
Resource Placement and Assignment in Distributed
Network Topologies

Yuval Rochman
Tel Aviv University

Tel-Aviv, Israel
yuvalroc@post.tau.ac.il

Hanoch Levy
Tel Aviv University

Tel-Aviv, Israel
hanoch@cs.tau.ac.il

Eli Brosh
Vidyo

New Jersey, USA
eli@vidyo.com

Abstract—We consider the problem of how to place and
efficiently utilize resources in network environments. The setting
consists of a regionally organized system which must satisfy
regionally varying demands for various resources. The operator
aims at placing resources in the regions as to minimize the cost
of providing the demands. Examples of systems falling under
this paradigm are 1) A peer supported Video on Demand service
where the problem is how to place various video movies, and
2) A cloud-based system consisting of regional server-farms,
where the problem is where to place various contents or end-user
services. The main challenge posed by this paradigm is the need
to deal with an arbitrary multi-dimensional (high-dimensionality)
stochastic demand. We show that, despite this complexity, one
can optimize the system operation while accounting for the full
demand distribution. We provide algorithms for conducting this
optimization and show that their complexity is pretty small,
implying they can handle very large systems. The algorithms
can be used for: 1) Exact system optimization, 2) deriving lower
bounds for heuristic based analysis, and 3) Sensitivity analysis.
The importance of the model is demonstrated by showing that an
alternative analysis which is based on the demand means only,
may, in certain cases, achieve performance that is drastically
worse than the optimal one.

I. INTRODUCTION

The Internet has witnessed a surge in the usage of content
distribution services, such as video streaming applications.
These services feature large volumes of content and demands
that are highly variable, and replicate content across multiple
locations for better performance and availability. Such systems
face the general problem of how to place and efficiently utilize
(content) resources in a geographically distributed environ-
ment, usually organized in a regional structure, and demands
for the resources which vary across the regions. In such
settings, it is typically cheaper to provide a specific demand by
a resource located in the same region, as opposed to providing
it by a remote one. Thus, a challenge in engineering such
systems is, first, how to place the resources in the various
regions, and second, how to assign (provide) them as to
optimize the operations of the system.

An example of an application that falls under this paradigm
is a peer-assisted Video-on-Demand (VoD). In this service, a
provider aims to serve video content to users which are spread
across various geographical regions and are each equipped
with a set-top box. Serving all requests from a central server
can lead to bottlenecks, limiting the system’s scalability. It can
therefor make use of the users’ boxes to store video content

and serve it, using their upload channel, to other users. Serving
videos across regions is more expensive than within a region.
The provider faces the problem of where to place copies of
the various movies so as to minimize the expected cost of
servicing video requests. Another related example is that of
a cloud-based service provider with geo-diverse users. To be
close to the users, it maintains a number of server farms, each
in the relative proximity of a target population. It is of course
preferable to service a request from a a local farm. Ideally, the
providers would like to pre-load the right content replicas at
individual servers so as to satisfy the content demand in the
most efficient way.

To address this problem, we consider a generic resource
placement and assignment model for distributed network
topologies. The system considered consists of multiple regions
(areas) and resource types. The total number of resources that
can be placed in each region can be restricted. The provider
faces a stochastic demand in the form of a multi dimensional
demand distribution, consisting of the demand distribution for
each service and in each region. These distributions are neither
necessarily identical nor necessarily independent of each other.

The provider’s objective is to place the resources optimally
over the regions – based on the demand distribution, and once
placed, to assign them efficiently to the requests – based on
the demand realization. Supplying each request can be done
from the same region (low cost) or from a different region
(medium cost); not supplying the demand incurs high cost,
e.g., due to fall back to a central server. The objective of the
combined placement-assignment algorithm is to minimize the
expected cost of supplying the requests.

The generality of the distribution described above allows
one to address a variety of scenarios: 1) Demands that vary
across resources. For example, in VoD the demand can change
drastically across movies; while some are very popular the
others may be quite esoteric. In fact, studies suggest a large
diversity of usage patterns exhibited by existing VoD services
such as NetFlix, IPTV, and YouTube [1], [2]. 2) Demands
that vary across regions or that may be correlated with each
other. 3) Demands with various variabilities. High variability
demands may be caused, for example, by flash crowds or by
some network events (e.g. a campaign for a movie).

Our replication model, which is based on the demand full
distribution, may deviate from prior approaches focused on

2

the mean of the distribution. The use of a simple scheme
like proportional mean replication may be quite inefficient
(Proportional mean replication has been shown to be optimal
under some conditions, see e.g. [3]) as demonstrated in the fol-
lowing simple example. Consider a single region system which
can store up to n resources, and two types of resource to be
placed. The first resource-type has a deterministic demand of
n requests and the second one has a stochastic demand of nk2

requests w.p 1/k, and 0 requests w.p 1 − 1/k. The objective
of efficient placement is to maximize the expected number of
requests granted (the system’s revenue). The optimal algorithm
will place n resources of the first type, yielding a revenue
of n. In contrast, a proportional mean strategy which tunes
the number of replicas to the average number of requests,
will place n/(k + 1) resources of the first type and nk

k+1
of the second type yielding a drastically smaller revenue of
2n/(k+1). Note that as k approaches infinity, the performance
ratio between the policies approaches∞. A further applicative
example is discussed in Section VII.

Solving a resource allocation problem that combines com-
binatorial aspects and arbitrary stochastic demand distribution
is challenging. In our prior work [4] we showed that a
simpler variant of the problem, in which demands and capacity
constraints are identical across regions, can be solved by an
optimal greedy algorithm. The methodology was generalized
in [5] to account for a global capacity restriction. However,
these analysis techniques are not powerful enough to address
a general asymmetric setting.

We demonstrate that, despite this complexity, one can
optimize servicing costs while accounting for the full demand
distribution by transforming the placement problem into min-
cost flow problem. The min-cost problem is traditionally
solved by the SSP algorithm. We further develop an optimized
version of the SSP algorithm, tailored to our problem, provide
low-complexity optimal algorithms suitable for handling large-
scale systems. Our algorithms can serve as a lower bound
for heuristic approaches, and can be used for sensitivity
analysis. We use numerical analysis to validate our results and
to demonstrate that alternative mean-based analysis, may, in
certain cases, achieve performance that is drastically worse
than the optimal one

The rest of this paper is organized as follows. In Section
III we describe the model and the problem. Section IV deals
with the matching problem and Sections V, VI-D with the
placement problem. Section V describes our transformation
of the problem into a max-flow problem and Section VI-D
describes our optimized variant of the SSP algorithm which
is a key to achieving a low complexity solution. Section VII
uses numerical analysis to evaluate the system performance.
Most of the article proofs are presented in a technical report
[6].

II. RELATED WORK

The problem of finding the right replication of resources
in a distributed network is often addressed using facility
location theory [7]. This area has received significant attention

with respect to analytic analysis and algorithmic solutions.
Our version of the problem differs than traditional facility
location problems in that it incorporates stochastic demand
and capacity constrains at the service facilities.

There is an extensive literature on efficient replication
of content resources in the context of content distribution
networks and web caches (see e.g. [8], [9]). These services
are typically distributed across multiple locations for better
performance and reliability. In this domain, the main focus is
on optimizing the success ratios at servers given some access
pattern (typically, a flow) of requests. These works pay little
attention to capacity limits at the servers, an essential aspect
of the model (and applications) we consider.

Our motivating application scenario of reducing video ser-
vicing costs through optimized replication has been considered
in the context of P2P systems. [3] was perhaps the first to study
network model similar to our with an exponentially expanding
topology for file sharing systems. Their main result is that
proportional replication, i.e., one based on the mean demand,
minimizes the average number of links traversed in a download
process. Similar result was derived in [10] for a mesh network
setting. These works assume that number of files and peers is
large enough that all possible requests are always be served.
In contrast, our model allows for restricting the number of
resources (files), resulting in max-percentile based replication,
namely, one based on the tail distribution of the demand.
Other works in this domain often focus on different goals.
For example, [11] optimized file availability when peers are
infrequently online, while [12] aimed to minimize the number
of access failures under random assignment policy.

Other relatively close works to ours are [13], [14], [15]
that focused on P2P VoD replication systems. [13] proposes
an optimal replication algorithm, called RLB, based on the
assumption that the number of movies is much smaller than
the number of peers. [14] argues for proportional replication
by applying asymptotic analysis to loss network performance
model. These works focus on small-scale flat networks, and
do not consider hierarchical network topologies used in prac-
tice by providers. [15] proposes placement framework for
large-scale VoD service based on mixed integer program.
While their model accounts for arbitrary demand pattern and
network structure it assumes deterministic demand, whereas
we consider stochastic one. Recently, [16] characterized the
service efficiency of distributed content platforms as function
of servers’ storage size by using an asymptotic performance
model for online matching algorithms. In this context, our
work maps to a single content server storage model, which
enables us to solve the combined optimization problem of
matching and placement using exact analysis

This works solves a general setting that allows for asym-
metric demands and different resource capacity restrictions
across regions. Our previous work [4] focused on a simpler
variant of the problem with symmetric demands and sym-
metric capacity restrictions, and proposed an optimal greedy
algorithm based on max-percentile approach with near-linear
complexity. While the solution technique can be generalized

3

Fig. 1. An example of the system topology. Note that the storage is s1 = 5
and s2 = 4 and the placement is L1

1 = 1, L2
1 = 0, L1

2 = 2 etc.

to account for an aggregate system capacity restriction, as
done in [5], it cannot be applied to asymmetric settings. To
address the general problem, we build on the min-cost flow
problem solved by the SSP algorithm (see e.g. [17], [18]).
We leverage the special structure of our problem to establish
a further optimization of SSP and obtain a low complexity
solution.

III. THE MODEL AND THE PROBLEM

The system consists of k areas numbered by 1, 2, . . . , k.
In every area one can place multiple resources of different
types numbered 1, 2, . . . ,m. The set of resources placed in
these areas is called a placement. We assume that area j =
1, 2, . . . , k is associated with a storage value sj representing a
bound on the number of resources that can be placed in area
j. Placement L is called feasible if the number of resources
in area j is not larger than sj , i.e Lj :=

∑m
i=1 L

j
i ≤ sj .

We consider a stochastic demand reflecting the demand at
peak hours. Let Dj

i be a random variable denoting the number
of requests for type-i resource in area j. We do not make
any assumption on the distribution of Dj

i , namely it can be
of an arbitrary distribution. Further, we do not assume
independence between the demands, namely Dj1

i1
and Dj2

i2
are not necessarily mutually independent. In contrast the work
we done in [4], we do not assume that the areas (regions)
are symmetric. We assumed that the demand c.m.f values
Pr(Dj

i ≥ e) are calculated in O(1). We assumed that the
statistics are calculated by an external data base. An example
of the topology of system is depicted in Fig. 1, where every
computer represents a resource.

Consider a request made in area j and a placement L. If
the request is assigned to a resource in L, then the request
is called satisfied. If the request is satisfied, it is assigns to
either: 1) A resource of L located in area j (and therefore
the request is granted locally). 2) A resource of L located in a
different area (in this case, the request is granted remotely). We
denote the costs of those cases by Cloc (local cost), and Crem

(remote cost). The costs obeys Cloc ≤ Crem since granting
a remote demand is not cheaper than granting it locally. If a
request is not assigned to any resource in L, then it is called
an unsatisfied request. The cost of an unsatisfied is denoted
by Cunsat, naturally obeying Cloc, Crem ≤ Cunsat.

Remark 3.1: In some applications, the unsatisfied requests
are served by an external resource center, as in the peer-
assisted video on demand (VoD) system.

Demand

Placement

Area 1 Area 2

Fig. 2. Matching Example

We there for have:

Cloc ≤ Crem ≤ Cunsat. (1)

The objective of the system is to minimize the cost of
servicing the requests. Let gloc, grem and gunsat denote the
number of requests granted from a local area, requests granted
from a remote area and unsatisfied requests, respectively. Note
that gloc+grem+gext is the total number of requests, D. The
system request service cost is given by

C = Cloc · gloc + Crem · grem + Cunsat · gunsat, (2)

and the objective is to minimize this service cost.
An example of the matching between resources and requests

is in Fig. 2. In this example, we have k = 2 areas, each with
s1 = 4, s2 = 3 storage. The number of requests granted
(served) locally, remotely and unsatisfied, are 1, 1 and 3,
respectively. Therefore the cost in this case is 3·Cloc+Crem+
Cunsat.

To this end, one should note that the system operation
divides into two stages. First, at off-line mode, we place the
resources into the areas. The resource placement is based
on the knowledge of the demand distribution. Second, once
the resources are placed, the system is faced with an actual
demand, which is a realization of the demand distribution,
at which time the system needs to decide how to assign the
resources to the various demands. We call the former the
placement problem and the latter the assignment problem.
Note that the assignment problem can be solved in isolation;
nonetheless the solution of the placement problem depends on
that of the assignment problem. Formally the problems can be
stated as follows:

1) The assignment (matching) problem: Given a placement,
L = {Lj

i}, a demand realization, denoted by nji , i =
1, . . . ,m, j = 1, . . . , k, and the service cost parameters
Cloc, Crem, Cunsat, assign (match) the resources to the
demands as to minimize the service cost C.

2) The placement problem: Given the demand distributions
{Dj

i }, i = 1, . . . ,m, j = 1, . . . , k, the service cost pa-
rameters Cloc, Crem, Cunsat, area storages s1, s2, . . . sk

and a matching algorithm solving the assignment prob-
lem, determine the optimal placement resources L =
{Lj

i}, i = 1, . . . ,m, j = 1, . . . , k, that minimizes
the expected cost E[C] among all feasible placements
obeying Lj =

∑m
i=1 L

j
i ≤ sj .

4

Our objective in this work is to solve the placement
problem; this, in turn, will be assisted by a solution of the
assignment problem.

A. Transforming the Cost Function to a Revenue Function

For the analysis of the assignment and placement problem
it will be convenient to transform the cost value problem to a
revenue value problem. The way we define the transformation
is critical, and defining it differently may complicate the
analysis. The transformation was established in [4] as follows:

Claim 3.2: The following holds:
1) A matching algorithm M solves the assignment problem

iff M maximizes the following function:

R = (Cunsat − Crem)gsat + (Crem − Cloc)gloc

where gsat, gloc represent the number of requests satis-
fied by the placement (which equals gloc + grem) and
the number of requests granted by matching same area
(local), respectively.

2) A placement L solves the placement problem iff the
placement maximizes E(R).

For convenience we set Rsat
.
= Cunsat − Crem ≥ 0 and

Rloc
.
= Crem−Cloc ≥ 0. We will denote the revenue objective

function to be:

R = Rsat · gsat +Rloc · gloc. (3)

By Claim 3.2 we have that R is a proper objective function
for both the assignment problem and the placement problem.

IV. THE ASSIGNMENT PROBLEM AND THE OPTIMAL
MATCHING ALGORITHM

In [4] we solved the assignment problem using the assign-
ment algorithm. The results of [4] are that the assignment
algorithm maximizes the revenue and when applied an real-
ization dji , i = 1, . . . ,m, j = 1, . . . , k, it yields:

R = Rsat

m∑
i=1

min(Li, di) +Rloc

m∑
i=1

k∑
j=1

min(Lj
i , d

j
i). (4)

The results further state that for any arbitrary placement L
and stochastic demand {Dj

i } it will maximize the expected
revenue yielding:

E(RL) =

Rsat

m∑
i=1

E(min(Li, Di)) +Rloc

m∑
i=1

k∑
j=1

E(min(Lj
i , D

j
i)).

(5)

The solution of the placement problem is to maximize the
function in (5), when the free variables of the function are
the placement resources, Lj

i , under the feasibility constrain,
i.e the number of resources in area j is not larger than sj

(
∑m

i=1 L
j
i = Lj ≤ sj).

V. A SOLUTION FOR THE PLACEMENT PROBLEM

The placement problem as defined above seems to be, on
its face value, of prohibitively high complexity and therefore
challenging. The reason is that one must deal with a very large
input data (m distributions, where each could be represented
with O(s) data elements, where in some applications s and m
can reach values up to 104), combined with the combinatorial
complexity of the assignment problem and the placement
problem. Fortunately, we are able to establish powerful prop-
erties of arbitrary distribution functions, and therefore of our
objective function, to be presented in Eq. 6 and Theorem 5.1
next. These properties will be later utilized to devise efficient
algorithms for the placement problem.

A. Transformation of the cost function

In order to solve the placement problem, we will use Eq. 5
and transform from a revenue maximization problem to a
cost minimization problem. We define the alternative cost of
placement L in the following formula:

E(CL) = Rsat

m∑
i=1

Li∑
n=1

(1− Pr(Di ≥ n))+

Rloc

k∑
j=1

m∑
i=1

Lj
i∑

n=1

(1− Pr(Dj
i ≥ n)) (6)

Note that there are three main differences between the
alternative cost and the system request service cost defined in
Eq. 2: 1) As the number of total resources in a placement in-
creases (i.e

∑m
i=1

∑k
j=1 L

j
i)), the number of satisfied requests

increases, and therefore the system service cost decreases. This
is in contrast to Eq. 6, which increases as the number of
total resources in a placement increases. 2) The system service
cost contains three different types of cost parameter, while the
alternative cost contains only two types. 3) The placement with
the alternative minimal cost is the zero placement (Lj

i = 0),
while the optimal placement, which is definitely not the zero
placement, must minimize Eq. 2. We can solve the placement
problem using the alternative cost as stated in the following
theorem:

Theorem 5.1: If L minimizes E(CL) among placements
such that for all area 1 ≤ j ≤ k we have Lj =

∑m
i=1 L

j
i = sj

(sj is the bound on the resource storage in area j), then L is
an optimal placement.
We prove the theorem by the fact that every discrete non-
negative random variable X and every constant C satisfies
E(min(X,C)) =

∑C
k=1 Pr(X ≥ k), and proving that the

optimal placement must satisfies Lj =
∑m

i=1 L
j
i = sj . The

full proof of the theorem can be found in the technical report
[6].

B. A reduction to the min-cost flow problem

In order to find an optimal solution to the placement
problem, we present the min-cost flow problem, which is
a generalization of the notable max flow problem. In the
problem, one considers a directed graph G = (V,E) where

5

every edge e ∈ E has integer capacity c(e) and a real-
value non-negative weight w(e) (alternatively, called cost).
The graph must contain two different nodes: a source node
x and a sink node y. An x-y-flow f : E → R+ is defined
on the graph edges (v, v′) ∈ E in the same way as de-
fined in the max-flow problem and must satisfy: 1) Capacity
constraint: for each edge e, we have 0 ≤ f(e) ≤ c(e). 2)
Conservation of flows: for every vertex v ∈ V \ {x, y} we
have

∑
(v′,v)∈E f(v

′, v) =
∑

(v,v′)∈E f(v, v
′). In addition to

the standard definitions , we define the flow in node v 6= x, y
as the income flow (and by conservation of flows, the outcome
flow) to (from) node v. We denote it by f in(v), which
equals f in(v) =

∑
(v,v′)∈E f(v, v

′)(=
∑

(v′,v)∈E f(v
′, v) =

fout(v)). The flow value of f , as defined in the max-flow
problem, is |f | =

∑
(x,v)∈E f(x, v) =

∑
(v,y)∈E f(v, y). The

weight (or cost) of flow f is w(f) =
∑

e∈E f(e)w(e).
The minimum-cost flow problem with required flow |f | = k

is to find a flow fopt of value k that has minimal weight among
all flows of value k. This means that for every flow f ′ such
that |f ′| = |fopt| = k we have w(fopt) ≤ w(f ′).

In Section VI-A we present the Successive Shortest Path
algorithm for solving a min-cost flow problem on a general
graph G = (V,E). This algorithm was studied in [18]. Its
time complexity is O(|f ||E||V |) where |f | is the required flow
value.

In the next subsection, we will reduce the placement prob-
lem into a min-cost flow problem. To this end, we define
a directed graph G = (V1

⋃
V2

⋃
. . . Vk, E) to be a k-layer

graph if the following holds: 1) The vertex sets V1, V2, . . . Vk
are pairwise disjoint. 2) The vertices in Vi, which are called
layer-i vertices, can be connected only to vertices in succussive
layers (i.e if (u, v) ∈ E then there is 1 ≤ i ≤ k such that
u ∈ Vi and v ∈ Vi+1). Note that a 2-layer graph definition is
the equivalent definition of a bipartite graph.

C. Transformation to min-cost flow problem

We use Theorem 5.1 to reduce the placement problem into
a min-cost flow problem in a 7-layer graph G7. That means,
finding the min-cost flow fopt in G7 will imply the optimal
placement L that solves the placement problem.

The reduced graph G7 = (V ′1
⋃
V ′2 . . .

⋃
V ′7 , E

′) (see Fig. 3)
contains the source node x in the first layer (V1 = {x}) and
contains the sink y in layer-7 (V7 = {y}). We set the required
flow value to equals the total storage value over all areas (i.e
|f | = s =

∑k
i=1 s

k, where sj is the bound on the number of
resources that can be placed in area j). Layer-2 contains area
nodes denoted as a1, a2, . . . , ak. The min-cost flow fopt in
node aj (i.e f inopt(a

j)) will represent the total resources placed
allocated to area j (i.e f inopt(a

j) = Lj). The edges between the
source x and area node aj have capacity sj , reflection a bound
on the number of resources to be placed in area j. The cost of
these edges are all 0. Layer-3 will contain pairs of (area, type)
nodes (aj , ti) such that the flow in these nodes represents the
storage in area j of resource type i (i.e f inopt(a

j , ti) = Lj
i). We

connect between layer-2 area nodes (aj) and layer-3 (area,
type) nodes (aj , ti) for all resource types 1 ≤ i ≤ m and all

areas 1 ≤ j ≤ 1. The capacity of these edges is infinity (the
flow through the nodes are unlimited), and the cost is 0.

In order to represent the local part of the cost E(CL), the
layer-4 nodes are the triples (aj , ti, r) called (area, type, #
resources) nodes for areas 1 ≤ j ≤ k, resource types 1 ≤ i ≤ t
and an integer 1 ≤ r ≤ s. Positive flow in node (aj , ti, r)
represents that the number of type-i resources from area j is
larger than or equal to r (in other words, if Lj

i ≥ r, then
f inopt(a

j , ti, r) = 1, otherwise f inopt(a
j , ti, r) = 0). To allow the

flow values of 0 or 1, the edge connected between node (aj , ti)
in layer-3 and node (aj , ti, r) in layer-4 will have capacity 1.
Note that Lj

i ≥ r iff the number Rloc(1−Pr(Dj
i ≥ r)) appears

in the summational of Eq. 6. Thus, we define cost between
nodes (aj , ti) and (aj , ti, r) to be Rloc(1− Pr(Dj

i ≥ r)).
Layer-5 nodes are called resource type nodes or simply

type nodes. The value f inopt(t
i) represents the number of

type-i resources from all areas (i.e f inopt(i) = Li). For all
1 ≤ j ≤ k, 1 ≤ r ≤ s, we connect layer-4 nodes (aj , ti, r) to
resource type node ti. The capacity of these edges is infinity
(could equivalently set to 1, since the flow in (aj , ti, r) is 0 or
1), and the cost of these edges is 0. Layer-6 nodes represent
pairs (ti, r) of (type, # resources) nodes. Positive flow in node
(ti, r) represents if number of type-i resources is larger than(or
equal to) r. Similarly to the edges between layer-3 and layer-
4, the edges between ti and (ti, r) have capacity 1 and cost
Rsat(1−Pr(Di ≥ r)). Finally, we connect all (resource type,
resources) nodes to the sink node y in layer-7. The cost of
these edges is 0 and the capacity is infinity.

The reduction correctness relies on the following lemma:
Lemma 5.2: Let f be a flow in G7, such that the flow

in (area, type) node (aj , ti) is f in(aj , ti) = f ji and in
resource type node ti it is f in(ti) = fi. Let us denote
placement L such that Lj

i = f ji . Then there exists a unique
flow f̂ that obeys: 1) f̂ in(aj , ti) = f ji , f̂

in(ti) = fi for
all area j and resource type i. 2) f̂ goes through layer-4
nodes (j, i, 1), (j, i, 2), . . . (j, i, f ji) and through layer-6 nodes
(i, 1), (i, 2), . . . (i, f ji). Moreover, the cost of f̂ , which equals
to E(CL), is not larger than the cost f .
The important point of Lemma 5.2 is that the optimal flow
goes through first f ji cost edges emanating (aj , ti) node, thus
reflecting consistent cost of placing f ji resources of type i in
area j. The proof of this lemma can be found in our technical
report [6]. Thus, by Theorem 5.1 we can conclude:

Corollary 5.3: If fopt is a min cost flow of G7, then the
placement Lj

i = f inopt(i, j) solves the placement problem.
Note that the number of (area, type, # resources) nodes

is O(smk). Thus, the number of vertices and the number of
edges in G7 is O(smk). Running the Successive Shortest Path
on G7 = (V ′, E′) takes O(|f ||V ′||E′|), where |f | = O(s) is
the required flow value. Expressing the time complexity of SSP
in terms of total storage, resource types and areas (denoted as
s, k,m) is O(s3m2k2) . This time complexity is quite high,
and therefore in the next section we will further develop this
algorithm to yield a more efficient one, the Bipartite Graph
(BG) algorithm.

6

x

Layer 2
Areas

y

Layer 1
Source

Layer 3
(Areas, Types)

Layer 4
(Areas, Types, # Resources)

Layer 5
Types

Layer 6
(Types, # Resources)

Layer 7
Sink

Fig. 3. The 7-layer graph

VI. BIPARTITE GRAPH (BG) ALGORITHM

In order to present the Bipartite Graph (in short BG) algo-
rithm, we first have to describe the Successive Shortest Path
(SSP) algorithm in the next subsection. In Subsection VI-B we
describe the Bipartite-like graph GB

f which the BG algorithm
relies on. In Subsection VI-C we study how to construct
the Bipartite-like graph GB

f effectively, and finally we give
the implementation of the Bipartite Graph (BG) algorithm in
subsection VI-D.

A. The Successive Shortest Path (SSP) algorithm

The SSP algorithm is a well-known algorithm that solves the
min-cost flow problem for general graphs. Given a flow f on a
general graph G = (V,E), the Successive Shortest Path (SSP)
similarly to most of the max-flow algorithms, uses the residual
graph Gf = (V,Ef). On the residual graph edges we define
weight wf and capacity cf . We construct the residual graph
Gf from graph G and from flow f by the following steps: 1)
We add to Gf edges from G, such that edge (v, v′) ∈ E will
have weight wf (v, v

′) = w(v, v′) and capacity of cf (v, v′) =
c(v, v′) − f(v, v′). 2) We add the reverse edges of G. That
means, if (v, v′) ∈ E, then we add edge (v′, v) to Gf with
weight wf (v

′, v) = −w(v, v′) and capacity of cf (v′, v) =
f(v, v′). Note that for every edge e in Gf we have c(e) ≥ 0.
3) For every edge e with capacity c(e) = 0 we update its
weight to be wf (e) =∞.

It is vital to be familiar with shortest path algorithms, since
they are used by the SSP algorithm. One notable algorithm
to calculate the shortest paths from one source v to all other
vertices, is the Bellman-Ford algorithm. The running time of
Bellman-Ford on graph G = (V,E) is O(|E| · |V |). More
information on Bellman-Ford can be found in [19].

Finally, we present the SSP algorithm on a general graph G
with required flow k. In the initial step, the algorithm assigns
the zero flow f := 0 (i.e f(e) = 0 for all e ∈ E) with flow
value |f | = 0 and constructs the flow residual graph Gf . The
algorithm works iteratively, and in the ith iteration it calculates
a minimum-cost flow of flow value larger than or equal to i.
The algorithm execute the following steps in every iteration:
1) Check if the flow value |f | equals to the required flow k. If
so, then f is the optimal flow and the algorithm terminates. 2)

Calculate the shortest paths from source x on Gf with respect
to weight function wf . We will retrieve the shortest path p
between x and y, which is called the augmenting path. If the
shortest path’s weight is infinity (i.e wf (p) = ∞)- then the
maximal flow value of the graph G is strictly less than k, and
the algorithm returns an error. 3) We augment δ = min(k −
|f |,min{c(e)|e ∈ E}) > 0 units of flow through p. That
means if (v, v′) = e ∈ p is in the original graph (i.e e ∈ E)
then we update f(e) ← f(e) + δ, and if the reverse edge in
G (i.e (v′, v) ∈ E) then we update f(v′, v)← f(v′, v)− δ. 4)
We create a new residual graph Gf , according to the updated
flow f .

In [18], [17] the following theorem is proven:
Theorem 6.1: The flow f is a min-cost flow at the end

of every iteration. Moreover, SSP returns a min-cost flow of
required flow |f | = k.

Remark 6.2: An alternative algorithm for finding shortest
path is Dijkstra’s algorithm. Although Dijkstra’s algorithm is
faster than the Bellman-Ford algorithm, it requires the edge
weights to be non-negative. Since the residual graph contains
negative edges, we use Bellman-Ford algorithm. In [17] they
present a method to optimize the SSP algorithm using the
node potentials technique and to ensure that the edge weights
will be non-negative. In further research we will optimize the
algorithms presented in that article using this technique.

By running the SSP algorithm on the 7-layer graph G7

(presented in Subsection V-C) we will get an optimal solution
for the placement problem, according to Corollary 5.3. As
presented in Subsection V-C, the time complexity of SSP on
G7 is O(s3m2k2). The Bipartite Graph algorithm presented
in this section relies on SSP algorithm, and runs faster
(O(s2mk(m+ k))).

B. The Bipartite-like Graph

For presenting the Bipartite Graph algorithm, we will re-
search the structure of shortest paths between two nodes in
the 7-level residual graph G7

f .
Let f be a flow that the SSP algorithm calculates in its

jth iteration. Let vi represent a node in layer-i in G7
f , for

1 ≤ i ≤ 7. A directed path (v2, v3, v4, v5) in G7
f is called

an area-to-type path since it is between an area node and a
resource type node. Directed paths (v1, v2), (v5, v4, v3, v2),

7

Fig. 4. Definitions of special paths in G7f .

and (v5, v6, v7) are called source-to-area path, type-to-area
path, and type-to-sink path respectively, for the same reasons.
Those paths, called special paths are presented in Fig. 4. Note
that there are type-to-area paths in the residual graph G7

f which
are composed of reverse edges of G7.

The number of area-to-type paths in G7
f between an area

node a and a resource type node t is O(s). As we will see in
the following analysis, G7

f possesses a special property. The
structure of G7 implies that on any iteration of SSP only of
these O(s) paths needs to be considered. Focusing on this
path will allow us shrinking the residual graph considerably
to yield the mush smaller bipartite graph. To do so, we say
that an area-to-type path p between area node a and resource
type node t is minimal path if it is a path with minimal weight
among all the area-to-type paths between a and t. We denote
the path by a min→ t and its weight by wf (a

min→ t). We denote
similar definitions for a minimal path between resource type
node t and area node a, between a resource type t and the sink
y, and between the source s and an area node a by t

min→ a,
t
min→ y and x min→ a, respectively. For the analysis done in this

section, we may concatenate between two minimal paths; for
example paths a min→ t

min→ y represent the concatenation of
paths a min→ t and t min→ y.

Remark 6.3: In case there are more than one minimal paths
between two nodes v1, v2, one of them selected arbitrary to
be we v1

min→ v2.
In the next lemma, we see the importance of minimal paths

to characterize the shortest path in G7
f , allowing us to eliminate

non-minimal paths when computing a shortest path:
Lemma 6.4: Let f be a flow that the SSP algorithm cal-

culates in its jth iteration over the residual graph G7
f . Then

a shortest path between x and y, denoted by popt, has a
decomposition formula as follows:

popt = x
min→ aj1

min→ ti1
min→ aj2 . . .

min→ aje
min→ tie

min→ y,
(7)

where x,y are the sink and source of G7
f , and ajl , til are

area and resource type nodes, for all 1 ≤ l ≤ e.
The reader may verify the correctness of the lemma resulted
from the structure of G7 and G7

f . The proof is in the technical
report [6].

The lemma helps understanding the bipartite-like graph, de-
noted as GB

f . The bipartite graph is a 4-layer graph represents
the minimal paths in G7

f . The graph is composed from the

Fig. 5. The bipartite graph GB
f . We assume that f2 = f2

2 = 0, and
f1, f1

1 , f
1
2 6= 0.

following layers: The first layer consists of the source node
x, the second layer consists of area nodes aj , the third layer
consists of resource type nodes ti, and the last layer consists
of the sink node y. The edge weights are determine by the
minimal paths weights in G7

f . The graph, depicted in Fig.
5, resembles a bipartite graph, excluding the source and sink
nodes.

To this end, using Lemma 6.4 we conclude that finding the
shortest path in bipartite-like graph GB

f is equivalent to finding
a shortest path in G7

f , as stated in the next corollary:
Corollary 6.5: Let f be a flow that SSP calculates in its

jth iteration over the residual graph G7
f . Then popt = x

min→
aj1

min→ ti1
min→ aj2 . . .

min→ aje
min→ tie

min→ y is the shortest path
in G7

f iff p̂opt = (x, aj1 , ti1 , aj2 . . . , tie , y) is the shortest path
in GB

f

In the next subsection, we will see how to calculate the
Bipartite-like graph edges GB

f (i.e the minimal path weight
wf (v1, v2)) in constant time (O(1)).

C. Calculating efficiently the Bipartite-like graph edges

In addition for shrinking the residual 7-layer graph G7
f to a

bipartite graph GB
f , we will need to reduce the time complexity

for constructing GB
f . In the SSP algorithm we construct the

residual graph G7
f in O(smk) time. We will show to construct

the Bipartite-like graph GB
f only in O(mk) time. Lemmas

proofs are provided in the technical report [6].
Let f be a flow that SSP calculates in its ith iteration in

G7
f . Assume f ji represent the flow through (area, type) node

(aj , ti), fi the flow through resource type node ti and f j

through area node aj . We will prove that minimal paths in
G7

f (and therefore the edge weights in GB
f) are non-trivially

depended only on f ji , fi and f j (O(mk) variables) and not
on the flow in the other edges\vertices. Moreover, an edge
weight wf (v1

min→ v2) is computed from those values in O(1),
as stated next:

Lemma 6.6: The minimal paths wights in G7
f are:

1) wf (x
min→ aj) = 0 if f j < sj and otherwise ∞.

2) wf (a
j min→ ti) = Rloc(1− Pr(Dj

i ≥ f
j
i + 1)).

3) wf (t
j min→ ai) = −Rloc(1 − Pr(Dj

i ≥ f ji)) if f ji > 0
and otherwise ∞.

4) wf (t
i min→ y) = Rloc(1− Pr(Di ≥ fi)).

8

Note that the weight of a minimal path wf (a
j min→ ti) to that

of wf (t
i min→ aj).

Finally, since in every iteration of SSP we update the flow
values, we can characterize the modification that SSP does to
the flow values f ji , fi and f j , as stated follows:

Lemma 6.7: If the shortest path found in Step 2 of SSP is
popt = x

min→ aj1
min→ ti1

min→ aj2 . . .
min→ aje

min→ tie
min→ y then

the flow values f ji , fi and f j are updated by SSP as follows:
1) f jlil ← f jlil + 1 for 1 ≤ l ≤ e. 2) f jl+1

il
← f

jl−1

il
− 1 for

1 ≤ l ≤ e− 1. 3) fie ← fie + 1. 4) f j1 ← f j1 + 1.
From Lemmas 6.6, 6.7 and Corollary 6.5 we can construct

the BG algorithm described in the next subsection.

D. The Bipartite Graph algorithm

We first initiate the zero flow f ji = 0, fi = 0 and f j = 0
for all areas 1 ≤ j ≤ k and resource types 1 ≤ i ≤ m. In
every iteration, the algorithm will do the following steps: 1)
Finds a shortest x − y path popt in GB

f using Bellman-Ford.
2) Update f ji , fi and f j values according to the shortest path,
p. This update uses the same updates SSP does on f ji , fi and
f j values, described in Lemma 6.7. 3) Calculate the weight
of the graph edges of GB

f according to the new flow f . Since
GB

f satisfies the equivalent path property (see Corollary 6.5)
then the weight of an edge in GB

f is calculated as the weight
of the shortest path in G7

f (see Lemma 6.6).
The resulted flow, f ji , is the flow value of node (aj , ti)

which SSP finds. By Theorem 6.1, SSP retrieves the optimal
min-cost fopt in G7. Also by Lemma 5.2, the placement Lj

i =
f inopt(i, j) solves the placement problem. Thus, we get that the
placement Lj

i = f ji is optimal.
The number of iterations the BG algorithm preforms is

O(s). Step 1 in every iteration takes O(|V ||E|) = O((m +
k)mk), while Steps 2 and 3 take at most O(V +E). Thus, the
complexity of the algorithm is O(smk(m+k)), which is faster
than applying SSP to G7, whose complexity is O(s3m2k2).

VII. NUMERICAL EXAMPLES

In this section, we evaluate the Bipartite Graph algorithm
performance in order to study the following subjects: 1)
The performance of the optimal placement under various
scenarios. 2) The performance of a common used placement
called Proportional Mean placement compared to the optimal
placement.

We consider a demand that follows a Zipf distribution(which
is consistent with prior analytical works [3], [14] and VoD
empirical results [20], [1]). This means that there exists a real
number e > 0 such that the probability for a single request
to demand a type-i resource is pi = 1

ie·H for all resource
types 1 ≤ i ≤ m, where H =

∑m
j=1

1
je . We will assume that

the demand in area j is proportional to the area’s storage, i.e
the probability for a request to originate from area j is qj =
sj

s . To this end, we choose the demand for type-i resources
originating from area j, Dj

i , to be a Poisson distribution with
a rate of pi · qj ·λ, where λ is a constant number representing
the expected number of requests.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

500

1000

1500

2000

2500

Zipf shape

E
x
p

e
c
te

d
 r

e
v
e

n
u

e

The Expected Revenue as a function of the zipf shape parameter

λ=2000 λ=1000 λ=500 Proportional Mean

Fig. 6. The optimal performance under deficit, balanced and surplus modes.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

500

1000

1500

 Zipf shape

E
x
p

e
c
te

d
 R

e
v
n

u
e

The Expected Revenue as a function of the zipf shape parameter

m = 100 m = 1, 000 m = 10, 000

Fig. 7. A performance comparison between optimal placement revenues when
the number of resource types are m = 100, m = 1, 000 and m = 10, 000.

In Fig. 6 we choose the number of resource types to be
m = 100, with revenue parameters of Rsat = Rloc = 1. Since
it is unclear how future demands behave (prior references
mentioned above used a Zipf parameter of values 0.56 - 1.5,
depending on the study) we consider a wide range of Zipf
distributions and vary the Zipf parameter from 0.6 to 1.4. The
number of areas is k = 3, containing storage of s1 = 500,
s2 = 300 and s3 = 200, and thus the storage of the system
is s = 1000. We plot the expected revenue of the optimal
placement under surplus scenario (λ = 500), under balanced
scenario (λ = 1000), and deficit scenario (λ = 2000). We
compute the expected revenue using Eq. 5. We also plot the
performance of Proportional Mean placement in the balanced
scenario.

An important result from Fig. 6 is the optimal placement
in the different configurations. Its revenue in surplus mode is
close to 1000, since almost even request is granted locally
contributing Rloc + Rsat = 2. In the deficit scenario, the
revenue is almost 2000, since about 1000 requests are granted
and all locally . In the balanced scenario, some of the requests
are granted locally, and others are granted remotely.

In Fig. 7 we use the balanced settings, but increase the
variety of resource types to m = 1, 000 and m = 10, 000.
We can see three major results: 1) As the number of resource
types increases, the optimal placement revenue decreases. This
is implied from the increasing number of esoteric resources
(resources with rank larger than the storage value s) which
cannot be satisfied. 2) As the Zipf parameter increases, the
optimal placement’s revenue increases. This can be explained
by the fact since the number of esoteric resources decreases
as the Zipf parameter increases.

The Proportional Mean placement used in several in articles
([3], [14], [10]), places its replicas {Lj

i} proportional to the
mean value of the demand distribution, Dj

i . We compare

9

0 20 40 60 80 100
0

20

40

60

80

Number of Resource Types (m)

E
x
p

e
c
te

d
 R

e
v
n

u
e

The Expected Revenue as a function of the Number of Resource Types

Optimal placement
Proportional Mean placement

Fig. 8. Performance comparison of the proportional mean placement and
the optimal placement in back-up services applications .

the expected revenue of Proportional Mean placement to the
revenue of the optimal placement.

In Fig. 6 we see that in the balanced mode Proportional
Mean placement performance is close to the optimal place-
ment. In contrast, in scenario taken in Fig. 8 we see Pro-
portional Mean performance decreases when the number of
resource types goes to infinity, while the optimal placement
revenue stabilizes. In that scenario we assume a single area
system (k = 1) and the storage of area 1 is s1 = 500. The
revenue constants are Rsat = 0, Rloc = 1, and therefore the
expected revenue represents the number of requests granted
in area 1. The demand for type-i resource in area 1 is 0 with
probability of 1 − 1/i (Pr(D1

i = 0) = 1 − 1/i) and i2 with
probability 1/i (Pr(D1

i = i2) = 1/i).
The demand distributions {Di} reflects a scenario of an

application providing back-up services to m companies. If a
failure occurs in one of the companies, the application will
provide back up to the users in the company. We can assume
that as the company size gets larger, the company is more
maintained and invulnerable to fails, reflected in its failure
probability proportional to its size, namely 1/i.

The figure demonstrates that when the variance of some of
the demands is high proportional mean does not perform well.

VIII. CONCLUDING REMARKS

In this paper we formulated the problems of the resource
placement and assignment in a network environment. We
presented an exact solution leading to finding the optimal
assignment as well as the optimal placement. The optimality
was derived under the assumption of asymmetric stochastic
demands with arbitrary distributions. Algorithms for solving
the problems were proposed, and shown to be very efficient.

The analysis provided in this work can be further extended
to deal with k-level hierarchies. This is done in an ongoing
work. Also in ongoing work we study enhancements to the
Bipartite Graph Algorithm that further reduce its complexity.
We also study a variation of the problem where the number
of resources in any region are not limited.

ACKNOWLEDGMENT

This research was supported in part by the Ministry of
Science and Technology, Israel.

REFERENCES

[1] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez,
“Greening the Internet with Nano Data Centers,” in ACM CoNext, Rome,
Italy, Dec 2009.

[2] M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S. Moon, “I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System,” in ACM Internet Measurement Conference, New
York, NY, USA, October 2007.

[3] S. Tewari and L. Kleinrock, “Proportional replication in peer-to-peer
networks,” in IEEE INFOCOM, Barcelona, Spain, April 2006.

[4] Y. Rochman, H. Levy, and E. Brosh, “Max percentile replication
for optimal performance in multi-regional p2p vod systems,” in
Proceeding of the 9th International Conference on Quantitative
Evaluation of SysTems (QEST) 2012, London, UK, September
2012, to appear. [Online]. Available: http://www.cs.tau.ac.il/∼yuvalroc/
publications/qest2012.pdf

[5] ——, “Efficient replication in multi-regional peer supported vod sys-
tems,” in Workshop on MAthematical performance Modeling and Anal-
ysis (MAMA) 2012, London, UK, June 2012.

[6] ——, “Resource placement and assignment in distributed network
topologies- technical report,” 2013. [Online]. Available: http://www.cs.
tau.ac.il/∼yuvalroc/publications/infocom2013tech.pdf

[7] Z. Drezner and H. W. Hamacher, Facility Location: Applications and
Theory. Springer, 2002.

[8] F. L. Presti, C. Petrioli, and C. Vicari, “Distributed dynamic replica
placement and request redirection in content delivery networks,” in
MASCOTS, 2007, pp. 366–373.

[9] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Transaction on Networking, vol. 8, no. 5, pp. 568–582,
October 2000.

[10] S. Tewari and L. Kleinrock, “On Fairness, Optimal Download Per-
formance and Proportional Replication in Peer-to-Peer Networks,” in
IFIP/TC6 Networking, Waterloo, Ontario, Canada, May 2005.

[11] J. Kangasharju, K. W. Ross, and D. A. Turner, “Optimizing file availabil-
ity in peer-to-peer content distribution,” in IEEE INFOCOM, Anchorage,
Alaska , USA, May 2007.

[12] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in ACM SIGCOMM, 2002, pp. 177–190.

[13] Y. P. Zhou, T. Z. J. Fu, and D. M. Chiu, “Statistical modeling and
analysis of p2p replication to support vod service,” in IEEE INFOCOM,
Orlando, FL , USA, July 2011.

[14] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer
video-on-demand systems,” in IEEE INFOCOM, Orlando, FL , USA,
July 2011.

[15] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ra-
makrishnan, “Optimal content placement for a large-scale vod system,”
in ACM CoNEXT, Philadelphia, USA, Dec 2010.

[16] M. Leconte, M. Lelarge, and L. Massoulié, “Bipartite graph struc-
tures for efficient balancing of heterogeneous loads,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS, 2012, pp. 41–52.

[17] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” ACM 19, pp. 248–264, 1972.

[18] R. G. Busacker and P. J. Gowen, “A procedure for determining a family
of minimal cost network flow patterns,” Operational Research Office,
Johns Hopkins University, Baltimore, MD, ORO Technical Report 15,
September 1961.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic
characterization: a view from the edge,” in ACM Internet Measurement
Conference, ser. IMC ’07. New York, NY, USA: ACM, 2007, pp. 15–
28. [Online]. Available: http://doi.acm.org/10.1145/1298306.1298310

