates on the-intervals- [x;,x,) and [xy,x,], all the constants
in the estimates of |p(x)| on the intervals {xz, 4] and [£gs 1] cannot be, 1mproved

6. EXTRAPOLATION WITH THE USE OF FIFTH Dﬁ-iGREE SPLINES

We consider here only the scheme of extrapolatlon with a quasi-interpolation at the
point x_, = =&, given the values f(:ck) =f at r>0. As in Section 4, we write the.

-1
~ spline

Let flx_ 1) f., be & quantity we do not know Then
P(x_)) = f_l “R(x_)) = foq - Aéf_.l(xul “xg) o (x| —xs)/*fz,oxzé.
Thus, '
pu@ ffSULQ~§f—M
Now we choose A= AGth 3, Then we have .
pg)=-dTf
Hence, if f(7) is continuous, then _
Pl )= ~fDORT,  gefr_x).

If the appronmated function. f = PS ( x) is a polynomial of the sixth ‘dcgree., then

S3(fx_ ) =P%_)). h e T

i

R

§3(f.x) = P(r)+A(x x). | | (6.1)

o .
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-Figure 1. A plot of the function F(x) = sin2x on a nonuniform grid. o

F(x)=S(2) | |
L0.0006 S el :
e : _ i

o H '_‘\TL',Oe: -
F(x) ~Px)

T Fe by 1R i g, ‘.I.j‘.-; 4347 ML 1 3 ! V]
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. E 5t : -

"Figure2. A plot of the error of apf:ro-:cimatio'ﬁ and éit}a.\polation of the furiction F(x)'r-'sinzf.'ﬁy the Tacal
cubic spline §(x) and sections of interpolation polynomials P(x).
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Figure 3. A plet of the error ufapproximaiion and extrapolation of the derivative F b} § and P, Ny
f
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CONCLUSION
In conclusion, we . gwa some illustrations of. what, has been .considered. above.
Approxxmatmn and:extrapolation of .a section of the funcl:lon y =sin 2x is pe.rformed
Shown in Fig. 1 is. the function together with.. the grld OIL whmh 1ts Values are
calculated. The dashed lines along the axis X mdlcate the extrapolauon mte ]
function is approximated and -extrapolated by the gnd data by two methods (

focal cubic splines S(x) (for extending. the. splme to the endpomt with mterpolauon 6r o
for extrapolation with quasi- mterpolatnon) {2) using sections of . mterpolatlon A

polynomials P(x). Figure 2 shows the dlfferencea flxy = S8(x). and f(x) P(r), and
Fig. 3 shows f(x) - $'(x) and f(x) -P'(x :
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CONCLUSION

In conclusion, we gwe some Illustratlorxs of -what has been considered abOve
Approximation and extrapolatlon of 4 section of thé function y-=
Shown in- Fig. 1 is the function together ‘with the  grid,” on -which. its valaes -are
calculated. The dashed lines along the-axis X indicate the extrapolation: intetval, The'
function is approximated and‘extrapolated by thg grid data by two methods: (1)-using-

locat cubic splines S(x) (for extending the spline to tire endpoitit withi interpolation or - -

for extrapolation with quasi- interpolation); (2) using sections -of - mterpolatwn
polynomials P(x). -Figure 2 shows the differerices flx) = S(x) and Ax = P(,r) and

Fig.3 Shows fx) - §'(x) and f(x) P,
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